第29章《投影与视图》单元测试题(及答案)

合集下载

(完整)人教版九年级数学上册第29章投影与视图单元测试题含答案,推荐文档

(完整)人教版九年级数学上册第29章投影与视图单元测试题含答案,推荐文档

一、选择题单元测试卷1.小明从正面观察如图所示的物体,看到的是()A .B .C .D . 2.把一个正六棱柱如图 1 摆放,光线由上向下照射此正六棱柱时的正投影是( )A .B .C .D .3. 如果用□表示 1 个立方体,用 表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由 7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A .B .C .D .4. 小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是( )A .三角形B .线段C .矩形D .平行四边形5.由下列光线形成的投影不是中心投影的是()A.手电筒B.探照灯C.太阳D.电灯6.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的7.下列命题正确的是()A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.以上都有可能D.以上都不可能9.如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱10.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.二.填空题11.我们常说的三种视图分别是指、、.12.请写出三种视图都相同的两种几何体是.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有个碟子.15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小.16.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是 cm2.三、作图题17.画出如图组合体的三种视图.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.四、解答题19.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.20.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.21.解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40 米,中午12 时不能挡光.如图,某旧楼的一楼窗台高1 米,要在此楼正南方40 米处再建一幢新楼.已知该地区冬天中午12 时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?一、选择题答案解析1. 小明从正面观察如图所示的物体,看到的是()A .B .C .D .【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形, 右边一个正方形. 故选 C .【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.2. 把一个正六棱柱如图 1 摆放,光线由上向下照射此正六棱柱时的正投影是()A . B.C .D .【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.如果用□表示1 个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.【考点】简单几何体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.4.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形【考点】平行投影.【分析】根据平行投影的性质进行分析即可得出答案.【解答】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:A.【点评】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.由下列光线形成的投影不是中心投影的是()A.手电筒B.探照灯C.太阳D.电灯【考点】中心投影.【分析】利用中心投影和平行投影的定义判断即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C 选项得到的投影为平行投影.故选C.【点评】本题考查了中心投影的定义,解题的关键是理解中心投影的形成光源是灯光.6.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【考点】平行投影.【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【考点】平行投影与三视图.【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.以上都有可能D.以上都不可能【考点】平行投影.【分析】根据圆形的物体与太阳光线的位置关系进行判断.【解答】解:圆形的物体在太阳光的投影下可能为圆形,也可能为椭圆形.故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱【考点】平行投影.【分析】根据圆柱的左视图的定义直接进行解答即可.【解答】解:如图所示圆柱从左面看是矩形,故选:B.【点评】本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.10.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C.D.【考点】平行投影.【分析】根据看等边三角形木框的方向即可得出答案.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选B.【点评】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键二.填空题11.我们常说的三种视图分别是指主视图、俯视图、左视图.【考点】平行投影.【分析】根据三视图的定义求解.【解答】解:我们常说的三种视图分别是指主视图、俯视图、左视图.故答案为主视图、俯视图、左视图.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.记住三视图的定义.12.请写出三种视图都相同的两种几何体是球,正方体(答案不唯一).【考点】根据视图描述几何体.【专题】开放型.【分析】球的三视图是 3 个全等的圆;正方体的三视图是 3 个全等的正方形.【解答】解:球的三视图是3 个全等的圆;正方体的三视图是3 个全等的正方形,故答案为球,正方体(答案不唯一).【点评】考查由三视图判断几何体;常见的三视图相同的几何体如球,正方体等应熟记.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.【考点】根据视图描述几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥.【解答】解:根据三视图可以得出立体图形是圆锥,故答案为:圆锥.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12 个碟子.【考点】根据视图描述几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5 则这个桌子上共有12 个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.15.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同.【考点】平行投影.【专题】压轴题.【分析】根据平行投影特点,当物体的某个面平行于投影面时,即光线垂直这个面;这个面的正投影与这个面的形状、大小相同.【解答】解:根据平行投影特点得:这个面的正投影与这个面的形状、大小相同.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.16.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是36 cm2.【考点】复杂几何体的三视图.【专题】计算题.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积为6×(1×1),从正面看面积为6×2×(1×1),从两个侧后面看面积为2×6×(1×1),底面看到的面积为6×(1×1),故这个几何体的表面积为36cm2.故答案为36cm2.【点评】几何体的表面积是所有围成几何体的表面面积之和.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.【考点】复杂几何体的三视图.【分析】由已知条件可知,主视图有3 列,每列小正方数形数目分别为1,3,1,左视图有2 列,每列小正方形数目分别为2,3,2.俯视图有3 列,每一列的正方形个数为3,3,3 据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、解答题19.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.【考点】平行投影.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D 作DF∥AC,交直线BC 于点F,线段EF 即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF,再连接EF 即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.20.已知,如图,AB 和DE 是直立在地面上的两根立柱,AB=5m,某一时刻AB 在阳光下的投影BC=3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m,请你计算DE 的长.【考点】平行投影.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D 作DF∥AC,交直线BC 于点F,线段EF 即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC 和DF,再连接EF 即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40 米,中午12 时不能挡光.如图,某旧楼的一楼窗台高 1 米,要在此楼正南方40 米处再建一幢新楼.已知该地区冬天中午12 时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】平行投影.【专题】应用题;压轴题.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt△ DCE,其中有CE=30 米,∠DCE=30°,解三角形可得DE 的高度,再由DB=BE+ED 可计算出新建楼房的最高高度.【解答】解:过点 C 作CE⊥BD 于E.∵AB=40 米,∴CE=40 米,∵阳光入射角为30°,∴∠DCE=30°,在Rt△DCE 中tan∠DCE= .∴,∴DE=40×= 米,∵AC=BE=1 米,∴DB=BE+ED=1+ = 米.答:新建楼房最高为米.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.需注意通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

