极限及导数练习题及答案

合集下载

第一章求极限练习题答案

第一章求极限练习题答案

n dAl l th i nb ea rgo1.求下列极限:(1) 解:原式===22221lim(1)n n n n →∞++-2221lim 21n n n n n →∞++-+22112lim 211n n n n n→∞++-+(2) 解:原式==(3) 解:原式20lim(1)x x x →+12lim[(1)]x x x →+2e 3x →==(4) 解:原式=3x →x →141lim (1)xx x e →∞-=1(5) 求.解:原式=1(1)lim1xx e x→∞-0x ≠当当当lim cos cos cos 242nn x x x→∞==cos cos (2cos sin )2422lim2sin 2n n n n x x x x x →∞ 1cos sin22lim 2sin 2n n nx xx →∞-sin lim 2sin 2n nn x x →∞ ==(6) 解:原式==sin 2lim()sin 2n n nx x x x →∞A sin x x limx lim x (7) limx lim x 22212lim(12n nn n n n n n n→∞+++++++++ 解:令 2221212n ny n n n n n n n =+++++++++ 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++ 而,,2(1)12lim 2n n n n n n →∞+=++2(1)12lim 12n n n n n →∞+=++故222121lim(122n n n n n n n n n →∞+++=++++++ (8)解:原式=n →∞Al th ng i nt hi n g2n n →∞→∞==1.3 函数的极限 作业1.根据函数极限的定义,验证下列极限:(1) 解: ,要使, 即,31lim0x x→∞=0ε∀>3311|0|||x x ε-=<||x >只要取,则当时,恒有 , 所以. X =||x X >31|0|xε-<31lim0x x→∞=(2) 解: ,要使,2x →=0ε∀>|4||2|2x ε-=<<还要使,即,或,只要取,0x ≥44x -≥-|4|4x -<min{2,4}δε=则当时,恒有 , 所以. 0|4|x δ<-<|2|ε-<42x →=2.求下列数列极限:(1) 22212lim(12n nn n n n n n n→∞+++++++++ 解:令2221212n ny n n n n n n n =+++++++++ 因 2222(1)(1)12122211n n n n n n ny n n n n n n n n n n ++++++++=≤≤=++++++++ 而,,2(1)12lim 2n n n n n n →∞+=++2(1)12lim 12n n n n n →∞+=++故222121lim(122n n n n n n n n n →∞+++=++++++ (2)解:原式=n →∞2n n →∞→∞==3.求下列函数极限:(1) 解:原式=-9(2) 解:原式==4225lim 3x x x →+-224lim 2x x x →--2lim(2)x x →+a re (3)解:原式=1x→11x x →→==(4) 解:原式=x →∞x =(5) 解:原式=2(21)(32)lim (21)x x x x →∞--+226723lim 4412x x x x x →∞-+=++(6) 解:原式=2121lim()11x x x →---211(1)11lim lim 112x x x x x →→---==--+4.设,分别讨论在,和23 2 0() 1 01 1 x>11x x f x x x x ⎧⎪+≤⎪=+<≤⎨⎪⎪-⎩()f x 0x →1x →时的极限是否存在.2x →解:,,故不存在.0lim ()2x f x -→=0lim ()1x f x +→=0lim ()x f x →,趋向无穷大,故不存在.1lim ()2x f x -→=1lim ()x f x +→1lim ()x f x →,,故.2lim ()1x f x -→=2lim ()1x f x +→=2lim ()1x f x →=1.43.求下列函数极限:(1) =-9(3) ==4225lim 3x x x →+-224lim 2x x x →--2lim(2)x x →+1x →1x x →→==(7) 00h h h →→→===(9) =x →∞x =ngsin(11) =2(21)(32)lim(21)xx xx→∞--+226723lim4412xx xx x→∞-+=++(13) lim lim0x x==(15) =2121lim(11x x x→---211(1)11lim lim112x xxx x→→---==--+2. 设,分别讨论在,时的左右1100()01112xxxf xx xx-⎧<⎪-⎪⎪==⎨⎪<<⎪≤<⎪⎩()f x0x→1x→极限,并说明这两点的极限是否存在.解:,,故001lim()lim11x xf xx--→→-==-00lim()lim0x xf x x++→→==00lim()lim()x xf x f x-+→→≠不存在.,lim()xf x→11lim()lim1x xf x x--→→==11lim()lim11x xf x++→→==.11lim()lim()x xf x f x-+→→=1lim()1xf x→=1.51.求下列极限:(1)00sin3sin3lim lim333x xx xx x→→=⋅=00tan333(3)lim limsin444x xx xx x→→==2220002sin22(5)24()2x x xxxxxx→→→⋅===注:在,.0(0,)Uδ2sin02x≥220002(5)4x x xxx→→→===Al ng snt he (7) 解: 原式=0x →0x →=202sin sin lim sin 2x x x x x x→→+==42021sin sin lim2()2x x x xx →+220sin sin 2lim ()x x x x x →=+注意: 代数和中的一部分不能用无穷小替换.