平方差和完全平方公式教学与拓展
平方差公式和完全平方公式复习和拓展-2022年学习资料

5.完全平方式-1已知,x2+ax+16是完全平方式,-则a=8-己知,4x2-ky+25y2是完全平方式 -则k=-±20-3x2+12x+m是完全平方式,则m=36-4请把4x4+1添加一项后是完全平方式,-可 添加-±4x2或-1或-4x4或4x8或
4x±4x2+1=2x2±1}-2x}+4x+1=2x+1y-6自2r-”1-4x4+1-1=4x4-4x +1-4x4=1
拓展与迁移-1、若不论x取何值,多项式x3-2x2.4x-1-与x+1x2+mx+n都相等,求m、n的值。 =x3+m+1x2+m+nx+n-由题意得-m+1=-2,-1=n-∴.m=-3,n=-1
2、求使x2+px+8x23x+q的积中-不含x2与x3项p、q的值-x2+px+8Xx2-3x+g-=x -3x3+qx2+px3-3px2+pqx+8x2-24x+8q-=x4+-3+px3+g-3p+8x2+ q-24x+8q-由题意--3+p=0,q-3p+8=0-∴.p=3,9=1
ห้องสมุดไป่ตู้
6、化简求值:-1x+32-x-1x-2,其中x=-1-2a+b2-a+ba-b-2b2-其中a=3,b= 19x+7-22ab
7证明:x,y不论是什么有理数,-多项式x2+y2-4x+8y+25的值-总是正数。并求出它的最小值。-= 2-2x2+2+y2+2y4+4+5-=x-2+y+4+5
完全平方公式与平方差公式教案

完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
初中数学初一数学下册《完全平方公式与平方差公式》教案、教学设计

(1)(x+3)^2
(2)(y-4)^2
(3)(2a+b)(2a-b)
(4)(3m-n)(3m+n)
2.变式练习题:通过一些变式题目,让学生学会将公式应用于不同场景,提高解决问题的能力。
例题:已知x+y=5,xy=6,求(x-y)^2的值。
3.综合应用题:设计一些综合应用题目,让学生将所学知识应用于解决实际问题,提高学生的综合运用能力。
5.生活实践题:让学生将所学知识联系到生活实际,感受数学在生活中的应用。
例题:某班组织一次郊游活动,共有45人参加。如果每组多安排1人,可以多分5组。请问原来每组有多少人?
在作业布置过程中,教师要关注以下几点:
1.作业难度要适中,既要保证学生对基础知识的掌握,又要适当提高学生的思维能力。
2.作业量要适当,避免给学生造成过重的负担,确保学生有足够的时间进行自主学习和休息。
讨论过程中,教师要关注以下几点:
1.激发学生的讨论热情,鼓励学生积极发表自己的观点。
2.引导学生互相交流解题方法,分享学习心得。
3.注意观察学生的讨论情况,适时给予指导和帮助。
(四)课堂练习,500字
在课堂练习阶段,教师设计不同难度的练习题,让学生进行巩固练习。练习题要涵盖完全平方公式和平方差公式的各种应用场景,包括基本题、变式题和综合应用题。
接着,教师可以引导学生回顾已学的平方运算知识,如(a+b)^2 = a^2 + 2ab + b^2,让学生尝试推导出完全平方公式:(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab。在此基础上,引出本节课将要学习的完全平方公式和平方差公式。
沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计

沪科版数学七年级下册8.3《完全平方公式与平方差公式》教学设计一. 教材分析《完全平方公式与平方差公式》是沪科版数学七年级下册第八章第三节的内容。
本节内容主要介绍完全平方公式和平方差公式的概念及其应用。
这两个公式是初中学段数学的重要知识点,也是解决代数问题的重要工具。
本节内容承上启下,为后续学习二次函数、一元二次方程等知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,具备一定的逻辑思维能力和解决问题的能力。
但学生对完全平方公式和平方差公式的理解和应用还不够深入,需要通过本节课的学习,让学生熟练掌握这两个公式,并能够运用到实际问题中。
三. 教学目标1.知识与技能:让学生掌握完全平方公式和平方差公式的概念及其应用。
2.过程与方法:通过探究、合作、交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.完全平方公式和平方差公式的记忆和理解。
2.如何将公式运用到实际问题中,解决相关问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究、发现规律。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.运用实例讲解法,让学生通过具体例子,理解并掌握公式的应用。
六. 教学准备1.准备相关的教学PPT,展示完全平方公式和平方差公式的推导过程及应用实例。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾已学的有理数的运算、整式的乘法等知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示完全平方公式和平方差公式的推导过程,让学生直观地感受公式的来源和意义。
同时,给出一些应用实例,让学生初步了解公式的应用。