【3套】期末复习:人教版九年级数学下册 第29章 投影与视图 单元检测试卷(解析

【3套】期末复习:人教版九年级数学下册  第29章 投影与视图 单元检测试卷(解析

期末复习:人教版九年级数学下册第29章投影与视图单元检测试卷(解析版)一、单选题(共10题;共30分)1.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5B. 2C. 2.5D. 32.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A. B. C. D.3.如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的()A. B. C. D.4.已知某几何体的一个视图(如图),则此几何体是()A. 正三棱柱B. 三棱锥C. 圆锥D. 圆柱5.(2017•镇江)如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A. B. C. D.6.如图是由几个相同的小立方块搭成的几何体的三视图,则这个几何体的小立方块的个数是()A. 4个B. 5个C. 6个D. 7个7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 4个B. 5个C. 6个D. 7个8.如图所示,是一个空心正方体,它的左视图是()A. B. C. D.9.由n个大小相同的小正方形搭成的几何体的主视图和左视图如图所示,则n的最大值为()A. 11B. 12C. 13D. 1410.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C.D.二、填空题(共10题;共30分)11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是________.12.圆锥的底面半径为5,侧面积为60π,则其侧面展开图的圆心角等于________.13.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有 ________种拼接方法.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为________ cm2.15.在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是________ .16.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.17.侧面可以展开成一长方形的几何体有________;圆锥的侧面展开后是一个________;各个面都是长方形的几何体是________;18.主视图、俯视图和左视图都是正方形的几何体是________19.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(共8题;共60分)21.如图为7个正方体堆成的一个立体图形,分别画出从正面、左面、上面看这个几何体所看到的图形.22.如图是一个粮仓(圆锥与圆柱组合体)的示意图,请画出它的三视图.23.画出如图所示图形从正面、从左面和从上面看到的形状图.24.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出x ﹣y的值.25.如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?26.如图是某种几何体的三视图,(1)这个几何体是什么;(2)若从正面看时,长方形的宽为10m,高为20m,试求此几何体的表面积是多少m2?(结果用π表示).27.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图).28.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的侧面积.答案解析部分一、单选题1.【答案】D【考点】几何体的展开图【解析】【解答】半径为6的半圆的弧长是6π,根据圆锥的底面周长等于侧面展开图的扇形弧长,得到圆锥的底面周长是π,根据弧长公式有2πr=6π,解得:r=3,即这个圆锥的底面半径是3.故答案为:D.【分析】半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.2.【答案】D【考点】简单组合体的三视图【解析】【解答】从左边看第一层是三个小正方形,第二层左边一个小正方形,故答案为:D.【分析】其左视图应该是3列小正方形,左边第一列是3个,第二,第三两列分解是一个。