错 原式=0x →0→ (8)1sin cos lim1sin cos x x xx xββ→+-+-解: 原式==2022sin cos 2sin 222lim2sin cos 2sin 222x x x x x x x βββ→++0sin (cos sin )222lim sin (cos sin )222x x x x x x x βββ→++===00sin cos sin 222limlim sin cos sin222x x x x x x x x βββ→→++A 02lim 12x x x β→A 1β注意: 代数和的一部分不能用无穷小替换.错 =01sin cos lim 1sin cos x x x x x ββ→+-+-202112lim 12x x xx x βββ→+=+33333(9)lim(1)lim[(1)]xx x x e x x →∞→∞+=+=244424(11)lim(lim[(1]22x x x x x e x x +---→∞→∞--=+=++113330(13)lim(13)lim[(13)]xx x x x x e →→+=+=4. 当时,下列函数中哪些是的高阶无穷小,哪些是的同阶0x →x x无穷小,哪些是的低阶无穷小?x32(1)1000x x+322001000lim lim(1000)0x xx xx xx→→+=+=解:因为321000()x x o x+=所以3(2)2sin x32002sin sinlim lim2sin0x xx xxx x→→=⋅=解:因为3sin()x o x=所以(3) 解:ln(1)x+100ln(1)lim lim ln(1)1xx xxxx→→+=+=因为ln(1)~x x+所以(4) 解: ,1cos x-20002sin sin1cos22lim lim lim(sin)022x x xx xx xxx x→→→-===A因为1cos()x o x-=所以(5) 解: 因为==2,故是的同sinx x+sinlimxx xx→+sinlim(1xxx→+sinx x+x阶无穷小.解: 因为==,x→131233sin11lim[()cosxxxx x→A A∞的低阶无穷小.或:因为=xx→0x→是的低阶无穷小.x→x思考题:1.==9=911331lim(39)lim9(13xxx x x xxx x→+∞→+∞+=+A A1331lim9[(1]3x xxxx→+∞+A0e2.,因为当时,.arccotlimxxx→=∞0x→arccot2xπ→习题2.2 1.求下列函数的导数:解:2(1)cosy x x=+'sin2y x x=-+(3) 解:(注:)sin cosy x x e=++'cos1y x=+(cos)'0e=(5) 解2cos2xy='2cos(cos)'22x xy=A==2cos(sin)('222x x x-A A2cos(sin)22x x-cos sin22x x-A解:(7)sin3y x='3cos3y x=解:2(9)sin(1)y x x=++2'(21)cos(1)y x x x=+++解:3(11)lny x=+1139'(ln)'(3ln)'222y x xx x x=+=+=(6) 解:=6(21)y x=+5'6(21)2y x=+A512(21)x+(10) 解:=ln(ln)y x=1'(ln)'lny xx=11ln x xA(11) 解:ln(sin)y x=1''(sin)'siny xx=+1cossinxx+A2.在下列方程中,求隐函数的导数:(1)解:cos()y x y=+'sin()(1')y x y y=-+⋅+(2)解:222333x y a+=113322'033x y y--+=3. 求反函数的导数:(1)解:lny x x=+1111dxdydydx x===+(2) 解:,故arcsin xy e=sin lnx y=1cos lndxydy y=⋅4. 求下列函数的导数(1) 解:2siny x x='y=22sin cosx x x x+(5) 解:3(3)lny x x=23221'3ln3lny x x x x x xx=+=+解:1ln1lnxyx-=+21ln1ln'(1ln)x xx xyx+---=+211lnyx=-++eanrb22212'0(1ln)(1ln)yx x x x=-⋅=-++(7) 解21cosy xx=1'2cosy xx=+2x1(sinx-12cosxx+2x1(sinx-(9)ln(y x=+''y x=+==解:(10) 解:12 (0)xy x e a=->112'2x xy xe x e=+A(ln(x xa a a--(11) arccos xyx=-arccosln(1lnxy xx=-+-解:1'yx=-+2arccos1xx x=+2arccos xx=-ln(13)xy x=2ln ln(ln)x x xy e e⋅==解:ln ln11'2ln2lnx xy x x x xx-=⋅⋅=⋅(14) cos(sin)xy x=解:,对该式两边求导数得ln cos ln siny x x=11'sin ln sin cos cossiny x x x xy x=-+cos'(sin)(sin ln sin cos tan)xy x x x x x∴=-+(15) 解:,对该式两边求导y x=11ln ln ln(1)ln(1)22y x x x=+--+数得1111'2(1)2(1)yy x x x=---+Al t he (10)解:arcsin lnx y x =-'[ln(1(ln )'y x =++-(1'1x+(2)x -1x +1x4. 求反函数的导数:(1)解:ln y x x =+1111dxdy dydx x===+arcsin xy e =解:,故求下列参数方程的导数:sin ln x y =1cos ln dx y dy y =⋅'y 211(1)(1)x t t y t ⎧=⎪+⎪⎨⎪=+⎪⎩242(1)2(1)'()1(1)1'()1(1)t t t dy y t t t dx x t t t +-⋅+-+===+-+解: (2) 解:3233131at x t at y t ⎧=⎪⎪+⎨⎪=⎪+⎩322332323326(1)333(2)(1)3(1)333(12)(1)at t at t dy dy at t t dt dxa x at t dx a t dt t +-⋅-+===+-⋅-+(3) 解:2ln(1)arctan x t y t t ⎧=+⎨=-⎩222111221dy dyt dt tdx t dx t dt t-+===+2.若在点连续,且。