3.操练(10分钟)学生在小组内讨论,如何运用完全平方公式和平方差公式解决实际问题。
教师巡回指导,解答学生遇到的疑问。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成。
七年级数学下册《完全平方公式与平方差公式》教案、教学设计

(二)教学设想
1.创设情境,导入新课
-通过生活中的实例,如土地面积的测量、房屋面积的估算等,引出完全平方公式与平方差公式的概念。
-通过实际问题的解决,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
-引导学生回顾整式乘法和因式分解的知识,为新课的学习搭建知识框架。
-设计有针对性的课后作业,巩固学生对完全平方公式与平方差公式的掌握。
-采用多元化的评价方式,关注学生的个体差异,鼓励学生发挥潜能。
7.教学反思
-教学结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略。
-注重教学方法的创新,提高课堂教学的趣味性和实效性。
四、教学内容与过程
(一)导入新课,500字
1.总结完全平方公式和平方差公式的推导过程。
2.举例说明这两个公式在实际问题中的应用。
3.分析这两个公式在解题过程中的优势和局限性。
讨论结束后,各小组汇报讨论成果,其他小组进行补充和评价。我在这个过程中,适时给予指导和引导,帮助学生深入理解公式。
(四)课堂练习,500字
在课堂练习阶段,我会设计不同难度的题目,让学生运用完全平方公式和平方差公式进行解题。练习题包括以下类型:
在本章节的学习中,学生需要在已有知识的基础上,进一步探究完全平方公式与平方差公式的规律,并将其应用于解决实际问题。此时,学生可能面临以下挑战:
1.对完全平方公式与平方差公用公式解题时,可能会出现符号错误、计算失误等问题,需要教师耐心指导,帮助学生提高运算准确性和解题技巧。
-选择两道课后习题,运用完全平方公式与平方差公式进行因式分解,并解释每一步的推导过程。
完全平方公式的几个拓展应用

完全平方公式的几个拓展应用完全平方公式是任何一个学生学习数学的一个重要部分。
这个公式通常被用于简化在数学中的一些复杂的运算。
然而,除了简化运算,完全平方公式还有许多其他的应用。
在本文中,我们将探讨完全平方公式的几个扩展应用,这些应用可帮助学生更好地掌握数学知识,提高数学运算的效率。
一、完全平方公式的扩展完全平方公式是指一个二次多项式可以以平方的形式进行展开,这个公式可以表示为:$$(a+b)^{2}=a^{2}+2ab+b^{2}$$这个公式的意思是,一个数的平方可以分解为两个数的积加上这两个数的平方。
这个公式不仅仅应用于求一个数的平方,也可以用于求两个数字的积。
公式中的$a$和$b$可以取任意实数或复数。
二、完全平方差公式完全平方差公式是指任何二次多项式可以写成两个完全平方的差的形式,这个公式可以表示为:$$a^{2}-b^{2}=(a+b)(a-b)$$这个公式可以帮助我们简化两个数的差的运算,而不是使用大量的减法来实现计算。
例如,假设我们需要计算$8^{2}-6^{2}$,我们可以使用完全平方差公式,将其写成$(8+6)(8-6)$的形式,最终答案为$2\times14=28$。
这在计算中非常有效,可以帮助我们简化运算,提高计算效率。
三、二次多项式的因式分解完全平方公式也可以通过二次多项式的因式分解来应用。
通过考虑二次多项式的因式,我们可以将其分解成可拆分为两个完全平方差的形式。
这个应用可以帮助我们避免使用一些复杂的运算方法,例如配方法。
例如,考虑二次多项式$x^{2}+6x+9$,我们可以将其写成$(x+3)^{2}$的形式,这个公式可以帮助我们更快地对多项式进行计算。
四、三元完全平方公式在三元及更高维的方程组中,也存在一种完全平方公式,称为三元完全平方公式。
这个公式指出,一个三元多项式可以写成三个一次多项式的完全平方差的和的形式。
三元完全平方公式可以表示为:$$a^{2}+b^{2}+c^{2}+2ab+2bc+2ca=(a+b+c)^{2}$$这个公式可以帮助我们解决三元及更高维的多项式方程组,从而简化复杂多项式的运算。
平方差公式完全平方公式拓展

平方差公式完全平方公式拓展一、平方差公式的拓展(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²这两个公式常用于将两个含有平方项的多项式进行展开。
例如,要计算(3+4)²,可以利用平方差公式展开为3²+2*3*4+4²=9+24+16=49然而,这两个公式还可以进一步拓展。
1.平方差公式的三项展开(a+b+c)² 的展开式可以通过不断应用平方差公式进行简化。
我们首先展开(a+b)²,得到a² + 2ab + b²。
然后将 c 加入到这个式子中,得到a² + 2ab + b² + 2ac + 2bc + c²。
观察这个式子,我们可以发现其中有三个交叉项 2ab、2ac 和 2bc。
因此,我们可以将(a+b+c)² 的展开式写为三项的形式:(a+b+c)² = a² + b² + c² + 2ab + 2ac + 2bc这个拓展的平方差公式对于展开三个或多个含有平方项的多项式非常有用。
2.平方差公式的负数展开前面提到的平方差公式是针对两个正数进行的展开。
但是,当其中一个数是负数时,我们可以将其用平方差公式进行展开。