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

人教版数学九年级第二十九章投影与视图单元测试精选(含答案)3

人教版数学九年级第二十九章投影与视图单元测试精选(含答案)3

人教版数学九年级第二十九章投影与视图单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.小亮在上午8时、9时、10时、12时四次到室外的阳光下观察一棵树的影子随太阳变化的情况,他发现这四个时刻这棵树影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时D.上午8时2.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()A.B.C.D.3.张强的身高和李华的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长4.正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①6.图①是五棱柱形状的几何体,则它的三视图为()A.B.C.D.7.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定8.下列四个几何体中,三视图都是相同图形的是()A.长方体B.圆柱C.球D.三棱柱9.如图,是一个正方体的平面展开图,原正方体中“祝”的对面是()A.考B.试C.顺D.利10.如图所示,该几何体的主视图是()A.B.C.D.11.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”12.如图,路灯距地面8m,身高1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m 13.给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个14.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A.B.C.D.15.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个16.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.17.在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22m B.20m C.18m D.16m18.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.19.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.20.如图的立体图形,从左面看可能是()A.B.C.D.21.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个22.如图所示的几何体是由5个大小相同的小立方体块搭成,它的俯视图是( )A.B.C.D.23.如图是某几何体的三视图,下列判断正确的是( )A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2 24.由5个大小相同的正方体组成的几何体如图所示,其主视图是()A.B.C.D.25.如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A.B.C.D.26.一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体27.下面几何体中,其主视图与俯视图相同的是()A.B.C.D.28.如图所示的几何体,它的左视图正确的是()A.B.C.D.评卷人得分二、解答题29.用小立方块搭成一个几何体,从正面看和从上面看所得的平面图形如图所示,搭建这样的几何体最多要几个小立方块?最少要几个小立方块?30.下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)求出该几何体的体积和表面积;(2)分别画出从正面、左面、上面看到的立体图形的形状.31.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.32.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长(结果精确到0.01米).33.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.34.(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;视图视图(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14) 35.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.36.如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图.37.如图,小赵和路人在路灯下行走,试确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.38.画出以下两个几何体的三视图.(1)(2)评卷人得分三、填空题39.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.40.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE 的长度)为_____米.41.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.42.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为_______.43.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是_____.44.三视图都是同一平面图形的几何体有_____、_____.(写两种即可)45.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=_____.46.一位画家把7个边长为1m的相同正方体摆成如图的形状,然后把露出的表面(不包括底面)涂上颜色,则涂色面积为_________m2.47.圆锥的侧面展开图是________ ,圆柱的侧面展开图是________.48.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______49.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x +y=________.参考答案1.A2.A3.D4.D5.B6.A7.D8.C9.C10.D11.C12.C13.B14.B15.D16.B17.B18.A19.D20.A21.B22.C23.A24.A25.A26.B27.C28.B29.最少要11块.最多要17块30.(1)6cm3,24cm2;(2)详见解析. 31.(1)8;(2)答案见解析:(3)200000立方厘米32.小军身高BE的长约为1.75米.33.(1)见解析;(2)270cm334.(1)主视图俯视图(2) 207.36(cm2).35.见解析36.见解析37.作图见解析.38.作图见解析.39.6.640.2.541.22.42.8π.43.444.球正方体45.1646.2347.扇形长方形48.549.-4。