高数习题集及答案

高数习题集及答案

高数习题集及答案一、极限1. 求下列极限:- \( \lim_{x \to 0} \frac{\sin x}{x} \)- \( \lim_{x \to \infty} (1 + \frac{1}{x})^x \)2. 利用夹逼定理证明:- \( \lim_{n \to \infty} (1 + \frac{1}{n})^n = e \)答案:1. 对于第一个极限,我们可以使用洛必达法则或者直接利用三角函数的性质得到:\[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \]对于第二个极限,我们可以使用重要极限:\[ \lim_{x \to \infty} (1 + \frac{1}{x})^x = e \]2. 利用夹逼定理,我们可以找到两个序列 \( a_n \) 和 \( b_n \) 使得:\[ a_n \leq (1 + \frac{1}{n})^n \leq b_n \]并且 \( \lim_{n \to \infty} a_n = e \) 和 \( \lim_{n \to \infty} b_n = e \),从而证明 \( \lim_{n \to \infty} (1 +\frac{1}{n})^n = e \)。

二、导数与微分1. 求下列函数的导数:- \( f(x) = x^3 - 2x^2 + x \)- \( g(x) = \ln(x) \)2. 利用导数求函数的单调区间:- 对于函数 \( h(x) = x^2 - 4x + 4 \),求其单调增区间。

答案:1. 对于 \( f(x) \) 的导数,我们有:\[ f'(x) = 3x^2 - 4x + 1 \]对于 \( g(x) \) 的导数,我们有:\[ g'(x) = \frac{1}{x} \]2. 对于函数 \( h(x) \),我们先求导:\[ h'(x) = 2x - 4 \]令 \( h'(x) > 0 \),解得 \( x > 2 \),因此 \( h(x) \) 在\( (2, \infty) \) 上单调增。

导数与极限第二辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

导数与极限第二辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题13导数与极限第二辑1.【2018年广东预赛】设函数.f (x )=e x‒1‒x ⑴求在区间(n 为正整数)上的最大值;f (x )[0,1n ]b n ⑵令(n 、k 为正整数).求证:.a n =e 1n‒1‒b n ,p k =a 2a 4⋯a 2ka 1a 3⋯a 2k ‒1p 1+p 2+⋯+p n <2a n+1‒1【答案】(1)(2)见解析b n =e 1n‒1‒1n 【解析】⑴因为,所以当时,,即上是增函数,故上的最大值为f'(x )=e x‒1x ∈[0,1n ]f'(x )≥0f (x )在[0,1n ]f (x )在[0,1n ].b n =e 1n‒1‒1n ⑵由⑴知.因为,a n =e 1n‒1‒b n =1n (2k ‒1)(2k +1)(2k )2=4k 2‒14k 2<1所以.[1⋅3⋅5⋅⋯⋅(2k ‒1)2⋅4⋅⋯⋅(2k )]2=1⋅322⋅3⋅542⋅5⋅762⋅⋯⋅(2k ‒1)(2k +1)(2k )2⋅12k +1<12k +1又容易证明.12k +1<2k +1‒2k ‒1所以p k =a 2a 4⋯a 2ka 1a 3⋯a 2k ‒1=1⋅3⋅5⋅⋯⋅(2k ‒1)2⋅4⋅⋯⋅(2k )<12k +1<2k +1‒2k ‒1所以.p 1+p 2+⋯+p n <(3‒1)+(5‒3)+⋯+(2n +1‒2n ‒1) =2n +1‒1=2a n+1‒1即.p 1+p 2+⋯+p n <2a n+1‒12.【2018年甘肃预赛】设函数).f (x )=x ‒2x ‒a ln x (a ∈R ,a >0(1)讨论的单调性;f (x )(2)如果有两个极值点,我们记过点的直线斜率为.问:是否存在,f (x )x 1和x 2A (x 1,f (x 1)),B (x 2,f (x 2))k a 使得?若存在,求出的值,若不存在,请说明理由.k =2‒a a 【答案】(1)见解析(2)不存在【解析】(1)f(x)的定义域为,(0,+∞)。