例如,要计算(4-3)²,我们可以将其展开为4²-2*4*3+3²=16-24+9=1、这个拓展的平方差公式的形式如下:(a-b)² = a² - 2ab + b² (当 a 和 b 可能是任意实数时)这个公式对于将两个数的差的平方进行展开非常有用。
二、完全平方公式的拓展完全平方公式是指一个多项式是一些二次多项式的平方。
常见的完全平方公式如下:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²这两个公式常用于将含有平方项的多项式进行因式分解。
完全平方公式与平方差公式-经典教学教辅文档

第8章整式乘法与因式分解8.3 完全平方公式与平方差公式(续表)_________________________________________________________________________________________________________④[习题反思]好题题号_____________________________________________错题题号_____________________________________________第1课时完全平方公式学案1、完全平方公式有两个:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.即,两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍.这两个公式叫做完全平方公式.它们可以合写在一同,为(a±b)2=a2±2ab+b2.为便于记忆,可抽象的叙说为:“首平方、尾平方,2倍乘积在中央”.几何背景:如图,大正方形的面积可以表示为(a+b)2,也能够表示为S=SⅠ+ SⅡ+ SⅢ+SⅣ,同时S=a2+ab+ab+b2=a2+2ab+b2.从而验证了完全平方公式(a+b)2=a2+2ab+b2.2、完全平方公式的特点是:左侧是两个相反的二项式相乘,右侧是三项式,是左侧二项式中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍.公式中的字母可以表示具体的数(正数或负数),也能够表示单项式或多项式等代数式.只需符合这一公式的结构特点,就可以运用这一公式.3、在运用完全平方公式时应留意成绩:(1)千万不要发生类似(a±b)2=a 2±b 2的错误;(2)不要与公式(ab )2=a 2b 2混淆;(3)切勿把“乘积项”2ab 中的2漏掉;(4)计算时,应先观察所给标题的特点能否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.名师导学互动典例精析:知识点1:改变公式中b a ,的符号:例1、运用完全平方公式计算: ()252y x +-【解题思绪】本例改变了公式中b a ,的符号,处理方法之一:把两式分别变形为()()[]225252y x y x --=+-()252y x -=再用公式计算(反思得:()()()()2222;b a b a a b b a +=---=-);方法二:把两式分别变形为:()()222552x y y x -=+-后直接用公式计算;方法三:把两式分别变形为()()[]225252y x y x +-=+-后直接用公式计算.【解】()252y x +-=()()()22222420252252525x xy y x x y y x y +-=+⨯⨯-=-.【方法归纳】对乘法公式的最初运用是模仿套用,套用的前提是确定能否具备运用公式的条件,关键是正确确定“两数”即“a ”和“b ”.对应练习:()2b a --知识点2:改变公式中的项数 例2、计算:()2c b a ++【解题思绪】完全平方公式的左侧是两个相反的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用全体思想看成一项,从而化解矛盾.所以在运用公式时, ()2c b a ++ 可先变形为()[]2c b a ++ 或()[]2c b a ++ 或者()[]2b c a ++ ,再进行计算.【解】()2c b a ++=()[]2c b a ++=()()bc ac ab c b a c c b a b a 222222222+++++=++++.【方法归纳】运用全体思想可以使计算更为简便,快捷. 对应练习:(2a -b +4)2知识点3:改变公式的结构例3、运用公式计算: (1)()()y x y x 22++; (2)()()b a b a --+. 【解题思绪】本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特点,但仔细观察易发现,只需将其中一个因式作适当变形就可以了.【解】(1)()()y x y x 22++=()2222422y xy x y x ++=+;(2)()()b a b a --+=()2222b ab a b a ---=+-.【方法归纳】观察到两个因式的系数有倍数关系或相反关系是正确变形并利用公式的前提条件. 对应练习:计算:()()a b b a --知识点4:利用公式简便运算 例4:计算:9992【解题思绪】本例中的999接近1000,故可化成两个数的差,从而运用完全平方公式计算.【解】()=+-=+-=-=120001000000120001000110009992222998001. 【方法归纳】有些数学计算可拆成两数(式)平方差、完全平方公式的方式,正用乘法公式可使运算简捷、快速. 