人教版九年级下《第29章投影与视图》单元测试题含答案解析

人教版九年级下《第29章投影与视图》单元测试题含答案解析

春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。

人教版九年级下《第29章投影与视图》单元检测试卷含答案

人教版九年级下《第29章投影与视图》单元检测试卷含答案

第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。

第29章投影与视图单元测试题及答案

第29章投影与视图单元测试题及答案
三、解答题:
27.解:
左视图主视图左视图主视图
俯视图俯视图
28.解:
(.解:1)如图29D
DEAB
=2()∵ EFBCA
6×·EF5AB(m)=∵DE==10 3BCF B C E
E
作CE⊥BD于.解:过点30C 40米AB,∠在Rt△DEC中,∠DEC=90°DCE=30°,CE==DEtan∵∠DCE= CE
在阳,某一时刻AB和DE是直立在地面上的两根立柱.AB=5m29.(8分)已知,如图,AB.
BC=3m光下的投影D在阳光下的投影;(1)请你在图中画出此时DE
AB的投影时,同时测量出DE在阳光下的)在测量(2Am,请你计算DE的长.投影长为6
E B C
米,8分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为4030.(米处再建一幢米,要在此楼正南方40中午12时不能挡光.如图,某旧楼的一楼窗台高1,°时阳光从正南方照射,.已知该地区冬天中午12并且光线与水平线的夹角最小为30新楼2732,(3≈1在不违反规定的情况下,请问新建楼房最高多少米?(结果保留整数).414)≈1.
D 30°3水平线≈23.09=·tan30°40×米=·∴DE=CEtan∠DCECE新3旧4 09DE+AC==23.+1≈2DE+BE DB∴=楼24楼米答:新建楼房最高约E
1 C精品文档A 40米B

精品文档
精品文档.
精品文档
24分)二、填空题(每小题4分,共 .
那么这个几何体是21.一个几何体的三视图如右图, 俯视图主视图左视图
.
22.请写出三种视图都相同的两种几何体、题)(第21 .(写两个即可)23.一个物体的俯视图是圆,则该物体有可能是

【初三数学】宜春市九年级数学下(人教版)《第29章 投影与视图》单元综合练习卷(含答案解析)

【初三数学】宜春市九年级数学下(人教版)《第29章 投影与视图》单元综合练习卷(含答案解析)