高三数学第2、3章《极限》《导数》测试及答案

高三数学第2、3章《极限》《导数》测试及答案

高三数学第2、3章《极限》《导数》测试及答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项正确 1.(理)若复数z 满足方程022=+z ,则=3z( )A .22±B . 22-C .i 22-D . i 22±(文)曲线y=4x -x 3在点(-1,-3)处的切线方程是( )A . y=7x+4B . y=7x+2C . y=x -4D . y=x -22.函数y=x 2(-21≤x ≤21)图像上一点P,以点P 为切点的切线为直线l,则直线l 的倾斜角的范围是( )A .[0,4π]∪[43π,π]B .[0,π]C .[4π,43π]D .[0,4π]∪(2π,43π) 3.(理)若2lim →x 434222=--+x ax x ,则a 的值为( )A .0B .1C .-1D .21(文)在曲线y=x 2+1的图像上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx∆∆为( ) A .Δx+x∆1+2 B .Δx -x ∆1-2 C .Δx+2D .2+Δx -x ∆14.曲线y=51x 5+3x 2+4x 在x =-1处的切线的倾斜角是( )A .-4πB .4πC .43πD .45π5.函数f(x)=x 3-ax 2-bx+a 2在x=1时,有极值10,则a 、b 的值为( )A .⎩⎨⎧=-=⎩⎨⎧-==1143,3b a b a 或 B .⎩⎨⎧==⎩⎨⎧=-=1141,4b -a b a 或 C .⎩⎨⎧=-=51b aD .以上皆错6.(理)已知()23,12,1x x f x x +≠⎧=⎨=⎩,下面结论正确的是( )A .()f x 在1x =处连续B .()5f x =C .()1lim 2x f x -→= D .()1lim 5x f x +→=(文)设f (x )=a x 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313 D .3107.函数f(x )=x 3-3x +1,x ∈[-3,0]的最大值、最小值分别是( )A .1,-1B .1,-17C .3, -17D .9,-198.(理)数列{a n }中,a 1=1,S n 是前n 项和.当n ≥2时,a n =3S n ,则∞→n lim311-++n n S S 的值是( )A .-31B .-2C .1D .-54(文)曲线y=x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y=3x -4B .y=-3x+2C .y=-4x+3D .y=4x -5 9.(理)2+23i 的平方根是( )A .3+iB .3±iC .±3+iD .±(3+i)(文)已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对10.已知函数)(x f x y '=的图像如右图所示(其中 )(x f '是函数)(x f 的导函数),下面四个图像中)(x f y =的图像大致是11.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '-' >0.且g(3)=0.则不等式f(x)g(x)<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0, 3)C .(-∞,- 3)∪(3,+∞)D .(-∞,- 3)∪(0, 3)12.已知两点O (0,0),Q (a ,b ),点P 1是线段OQ 的中点,点P 2是线段QP 1的中点,P 3是线段P 1P 2的中点,┅,2+n P 是线段n P 1+n P 的中点,则点n P 的极限位置应是( ) A .(2a ,2b) B .(3,3b a ) C .(32,32b a ) D . (43,43ba )二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.垂直于直线2x -6y+1=0且与曲线y=x 3+3x 2-1相切的直线方程的一般式是__________.14.(理) (2006年安徽卷)设常数0a >,42ax ⎛ ⎝展开式中3x 的系数为32,则2lim()n n a a a →∞++⋅⋅⋅+=_____.(文)(2006福建高考)已知直线10x y --=与抛物线2y ax =相切,则______.a = 15.函数f(x)=2x 3+3x 2-12x -5,则函数f(x)的单调增区间是______. 16.(理)用数学归纳法证)"(212111211214131211"*N n nn n n n ∈+++++=--++-+- 的过程中,当n=k 到n=k+1时,左边所增加的项为_______________.(文)若函数f (x )=x 3+x 2+mx+1是R 上的单调递增函数,则m 的取值范围是______________.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(理)设函数⎪⎪⎩⎪⎪⎨⎧≥-<≤-+-<≤<=)3(4)31(24)10()0(0)(2x xx x x x x x x f(1)画出函数的图像;(2)在x=0,x=3处函数)(x f 是否连续; (3)求函数)(x f 的连续区间. (文)已知函数ax ax x f 313)(23-+-=. (1)讨论函数)(x f 的单调性;(2)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.18.(本题满分12分)(理)已知复数z 1=cosθ-i ,z 2=sinθ+i ,求| z 1·z 2|的最大值和最小值.(文)(2006福建高考)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。

极限导数考试题及答案

极限导数考试题及答案

极限导数考试题及答案1. 计算极限:\(\lim_{x \to 0} \frac{\sin x}{x}\)。

答案:根据洛必达法则,当\(x\)趋近于0时,\(\frac{\sin x}{x}\)的极限等于\(\frac{\cos x}{1}\)的极限,即\(\lim_{x \to 0}\frac{\sin x}{x} = \cos 0 = 1\)。

2. 求函数\(f(x) = x^3 - 3x^2 + 2\)在\(x = 1\)处的导数。

答案:首先求导数\(f'(x) = 3x^2 - 6x\),然后将\(x = 1\)代入得到\(f'(1) = 3(1)^2 - 6(1) = 3 - 6 = -3\)。

3. 判断极限\(\lim_{x \to \infty} \frac{1}{x}\)是否存在,并说明理由。

答案:极限\(\lim_{x \to \infty} \frac{1}{x} = 0\)存在,因为当\(x\)趋向于无穷大时,\(\frac{1}{x}\)趋向于0。

4. 计算定积分\(\int_{0}^{1} x^2 dx\)。

答案:根据定积分的定义,\(\int_{0}^{1} x^2 dx =\left[\frac{x^3}{3}\right]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}\)。

5. 求函数\(g(x) = e^x\)的导数。

答案:根据指数函数的导数公式,\(g'(x) = e^x\)。

6. 计算极限:\(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。

答案:首先对分子进行因式分解,得到\(\lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 2 + 2 = 4\)。

7. 求函数\(h(x) = \ln(x)\)在\(x = e\)处的导数值。

导数求极限练习题专升本

导数求极限练习题专升本

导数求极限练习题专升本一、选择题1. 求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是多少?A. 0B. 1C. 2D. \(\frac{\pi}{2}\)2. 函数 \(f(x) = x^2 - 4x + 3\) 在 \(x = 2\) 处的导数是多少?A. -4B. -2C. 0D. 23. 求极限 \(\lim_{x \to \infty} \frac{3x^2 + 2x}{x^2 + 1}\) 的值是多少?A. 0B. 1C. 2D. 3二、填空题4. 求极限 \(\lim_{x \to 1} (x^3 - 1)\) 的值为______。