对应练习:计算:100.12知识点5:公式的逆用例5、计算: ()()()()2233525++++-+x x x x【解题思绪】本题若直接运用乘法公式和法则较繁琐,仔细分析可发现其结构恰似完全平方公式()2222b ab a b a +-=-的右侧,不妨把公式倒过来用.【解】()()()()2233525++++-+x x x x =()()[]4352=+-+x x .【方法归纳】解题中,•若把留意力和着眼点放在成绩的全体上,多方位考虑、联想、探求,进行全体考虑、全体变形,•从不同的方面确定解题策略,能使成绩迅速获解.对应练习:化简()()()()223372272++++-+a a a a 知识点6:公式的变形例6、已知实数a 、b 满足()1,102==+ab b a .求以下各式的值:(1)22b a +;(2)()2b a -【解题思绪】此例是典型的整式求值成绩,若按常规思想把a 、b 的值分别求出来,非常困难;仔细探求易把这些条件同完全平方公式结合起来,运用完全平方公式的变方式很容易找到解决成绩的途径.【解】(1)22b a +=()822=-+ab b a ; (2)()()ab b a b a 422-+=-=6.【方法归纳】()()ab b a b a 422-+=-()(),422ab b a b a +-=+()()ab b a b a ab b a b a 2,2222222+-=+-+=+熟习完全平方公式的变方式,是相关全体代换求知值的关键. 对应练习:已知:x +y =-1,x 2+y 2=5,求xy 的值. 知识点7:乘法公式的综合运用 例7、计算:()()z y x z y x -+++【解题思绪】此例是三项式乘以三项式,特点是:有些项相反,另外的项互为相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第一章 整式的乘除一、平方差公式教学目标平方差公式的特征 平方差公式利用平方差公式简便计算复习回顾:多项式与多项式是如何相乘的?计算下列各题:(1) ()()22-+x x ; (2) ()()a a 3131-+; (3) ()()y x y x 55-+; (4) ()()z y z y -+22. 观察以上算式及其运算结果,你有什么发现? 再举两例验证你的发现. 1、平方差公式:(1)平方差公式的推导:()()2222b a b ab ab a b a b a -=++-=-+(2)文字语言:两个数的和与这两个数的差的积,等于这两个数的平方差. (3)符号语言:()()22b a b a b a -=-+.例1 利用平方差公式计算:(1)()()x x 6565-+; (2)()()y x y x 22+-; (3)()()88-+ab ab .(4)面积表示: 例2如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形. (1)设图①中阴影部分面积为S1,图②中阴影部分面积为S2,请直接用含a ,b 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式.2、公式变形:()()22b a b a b a -=--+-注:(1)这里的两数可以是两个单项式也可以是两个多项式等等;相同为a加括号b2 (2)逆运算也是成立的.例3 利用平方差公式计算:(1)()()n m n m --+- . (2)⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 4141;(3)()()()1112+-+x x x (4)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2141212x x x例4 利用平方差公式计算:(1)()()z y x z y x ++-+-(2)()()z y x z y x -+++-(3)()()1212+--+y x y x (4)()()939322+++-x x x x3、利用平方差公式简便计算(1)计算下列各组算式,并观察它们的共同特点: (2)从以上的过程中,你发现了什么规律?(3)请用字母表示这一规律,你能说明它的正确性吗?例5 用平方差公式进行计算:(1)103×97; (2)118×122.例6 运用平方差公式计算:(1) 2 014×2 016-2 0152; (2) 1.03×0.97; (3) 31393240⨯. 拓展提高1.计算:(1)(2+1)(22+1)(24+1)…(n22+1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.3.已知02,622=-+=-y x y x ,求5--y x 的值. 4.计算:1297989910022222-++-+- .5.求值:)1011)(911()411)(311)(211(22222-----. 7×9=8×8=11×13= 12×12= 79×81=80×80=3 6.利用平方差公式计算:2009×2007-20082. (1)利用平方差公式计算:22007200720082006-⨯. (2)利用平方差公式计算:22007200820061⨯+.7.解方程:()()()()35121222+=-+++x x x x x .8.(规律探究题)已知1≠x ,计算()()2111x x x -=+-,()()32111x x x x -=++-,()()432111x x x x x -=+++-.