人教版九年级下册数学第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是A. B. C. D.9.下列投影中,是平行投影的是A. B.C. D.10.下面属于中心投影的是A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示该几何体的俯视图是12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是______ cm.15.如图,地面A处有一支燃烧的蜡烛长度不计,一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ 填“变大”、“变小”或“不变”.三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯路灯高度忽略不计小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范【优选整合】人教版初中数学九年级下册 29章小结与复习练习一、填空题1.平行投影是由光线形成的,太阳光线可以看成 .2.俯视图为圆的几何体是 ____ , ________ .3.手电筒、路灯、台灯的光线形成的投影称为 .4. 下图右边是一个三棱柱,它的正投影是下图中的 ____ (填序号).①②③④5.如图是两棵小树在同一时刻的影子,请问它们的影子是在 ____ 光线下形成的.(填“太阳”或“灯光”)(第5题) (第6题)6. 如图中是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球影子会________________(填“逐渐变大”或“逐渐变小”)7.将一个三角板放在太阳光下,它所形成的投影是____________,也可能是_____________.三角形,一条线段;8.如图,粗线表示嵌在玻璃正方体内的一根铁丝,右边是该正方体的主视图、左视图、俯视图.中的两个,请在两个视图中写上相应的名称.(第8题)二、选择题(每小题只有一个正确答案)(1) (2)A.B.C.D. 9.下列图形中,是圆柱体侧面的是( )10.由几个小立方体搭成的一个几何体如图1所示,它的主视图见图2,那么它的俯视图为( )11.在一个晴朗的天气里,小华在向正北方向走路时,发现自己的身影向左偏,你知道小华当时所处的时间是( ).(A )上午 (B )中午 (C )下午 (D )无法确定12.小华拿一个矩形木框在阳光下玩,矩形木框在地面上喜欢那形成的投影不可能...是( )A B C D13.如图所示,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为 1.2m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为( )A 、0.36πm 2B 、0.81m 2C 、2πm 2D 、3.24πm 2三、解答题:14.有两根木棒AB 、CD 在同一平面上直立着,其中AB 这根木棒在太阳光下的影子BE 如图所示,请你在图中画出这时木棒CD 的影子.π10cm12cm 2m15.画出如图立体图形的三视图(1) (2)16.在一个宁静的夜晚,月光明媚,小芳和身高为1.65m 的李红两位同学在人民广场上玩.小芳测得李红的影长为1m ,并立即测得小树影长为1.5m ,请你估算小树的高约为多少?17.(1)根据物体的三视图描述物体的形状;(2)要给物体的表面全部涂上防腐材料,根据图上数据计算需要涂上防腐材料的面积.(精确到1c m 2)参考答案一,1.平行,平行光线; 2.圆,球或圆锥; 3.中心投影; 4.②;5.灯光;6.逐渐期末专题突破:人教版九年级数学下册_第29章_投影与视图_单元检测试卷(解析版)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列光源所形成的投影不是中心投影的是( )A.平面镜反射出的太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线 2. 如图的立体图形是由四个相同的小正方体组成,它的主视图是( )A.B. C.D.3. 下列哪种光线形成的投影不是中心投影( )A.探照灯B.太阳C.手电筒D.路灯 4. 为了看到柜顶上的物品,我们常常向后退几步或踮起脚,这其中的道理是( )A.增大柜顶的盲区B.减小柜顶的盲区C.增高视点D.缩短视线5. 如图是某几何体的三视图及相关数据,则判断正确的是( )A.B. C.D. 6. 左边圆锥体的俯视图是( )A.B.C.D.7. 如图所示的正三棱柱的主视图是( )A.B.C.D.8. 几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,其主视图是( )A.B.C. D.9. 一个几何体由一些小正方体摆成,其主(正)视图与左视图如图所示.其俯视图不可能是( )A.B.C.D.10. 由 个相同的小正方体堆成的几何体,其视图如图所示,则 的最大值是( )A. B. C. D. 二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 请你写出一个左视图与俯视图相同的立体图形,这个立体图形是________. 12. 已知圆柱按如图所示方式放置,其左视图的面积为 ,则该圆柱的侧面积为________.13. 画三视图是有一定要求的,首先确定________的位置,画出主视图,然后在主视图的下面画出________,在主视图的右面画出________.14. 在太阳光的照射下,矩形窗框在地面上的影子的形状一般是________形;圆形窗框在地面上的影子往往是________形.15. 在平行投影中,两人的高度和他们的影子________. 16. 在下列关于盲区的说法中,正确的有________.(填序号①②等) ①我们把视线看不到的地方称为盲区;②我们上山与下山时视野盲区是相同的;③我们坐车向前行驶,有时会发现高大的建筑物会被比它矮的建筑物挡住;④人们说“站得高,看得远”,说明在高处视野盲区要小些,视野范围要大些. 17. 直角坐标平面内,一点光源位于 处,线段 轴, 为垂足, ,则 在 轴上的影长为________,点 的影子的坐标为________.18. 从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可). 19. 已知一个几何体的三视图如图所示,其中主视图和俯视图都是矩形,左视图是直角三角形,则它的表面积等于________.20. 墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________个小正方体.三、解答题(本题共计8 小题,共计60分,)21. (4分)如图所示的图形是一个物体的三视图,请画出这个物体的大致形状.22. (8分)请画出下列几何体的主视图、左视图和俯视图.23. (8分)如图是有几个小立方块所搭集合体的俯视图,小正方形中的数字表示在该位置小立方块的个数.请画出相应集合体的从正面看和左面看到的图形.24. (8分)画出如图的主视图、左视图和俯视图.25. (8分)如图是一个几何体,请画出它的三视图.26. (8分)如图,是由几个小立方块搭成的几何体的俯视图,小正方形的数字表示该位置小立方块的个数,请画出相应的几何体的主视图及左视图.27.