5. 若函数 \(g(x) = 2x^3 - x^2 + 5\),则 \(g'(x) = ______\)。

6. 求极限 \(\lim_{x \to 0} \frac{1 - \cos x}{x^2}\) 的值为______。

三、解答题7. 求函数 \(h(x) = \ln(x)\) 在 \(x = e\) 处的导数,并求极限\(\lim_{x \to e^-} \frac{\ln x - 1}{x - e}\)。

8. 已知函数 \(f(x) = \frac{\sin x}{x}\),求 \(\lim_{x \to 0^+} f(x)\)。

9. 求函数 \(y = x^3 - 3x^2 + 2x\) 在 \(x = 1\) 处的导数,并利用导数求极限 \(\lim_{x \to 1} \frac{x^3 - 3x^2 + 2x - 0}{x - 1}\)。

四、应用题10. 某物体在 \(x\) 秒时的速度是 \(v(x) = 6x^2 - 12x + 4\),求物体在 \(x = 2\) 秒时的瞬时速度,并求物体在 \(x = 2\) 秒时的加速度。

11. 已知函数 \(u(x) = \frac{1}{x}\),求 \(u'(x)\),并利用导数求极限 \(\lim_{x \to \infty} \frac{1}{x}\)。

专题12导数与极限第一辑2022年高中数学联赛之历年真题分类汇编(2015-2021)