(1)观察以上各式并猜想:()()=+++-nx x x x 211______.(n 为正整数) (2)根据你的猜想计算:①()()=+++++54322222212-1______.②=++++n 222232 ______(n 为正整数). ③()()=++++++-112979899x x x x xx _______.(3)通过以上规律请你进行下面的探索: ①()()b a b a +-= . ②()()22b ab a b a ++-= .③()()3223b ab b a a b a +++-= .④()()n n n n nb b a b a b aa b a +++++----12221= .二、完全平方公式教学目标完全平方公式的特征完全平方公式完全平方公式的应用及逆应用 引入计算下列各式,你能发现什么规律?(1) ()()()=++=+1112p p p .(2) ()=+22m = .4 (3) ()()()=--=-1112p p p .(4) ()=-22m = .根据规律,直接写出下列下列两式子的结果,并用多项式乘多项式运算法则进行验算. (1)()2b a += .(2)()2b a -= .1、完全平方公式 (1)文字叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. (2)数学表达式:()2222b ab a b a ++=+注:公式中的字母a ,b 可以表示数,单项式和多项式. 例1 利用完全平方公式计算:(1)()232-x ; (2)()254y x +; (3)()2a mn -.例2 利运用完全平方公式计算:(1)()252+-x ; (2)()22n m --; (3)23243⎪⎭⎫ ⎝⎛-y x(3)面积表示法例 3 如图,将完全相同的四张长方形纸片和一张正方形纸片拼成一个较大的正方形,则可得出一个等式为( )D .()()ab b a b a 422--=+例4、利用完全平方公式计算:(2)222015201540322016+⨯-. (1)()()()()224y x y x y x y x -+-+-+;(3)260160⎪⎭⎫ ⎝⎛ (4)210099100⎪⎭⎫ ⎝⎛(5)()()()2222t s t s t s ----- (6)()()()2222933++-t t t 3、完全平方式的应用1. 若k x x ++22是完全平方式,则k =2. 若M xy x +-72是一个完全平方式,那么M 是 3. 如果22814b ab N a +∙-是一个完全平方式,则N =首平方,尾平方,积的2倍在中央5 4. 如果224925y kxy x +-是一个完全平方式,那么k =5. (1)比较a 2+b 2与2ab 的大小(用“>”、“<”或“=”填空):①当a=3,b=2时,a 2+b 22ab ,②当a=﹣1,b=﹣1时,a 2+b 22ab ,③当a=1,b=﹣2是,a 2+b 22ab .(2)猜想a 2+b 2与2ab 有怎样的大小关系?并证明你的结论. 4、公式的逆用1.(2x - )2= -4xy +y 2. 2.(32m +_______)2=_______+12mn +________. 3.2x -xy +________=(x -______)2. 4.249a -________+281b =(________+9b )2. 5.代数式2241y x xy --等于 -( )2 拓展提升5、完全平方式常见的变形有:(1)ab b a b a 2)(222-+=+ , ab b a b a 2)(222+-=+(2)ab b a b a 4)(22=--+)( , ()22222)(b a b a b a +=-++)((3)211222++=⎪⎭⎫ ⎝⎛+x x x x , 211222-⎪⎭⎫ ⎝⎛+=+x x x x(4)bc ac ab c b a c b a 222)(2222+++++=++例.已知()5,3a b ab -==求2()a b +与223()a b +的值。
练习1.已知6,4a b a b +=-=求ab 与22a b +的值。
1. 已知224,4a b a b +=+=求22a b 与2()a b -的值。
2. 已知()602=+b a ,()802=-b a ,求22b a +及ab 的值3. 已知6,4a b ab +==,求22223a b a b ab ++的值。
4. 已知2a -b =5,ab =23,求4a 2+b 2-1的值. 5. 已知16x x-=,求221x x +的值。
6 6. 0132=++x x ,求(1)221x x +(2)441x x + 7. 已知222450x y x y +--+=,求21(1)2x xy --的值。
8. 试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
9. 已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?10. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和的展开式的各项系数,此三角形称为“杨辉三角”。
根据“杨辉三角”请计算的展开式中第三项的系数为( )。
A 、2017B 、2016C 、191D 、190。