(8分) 某几何体的三视图如图所示,其中主视图中半圆的半径为.(1)请用文字(或图形)描述该几何体的形状;(2)求该几何体的表面积与体积.28. (8分)一个几何体从前面看及从上面看的视图如图所示.这样的几何体只有一种吗?它最多要多少个小立方体?最少要多少个小立方体?参考答案与试题解析期末专题突破:人教版九年级数学下册第29章投影与视图单元检测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】A【考点】中心投影【解析】找到不是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为平行投影,故选.2.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有个正方形,第二层左上有个正方形.故选.3.【答案】B【考点】中心投影【解析】找到不是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有选项得到的投影为平行投影,故选.4.【答案】B【考点】视点、视角和盲区根据实际生活为了看到柜顶上的物品,我们常常向后退几步或踮起脚,实际就是减小盲区,即可得出答案.【解答】解:∵为了看到柜顶上的物品,我们常常向后退几步或踮起脚,∴这其中的道理是:减小柜顶的盲区.故选:.5.【答案】C【考点】作图-三视图勾股定理【解析】首先根据该几何体的三视图判断该几何体为圆锥,然后根据三视图的相关数据得到圆锥的底面上的高、母线长及底面半径,然后可以得到三者之间的关系.【解答】解:∵该几何体的正视图和左视图都是等腰三角形,俯视图是圆,∴该几何体为圆锥,∴圆锥的底面半径为,高为,母线长为,∵圆锥的底面半径、母线及圆锥的高构成直角三角形,∴.故选.6.【答案】C【考点】简单几何体的三视图【解析】俯视图是从物体上面看,所得到的图形.【解答】解:圆锥体从上面看可得到一个圆及圆心,即.故选:.7.【答案】D【考点】简单几何体的三视图【解析】主视图是分别从物体正面看所得到的图形.解:从几何体的正面看所得到的形状是矩形,中间有一道竖直的虚线,故选:.8.【答案】D【考点】由三视图判断几何体简单组合体的三视图【解析】画出立体图,即可解答.【解答】解:画出立体图:,主视图为,故选.9.【答案】C【考点】简单组合体的三视图【解析】根据给出的几何体,通过动手操作,观察可得答案选择,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其主视图为.结合主视图和左视图,从正面看,几何体的第一行第列有个正方体,而选项没有.【解答】解:结合主视图和左视图,从正面看,几何体的第一行第列有个正方体,而选项没有.故选.10.【答案】A【考点】由三视图判断几何体【解析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个,那么的最大值是.故选.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】正方体(答案不唯一).【考点】由三视图判断几何体【解析】左视图、俯视图是分别从物体左面、上面看,所得到的图形.【解答】解:答案不唯一,如正方体、球体等.故答案为:正方体(答案不唯一).12.【答案】【考点】简单几何体的三视图【解析】先由左视图的面积底面直径高,得出底面直径,再根据侧面积底面周长高即可求解.【解答】解:设圆柱的高为,底面直径为,则,解得,所以侧面积为:.故答案为.13.【答案】主视图,俯视图,左视图【考点】作图-三视图【解析】根据画三视图的要求填空即可.【解答】解:首先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.14.【答案】平行四边,椭圆【考点】平行投影【解析】太阳光照射矩形的窗户,根据在同一时刻,不同物体的物高和影长成比例,且平行物体的投影仍旧平行.故可知矩形的窗户的投影是平行四边形,同理得出圆形窗框在地面上的影子往往是椭圆形.【解答】解:题中都没说明阳光是从哪个角度射入,因此投影可以是与窗户相似,相等,等边不等长,等长不等宽的矩形,还有甚至是一般的平行四边形,但无论是什么,都是平行四边形.都是对边相等且平行的.圆形窗框在地面上的影子往往是椭圆形.故答案为:平行四边,椭圆.15.【答案】对应成比例【考点】平行投影【解析】根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.【解答】解:在同一时刻,不同物体的物高和影长成比例.即两人的高度和他们的影子对应成比例.16.【答案】①③④【考点】视点、视角和盲区【解析】盲区是指看不见的区域,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.【解答】解:②中上山和下山时盲区是不同的,要记住仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.而①③④都是正确的,因此选①③④.17.【答案】,【考点】【解析】画出相应图形,可得相似三角形,利用相似三角形的对应边的比相等可得影长,加上即为点的横坐标,其纵坐标为.【解答】解:∵轴,轴,∴,∴,∴,设,∴,解得:,∴,∴,∴点的坐标为.故答案为:;.18.【答案】球(答案不唯一)【考点】简单几何体的三视图【解析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【解答】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为:球(答案不唯一).19.【答案】【考点】由三视图判断几何体应先判断出这个几何体的形状为三棱柱,进而求得表面积.【解答】解:由主视图和俯视图可判断出这个几何体为柱体,根据左视图可得此几何体为三棱柱,由个矩形和个三角形组成,矩形的长与宽分别是,;,;,.三角形为直角三角形,两直角边分别为,,斜边为.∴表面积为:故答案为:.20.【答案】【考点】简单组合体的三视图【解析】留下靠墙的正方体,以及墙角处向外的一列正方体,依次数出搬走的小正方体的个数相加即可.【解答】解:第列最多可以搬走个小正方体;第列最多可以搬走个小正方体;第列最多可以搬走个小正方体;第列最多可以搬走个小正方体;第列最多可以搬走个小正方体.个人教版九年级数学下册期末高效复习:专题9 投影与视图人教版初中数学九年级下册第28章锐角三角函数专题9投影与视图题型一投影典例下列为某两个物体的投影,其中是在太阳光下形成投影的是(D)A B C D【解析】如答图,故选D.典例答图【点悟】判断是平行投影还是中心投影,关键是看光源,一般太阳光可以近似地看成平行光,因此,在太阳光下的投影是平行投影.在路灯、手电筒等点光源下的投影就是中心投影.变式跟进 1.某舞台的上方共挂有a,b,c,d四个照明灯,当只有一个照明灯亮时,一棵道具树和小玲在照明灯光下的影子如图Z9-1所示,则亮的照明灯是(B)图Z9-1A.a灯B.b灯C.c灯D.d灯题型二直棱柱的展开图典例[2018·雅安]下列图形不能折成一个正方体的是(B)A B C D【解析】B选项图形中含“7”字形,因此不能折成一个正方体,故选B.【点悟】正方体的展开图有“1+4+1”型、“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.变式跟进 2.[2018·大庆]将正方体的表面沿某些棱剪开,展成如图Z9-2所示的平面图形,则原正方体中与“创”字所在面相对的面的上标的字是(A)图Z9-2A.