专题12导数与极限第一辑2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题12导数与极限第一辑1.【2021年福建预赛】若关于x 的不等式(x −2)e x <ax +1有且仅有三个不同的整数解,则整数a 的最小值为.【答案】3【解析】设f(x)=(x −2)e x , g(x)=ax +1.则f ′(x)=(x −1)e x ,x <1时,f ′(x)<0;x >1时,f ′(x)>0. 因此,f(x)在区间(−∞,1)上递减,在区间(1,+∞)上递增: 且x <2时,f(x)<0;x >2时,f(x)>0. 由此作出f(x)的草图如图所示.又g(x)的图像是过点(0,1)的直线,结合图像可知a >0.由于a >0时,f(0)=−2<g(0)=1;f(1)=−e <g(1)=a +1; f(2)=0<g(2)=2a +1,因此,0,1,2是不等式(x −2)e x <ax +1的三个整数解. 由于不等式(x −2)e x <ax +1有且仅有三个不同的整数解, 所以{f(−1)≥g(−1)f(3)≥g(3) ,即{−3e −1≥−a +1e 3≥3a +1,1+3e ≤a ≤e 3−13 .经检验,a=3符合要求,所以,符合条件的a 的最小值为3.2.【2019年贵州预赛】已知函数f(x)=(e x −e −x )⋅x 3,若m 满足f (log 2m )+f (log 0.5m )⩽2(e 2−1e).则实数m 的取值范围是 .【答案】[12,2]【解析】由f(x)=(e x −e −x )⋅x 3⇒f(−x)=f(x),且x ∈(0,+∞)时,f(x)是增函数.又由f(log2m)+f(log0,5m)≤2(e2−1e)⇒f(log2m)≤f(1).所以|log2m|≤1⇒−1≤log2m≤1⇒12≤m≤2.即m的取值范围是[12,2].3.【2018年广西预赛】若定义在R上的函数f(x)满足f′(x)−2f(x)−4>0,f(0)=−1,则不等式f(x)> e2x−2的解为___________.【答案】x>0【解析】构造函数g(x)=e−2x[f(x)+2],则g(0)=1.由g′(x)=e−2x[f′(x)−2f(x)−4]>0可知g(x)在(−∞,+∞)内单调递增,从而有g(x)>1⇔x>0.故f(x)>e2x−2⇔x>0.4.【2018年甘肃预赛】已知函数f(x)=x3+sinx(x∈R),函数g(x)满足g(x)+g(2−x)=0(x∈R),若函数ℎ(x)=f(x−1)−g(x)恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数f(x)=x3+sinx为奇函数,从而f(x−1)的图象关于(1,0)点对称.函数g(x)+g(2−x)=0,可知g(x)的图象也关于(1,0)点对称.由此ℎ(x)的图象关于(1,0)点对称,从而这2019个零点关于点(1,0)对称,由于ℎ(1)=f(0)−g(1)=0⇒x=1是ℎ(x)的一个零点,其余2018个零点首尾结合,两两关于(1,0)点对称,和为2018,故所有这些零点之和为2019.5.【2018年四川预赛】设直线y=kx+b与曲线y=x3−x有三个不同的交点A、B、C,且|AB|=|BC|=2,则k的值为______.【答案】1【解析】曲线关于点(0,0)对称,且|AB|=|BC|=2,所以直线y=kx+b必过原点,从而b=0.设A(x,y),则{y=kx, y=x3−x,√x2+y2=2.由此得x=√k+1,y=k√k+1,代入得(k+1)+k2(k+1)=4,即(k−1)(k2+2k+3)=0,解得k=1.故答案为:16.【2017年广西预赛】设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R 有f (x )+f (−x )=x 2,在(0,+∞)上f ′(x )>x .若f (1+a )−f (1−a )≥2a ,则实数a 的范围是 .【答案】a ≥0【解析】提示:由题意得f ′(x )>x ,构造函数g (x )=f (x )−12x 2,则g ′(x )=f ′(x )−x >0.从而g (x )在(0,+∞)上单调递增. 由条件f (x )+f (−x )=x 2得g (x )+g (−x )=0,则g (x )是奇函数.因为g (x )在R 上单调递增,由f (1+a )−f (1−a )≥2a 知g (1+a )−g (1−a )≥0,g (1+a )≥g (1−a ), 所以1+a ≥1−a 解得a ≥0.7.【2017年湖南预赛】设函数f (x )是定义在(−∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2017)2f (x +2017)−f (−1)>0的解集为 .【答案】(−∞,−2018)【解析】提示:将不等式(x +2017)2f (x +2017)−f (−1)>0 化为(x +2017)2f (x +2017)>(−1)2f (−1),①构造F (x )=x 2f (x ),使得①式化为F (x +2017)>F (−1),② 因为F ′(x )=2xf (x )+x 2f ′(x ),由已知条件2f (x )+xf ′(x )>x 2, 两边同乘以x ,可得F ′(x )=2xf (x )+x 2f ′(x )<x 3<0(因x ∈(−∞,0)). 所以,F (x )在(−∞,0)上是减函数,不等式②化为x +2017<−1,即x <−2018, 所以,不等式的解集为(−∞,−2018).8.【2016年福建预赛】函数f (x ) =x 2lnx +x 2-2零点的个数为________. 【答案】1 【解析】由条件知f ′(x)=2x ln x +x +2x =x(2lnx +3). 当0<x <e −32时,f ′(x)<0; 当x >e −32时,f ′(x)>0.于是,f (x )在区间(0,−32)上为减函数,在区间(−32,+∞)上为增函数.又0<x <e −32时,lnx +1<−32+1=−12<0f (x )=x 2(lnx +1)-2<0,注意到,f(e −32)=e −3(−32+1)−2<0,f(e)=2e 2−2>0 故函数f (x )零点的个数为1.9.【2015年山东预赛】设a >1.若关于x 的方程a x =x 无实根,则实数a 的取值范围是______. 【答案】a >e 1e【解析】由函数y =a x 与y =x 的图像,知若a >1,且a x =x 无实根,则a x >x 恒成立, 设f (x )=a x −x .则:f′(x )=a x (lna )−1>0⇒x >−log a (lna ).故f (x )=a x −x 在区间(−∞,−log a (lna ))上递减,在区间(−log a (lna ),+∞)上递增. 从而, f (x )在x =−log a (lna )时取得最小值,即:f (x )min =f(−log a (lna ))=a −log a (ln a )−(−log a (lna ))>0, ⇒1lna −(−log a (lna ))>0.又1lna =log a e,−log a (lna )=log a 1lna , ⇒log a e >log a1lna⇒lna >1e⇒a >e 1e .10.【2015年福建预赛】函数f (x )=e x (x −ae x )恰有两个极值点x 1,x 2(x 1<x 2),则a 的取值范围是__________. 【答案】(0,12) 【解析】∵函数f (x )=e x (x −ae x ),∴f′(x )=(x +1−2a ⋅e x )e x ,由于函数f (x )两个极值点为x 1,x 2,即x 1,x 2是方程f′(x )=0的两个不等实数根,即方程x +1−2ae x =0,且a ≠0,∴x+12a=e x ;设y 1=x+12a(a ≠0),y 2=e x ,在同一坐标系内画出两个函数图象,如图所示,要使这两个函数有2个不同的交点,应满足{12a >01 2a >1,解得0<a<12,所以a的取值范围为(0,12),故选A.【方法点睛】本题主要考查函数的极值、函数与方程以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解11.【2018年湖南预赛】函数f(x)=ln(x2+1)的图像大致是()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.12.【2018年湖南预赛】设函数f(x)是R上的奇函数,当x>0时,f(x)=e x+x−3,则f(x)的零点个数是A.1 B.2 C.3 D.4【答案】C【解析】∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点;当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f (x )有一个零点,又根据对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3个, 故选:C .13.【2017年四川预赛】已知函数f (x )=a ln x +x 2在x =1处有极值,则实数a 的值是()(A)−2(B)−1(C)1(D)2【答案】A【解析】提示:因为f ′(x )=ax+2x =a+2x 2x由条件知f ′(1)=0,解得a =−2.14.【2016年陕西预赛】设函数f (x )=x 3+ax 2+6x +c (a 、b 、c 均为非零整数).若f (a )=a 3,f (b )=b 3,则c 的值为(). A .-16 B .-4 C .4 D .16 【答案】D 【解析】设g (x )=f (x )-x 3=ax 2+bx +c . 由f (a )=a 3,f (b )=b 3⇒g (a )=g (b )=0.则a 、b 为方程g (x )=0的两个根⇒a +b =−ba,ab =ca⇒c =−a 4a+1=−(a 2+1)(a −1)−1a+1.因为c 为整数,所以,a +1=±1⇒a =0(舍去)或-2. 故c =16. 选D.15.【2015年黑龙江预赛】设0(sin cos )k x x dx π=-⎰,若8280128(1)kx a a x a x a x -=++++,则128a a a +++=()A.-1B.0C.1D.256 【答案】B 【解析】试题分析:000(sin cos )sin cos cos sin 2k x x dx xdx xdx x x πππππ=-=-=--=⎰⎰⎰,所以88280128(1)(12)kx x a a x a x a x -=-=++++,令1x =得80128(12)1a a a a ++++=-=,,令0x =得01a =,所以12801280()110a a a a a a a a +++=++++-=-=,故选B.考点:1.积分运算;2.二项式定理.16.【2015年黑龙江预赛】设函数f (x )=sin 5x +1.则∫f (x )π2−π2dx 值为()。

高数-导数与极限习题详解

高数-导数与极限习题详解

m = min{F (0 ), F (1),− − − , F (n − 1)}
m≤
使 F (ξ ) = f (ξ + 1) − f (ξ ) = 0

证: 令 F ( x ) = f ( x + 1) − f ( x )
则 F ( x )在[0, n − 1]上连续
1 [F (0) + F (1) + − − − + F (n − 1)] ≤ M n
在 x = 0处
例 A. 0 ;
lim arc cot
x→0
1 = x
( D ). C. 2 ;
π
B. π
−;Biblioteka D. 不存在 .极限存在,求a 值。
解: f (0 − 0 ) = lim−
x→0
x+a
1
2+ ex x sin x ⋅ tan 2 f (0 + 0) = lim+ x →0 1 − cos 2 x
∴ b = e或 b = 1
综上知: a = 0, b = e

设 f ( x )是[0, n]上的连续函数,
分析: 即证 ∃ξ ∈ [0, n − 1],
证明: ∃ξ ∈ [0, n − 1], 使 f (ξ + 1) = f (ξ )
f (0 ) = f (n ), n是正整数,
设 M = max{F (0 ), F (1),− − − , F (n − 1)}
x − 1 x −1 = lim 1 + x →1 x +1 x +1 2 x ⋅ − x +1
= lim
x →0
1 + x sin x + cos x x sin x 1 − cos x + x2 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限及导数练习题及答案淮南联合大学基础部2008年10月第一章映射,极限,连续习题一集合与实数集基本能力层次:1: 已知:A={x|1≤x≤2}∪{x|5≤x≤6}∪{3},B={y|2≤y≤3} 求:在直角坐标系内画出A×B解:如图所示A×B={| x?A,y?B }.2:证明:∵ P为正整数,∴p=2n或p=2n+1,当p=2n+1时,p2=4n2+4n+1,不能被2整除,故p=2n。

即结论成立。

基本理论层次:习题二函数、数列与函数极限基本能力层次1:解:2:证明:由所以命题成立得cxy?ay?ax?b即 x?ay?b,所以 x?f cy?a3:y?2?xy?y??解:4:用极限定义证明: lim2lg?0,x?0??1,x?0??n?1?1n??nn?1111?1|成立,只要n?取N=[],则当n>N时,就有证明:因为 ?? 有|nn??n?11n?1|?1|有定义变知lim?1成立n??nnn5:求下列数列的极限n12?22n2limnlimn??3n??n3nnnn2n2n解:? n?n,又?limn?0,所以 0?limn?0 , 故:limn =0n??3n??3x??33312?22n2n111?? 由于n3n36nn111112?22n21又因为:lim?,所以:limn??6n??nn3n3因为:所以:因为:1?n11?1?,并且lim?1,故由夹逼原理得n??nnn?16:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:习题1.23.求下列极限?limn??n?0??1?为无穷小量。

?n3.求下列函数的极限 x3?2x lim2; x??x?1 13x?1?lim解:?lim3?0 x??x?2xx3x2?x3?2x?lim2不存在。

x??x?1limtan5x; x?02x解:原式=limsin5x1? x?02xcos5x5sin5x1?lim??lim x?025xx?0cos5x5?limtanx?sinx x?0x1?1sinx解:原式=lim ?2x?0xxsinx11?cosx?lim?? x?0xcosxx2sinx11?cosx?lim?lim?lim x?0xx?0cosxx?0x2 x2sin2?1?1?lim2x?0xxsin21 ?lim?x?02x221?limtanx?0?x2;解:原式=limlimtanx?0x?0?x2?1?0?0 1limxx?0;1?2x?2解:原式=lim[)x?0]?e?2?x?4? lim??xx?1?2x?1;2x?11?解:原式=lim?1??x5??令t? x?1,则x??5t?1;x??时t??; ?5?10t?3?1?原式?lim?1??tt???1lim?1??t??t??e?10 limt10?1??lim?1?? tt??31?cosmx ; x?0x2sinmx2) mx22?limmx?02sin lim ; x??x?1解:?limx?1x?1?lim?limx??x3?2xx??x2x??1x2?2x2?12?0 x2 不存在。