庆B.力C.大D.魅【解析】“141”型上下两个为相对面,其余的相对的面之间一定相隔一个正方形.故选A.3.[2017·海淀区一模]下列选项中,左边的平面图形能够折成右边封闭的立体图形的是(B)A BC D【解析】A.四棱锥的展开图有四个三角形,故A选项错误;B.根据长方体的展开图的特征,故B选项正确;C.正方体的展开图中,不存在“田”字形,故C 选项错误;D.圆锥的展开图中只有一个圆,故D选项错误.题型三几何体的三视图典例[2017·开封一模]下列四个几何体中,主视图与左视图相同的几何体有(D)A.1个B.2个C.3个D.4个【解析】①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形.故选D.【点悟】在画三视图时,一定要将物体的边、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓线画成虚线,不能漏掉.变式跟进 4.[2018·遂宁]如图Z9-3,5个完全相同的小正方体组成一个几何体,则这个几何体的主视图是(D)图Z9-3A B C D 5.[2017·聊城]如图Z9-4是由若干个小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体的主视图是(C)图Z9-4 A B C D【解析】主视图是从前往后看,由俯视图可知从左到右最高层数依次为2,3,1,∴这个几何体的主视图是C.6.[2017·烟台]如图Z9-5所示的工件,其俯视图是(B)图Z9-5 A B C D题型四由视图确定几何体的形状或组成个数典例[2017·峄城区模拟]如图Z9-6,是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是(C)图Z9-6A.3个B.4个C.5个D.6个【解析】由俯视图可知,这个几何体的底层有4个小正方体,结合主视图、左视图可知上层后排左侧有1个正方体,所以组成该几何体的小正方体的个数是5个.【点悟】通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、列、层的数量,小正方体的个数就迎刃而解了.在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数.变式跟进7.[2018·武汉]一个几何体由若干个相同的正方体组成,其主视图和俯视图如图Z9-7所示,则这个几何体中正方体的个数最多是(C)A.3 B.4 C.5 D.6图Z9-7变式跟进7答图【解析】由主视图知,俯视图中在该位置上最多小正方体的个数如答图所示(图中的数字表示在该位置上的小正方体的个数),则这个几何体中正方体的个数最多是2+2+1=5.故选C.8.[2018·齐齐哈尔]三棱柱的三视图如图Z9-8所示,已知在△EFG中,EF=8 cm,EG=12 cm,∠EFG=45°,则AB的长为图Z9-8【解析】由三视图的性质可知,在△EFG中,边FG上的高长等于AB的长,∵EF=8 cm,∠EFG=45°,∴AB=8×sin45°=4 2 cm.人教版九年级下册数学《第29章投影与视图》单元测试卷(解析版)一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③3.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.4.如图,是由若干个大小相同的正方体搭成的几何体的俯视图,其中小正方形中的数字表示该位置上的正方体的个数,则这个几何体的左视图是()A.B.C.D.5.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是()A.4B.5C.6D.76.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.9.把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.10.木棒长为1.2m,则它的正投影的长一定()A.大于1.2m B.小于1.2mC.等于1.2m D.小于或等于1.2m二.填空题(共5小题)11.请写出一个三视图都相同的几何体:.12.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.14.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.15.如图,在A时测得某树的影长为4m,B时又测得该树的影长为16m,若两次日照的光线互相垂直,则树的高度为.三.解答题(共4小题)16.如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形.17.已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.18.(1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)2019年人教版九年级下册数学《第29章投影与视图》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.2.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第29章 投影与视图 单元试题
1.小明从正面观察下图所示的两个物体,看到的是( )
2.下面是空心圆柱在指定方向上的视图,正确的是( )
3.如图是某物体的三视图,则该物体形状可能是( ) (A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体 4.下图中几何体的主视图是( )
5.如图所示,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )
6.把图①的纸片折成一个三棱柱,放在桌面
上如图②所示,则从左侧看到的面为( )
(A )Q (B )R (C )S (D )T
7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) (A )相等 (B )长的较长 (C )短的较长 (D )不能确定 8.正方形在太阳光的投影下得到的几何图形一定是( )
(A )正方形 (B )平行四边形或一条线段 (C )矩形 (D )菱形 9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) (A )平行 (B )相交 (C )垂直 (D )无法确定 10.在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为( ) (A )16 m (B )18 m (C )20 m (D )22 m
11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )
(A )上午8时 (B )上午9时30分 (C )上午10时 (D )上午12时 12.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中时间先后顺序排列,(B ) (A ) (C ) (D )
主视图
左视图
俯视图
(第3题)
(B )
(A )
(C )
()
(B ) (A ) (C ) (D

(第6(B ) (A ) (C ) (D )
(B)
(A)(C)(D)
2
2
41
1
3
(B)
(A)(C)(D)
(A)①②③④(B)④②③①(C)④①③②(D)④③②①
13.下图是由一些相同的小正方形构成的几何体的三视图,则小正方形的个数是()
(A)4个(B)5个(C)6个(D)7个
14.如图所示的几何体的俯视图是()
15.如果用□表示1
表示两个立方体叠加,用█表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是 ( )
(A)(B)(C)(D)
16.在同一时刻,两根长度不等的杆子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是()
(A)两根都垂直于地面(B)两根平行斜插在地上
(C)两根竿子不平行(D)一根到在地上
17.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()(A)小明的影子比小强的影子长(B)小明的影长比小强的影子短
(C)小明的影子和小强的影子一样长(D)无法判断谁的影子长
18.底面与投影面垂直的圆锥体的正投影是 ( )
(A)圆(B)三角形(C)矩形(D)正方形
19.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是()
20.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()
21.身高相同的甲、乙两人分别距同一路灯2米处、3米处,路灯亮时,甲的影子比乙的影子(填“长”或“短”).
左视图
主视图俯视图



(第14题)
(A(B(C(D
俯视图
主视图 左视图
(第26题)
22.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有碟子 个。

23.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如上图所示,这个几何体最多可以由______个这样的正方体组成.
24.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:
(1)a =____________,b =_________,c =____________. (2)这个几何体最少由________个小立方体搭成, 最多由_______个小立方体搭成.
(3)当d =2,e =1,f =2时,画出这个儿何体的左视图.
24.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .
(1)请你在图中画出此时DE 在阳光下的投影;
(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.
1 25平面直角坐标系中,一点光源位于A (0,5)处,线段CD ⊥x 轴于D ,C (3,1),求:
(1)CD 在x 轴上的影长; (2)点C 的影子的坐标.
26.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果保留整数)(3≈1.732,2≈1.414)。

相关文档
最新文档