?xlim??x?13??1? lim??; x?1?1?x1?x??1?x?x23?解:原式=lim? ?3?x?11?x???2?x?x2?limx?1?lim x?1??limx?x?11?x?x2??1 lim?x??1??sinx?xsin?. x??x解:原式?limsinx?limx??x??xxsin1?0?1?1x2?ax?b?5,求a、b..设limx?11?x解:由题意limx?ax?b?lim1?x?0 x?1x?12?1?a?b?0?b?? x2?ax?bx2?ax??5?lim??limx?1x?11?x1?x?lim?x?11?x??lim?x?1?a??7?a??7,b?6?sin3x,x?0?5.若f??ax在点x?0处连续,求a的值. ?x?0?1,解:有题意limf?f x?0即limsin3x3sin3x?1?lim??1 x?0x?0aax3x3sin3x?lim?lim?1 x?0ax?03x3??1?1 a?a?3习题1.42.求曲线y?x2?2x?1在点的切线方程,并作出函数的图像及其切线.解:曲线y?x2?2x?1在点的切线的斜率为k?y?|x??1??|x??1??|x??1?0?切线方程为y=03??x,3.判断函数f??2??x,3x?0x?0在x?0处是否连续?是否可导? f?limx?f 解:?lim??x?0x?0f?limx?f 且lim??x?0x?02导数定义的利用例若lim?x?0f?f?x12?k,则lim?x?0f?f?x等于A.2k B.k C.k D.以上都不是分析:本题考查的是对导数定义的理解,根据导数定义直接求解即可解:由于lim?x?0?x2??x2??x?2?2k,应选A?limf?f?x?0?2?limf?f?x?0求曲线方程的斜率和方程例已知曲线y?x?1x上一点A,用斜率定义求:25点A的切线的斜率点A处的切线方程分析:求曲线在A处的斜率kA,即求lim解:?y?f?f 12??x12??x2f?f?x?0?2??xxlim?x?0?yx?x??lim??? ?x?02?x?x?x????13lim??1?? ?x?024??切线方程为y?即3x?4y?4?052?34说明:上述求导方法也是用定义求运动物体S?S在时刻t0处的瞬时速度的步骤.判断分段函数的在段点处的导数?12??2例已知函数f??,判断f在x?1处是否可导??1??2分析:对分段函数在“分界点”处的导数问题,要根据定义来判断是否可导.1?y?x?lim?x?0?2?1??x?1?12解:lim?x?0lim??x?0?y?x?lim?x?01?12???2?2???x12∴f在x?1处不可导.f?f?x说明:函数在某一点的导数,是指一个极限值,即lim ?x?0,当?x?0;包括?x?0;?x?0,判定分段函数在“分界处”的导数是否存在时,要验证其左、右极限是否存在且相等,如果存在且相等,才能判定这点存在导数,否则不存在导数.??利用导数定义的求解例设函数f在点x0处可导,试求下列各极限的值. 1.lim2.limf?f?x2hk?0;.?x?0f?f3.若f??2,则limf?f2k12等于A.-1 B.- C.-1 D.分析:在导数的定义中,增量?x的形式是多种多样的,但不论?x选择哪种形式,?y也必须选择相对应的形式.利用函数f在点x0处可导的条件,可以将已给定的极限式班等变形转化为导数定义的结构形式.解:1.原式=lim?x?0f?f???lim?x?0f?f??x2h??f?2.原式=limf?f?f?f?f?ff?f?1?lim?lim ?h?02?h?h?h?0?12 ??f??ff?.?2,3.?f??lim∴lim k?0f?x0f?kk?0f?f2klimk?0??12f?1212ff?2??1.故选A.说明:概念是分析解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进行解题,不能准确分析和把握给定的极限式与导数的关系,盲目套用导数的定义是使思维受阻的主要原因.解决这类问题的关键就是等价变形,使问题转化.利用定义求导数例 1.求函数y?x在x?1处的导数;22.求函数y?x?ax?b的导数.分析:根据导数的概念求函数的导数是求导数的基本方法,确定函数y?f在x?x0处的导数有两种方法,应用导数定义法和导函数的函数值法.解:1.解法一:?y??y?xlim?x?0??x?1,???x?1?x1??x?1 ??121??x?1,?y?x?1,12.?解法二:?y? ?y?xx??x??xx1x??x?xx??x?x,??,lim?x?0?y?x?lim?x?01x??x?12x?21x.∴y??12x,?y?x?1?.2.?y?[?a?b]? ?2x??x??a??xx? ?y?xlim?x?02222???x??x2x,?y?x?lim?2x?a,?y??2x?a.?x?0说明:求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是能够顺利求导的关键,因此必须深刻理解导数的概念.证明函数的在一点处连续例证明:若函数f在点x0处可导,则函数f在点x0处连续.分析:从已知和要证明的问题中去寻求转化的方法和策略,要证明f在点x0处连续,必须证明limf?f.由于函数f在点x0处可导,因此,根据函数在点x0处x?x0可导的定义,逐步实现两个转化,一个是趋向的转化,另一个是形式的转化.解:证法一:设x?x0??x,则当x?x0时,?x?0,limf?limfx?x0x?x0?limx?x0?f?f?f??lim?f?f???x?f ?x?x0??x??f?f?x?lim?x?limf?x?0?x?0?lim?x?0?f??0?f?f.∴函数f在点x0处连续.证法二:∵函数f在点x0处可导,∴在点x0处有 lim[f?f]?lim?y?x?0x?x0?y??y??limx??lim?lim?x x?0?x?0?x?x?0??x??f??0?0∴limf?f.∴函数f在点x0处连续.x?x0说明:对于同一个问题,可以从不同角度去表述,关键是要透过现象看清问题的本质,正确运用转化思想来解决问题.函数f在点x0处连续,有极限以及导数存在这三者之间的关系是:导数存在?连续?有极限.反之则不一定成立.证题过程中不能合理实现转化,而直接理解为limf是使论证推理出现失误的障碍.?x?0。

相关文档
最新文档