固体物理第一章测验
固体物理题库 第一章 晶体的结构

固体物理题库第一章晶体的结构固体物理题库第一章晶体的结构第一章晶体的结构一、填空题体(每空1分后)1.晶体具有的共同性质为长程有序、自限性、各向异性。
2.对于珍立方晶体,如果晶格常数为a,它的最近邻原子间距为a,次接邻原子间距为2a,原胞与晶胞的体积比1:1,配位数为6。
3.对于体心立方晶体,如果晶格常数为a,它的最近邻原子间距为3/2a,次接邻原子间距为a,原胞与晶胞的体积比1:2,配位数为8。
4.对于面心立方晶体,如果晶格常数为a,它的最近邻原子间距为2/2a,次接邻原子间距为a,原胞与晶胞的体积比1:4,配位数为12。
5.面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。
6.根据共同组成粒子在空间排序的有序度和对称性,液态可以分成晶体、科东俄晶体和非晶体。
7.根据晶体内晶粒排序的特点,晶体可以分成单晶和多晶。
8.常用的晶体沉积结构存有珍立方(结构)、体心立方(结构)、面心立方(结构)和六角YCl(结构)等,比如金属钠(na)就是体心立方(结构),铜(cu)晶体属面心立方结构,镁(mg)晶体属六角YCl结构。
9.对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。
10.晶体结构的宏观等距只可能将存有以下10种元素:1,2,3,4,6,i,m,3,4,6,其中3和6不是单一制等距素,由这10种等距素对应的等距操作方式就可以共同组成32个点群。
11.晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有1个原子。
12.晶体原胞中所含1个格点。
13.魏格纳-塞茨原胞中含有1个格点。
二、基本概念1.原胞原胞:晶格最小的周期性单元。
2.晶胞结晶学中把晶格中能充分反映晶体等距特征的周期性单元沦为晶胞。
3.反射因子原子内所有电子在某一方向上引起的散射波的振幅的几何和,与某一电子在该方向上引起的散射波的振幅之比。
《固体物理》第一章作业题

解 以 H2 为基团,组成 fcc 结构的晶体,如略去动能,分子间按 Lennard—Jones 势相互作
用,则晶体的总相互作用能为:
U = 2N i
Pij −12
R
12
−
j
Pij
−6
R
6
.
Pij−6 = 14.45392; Pij−12 = 12.13188,
→ →→→
c = a1+ a2 − a3
晶列
→
a+
→
b−
2
→
c
可化为
→
a+
→
b−
2
→
c
=
−2
→
a1
+
→
a2
−
2
→
a3
由上式可知,AC晶列在原胞坐标系中的指数为 112
题4.对于晶格常数为a的简单立方晶格,考虑晶格中的一
个晶面(hkl),证明该晶面所属的晶面族的面间距:
a2 dhkl = h2 + k 2 + l 2
b−
→
c)
2
2
→
BC
=
→
OC −
→
OB
=
→c +
1 2
→
(a+
→b )
−
1 2
→
(b+
→
c)
=
1 2
→
(a+
→
c)
→ → 1 → → → 1→ → a→ → →
BA BC = (2 a+ b− c) (a+ c) = (a− 3 b− c)
固体物理习题课第一章可打印

维格纳 —— 塞茨原胞
—— 14面体 —— 八个面正 六边形 —— 六个面正 四边形
(111)面与(110)面的交线的晶向
—— 晶向指数
补充例题 001 试做出简单立方晶格、面心立方晶格和体心立 方晶格的维格纳 — 塞茨原胞(Wingner-Seitz) 维格纳 — 塞茨原胞:选取某一个格点为中心,做出最近各 点和次近各点连线的中垂面,这些所包围的空间 —— 维格纳 — 塞茨原胞 如图所示为一种二维格子 的维格纳 — 塞茨原胞
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的 晶向 (111)面与(100)面的交线的AB
—— AB平移,A与O点重合
B点位矢 (111)面与(100)面的交线的晶向
—— 晶向指数
(111)面与(110)面的交线的AB
—— 将AB平移,A与原点O重合,B点位矢
《固体物理学》例题与习题
1.3 证明:体心立方晶格的倒格子是面心立方; 面心立方晶格的倒格子是体心立方 由倒格子定义
体心立方格子原胞基矢
倒格子基矢
同理
可见由
为基矢构成的格子为面心立方格子
面心立方格 子原胞基矢
倒格子基矢
同理
可见由 为基矢构成的格子为体心立方格子
1.4 证明倒格子原胞体积
其中vc为正格子原胞体积
倒格子基矢
倒格子体积
1.5 证明:倒格子矢量
垂直于密勒指数
为 因为
的晶面系
容易证明
与晶简单正交系,证明晶面族
并说明面指数简单的晶面,其面密度比较大,容易解理 简单正交系 倒格子基矢
倒格子基矢
倒格子矢量
晶面族
的面间距
—— 面指数越简单的晶面,其晶面的间距越大,晶面上格 点的密度越大,这样的晶面越容易解理
固体物理第一章习题

8.六角晶胞的基矢
3 a 3 a a ai j , b ai j , c ck 2 2 2 2
求其倒格基矢. [分析]
2 a b c a 2 b c 2 c a b
(hkl ) 1 {(h1 h2 h3 )(h1 h2 h3 )(h1 h2 h3 )} p
其中p'是(-h1+h2+h3)(h1-h2+h3)(h1+h2-h3)的公约数。
20
20. 讨论六角密堆积结构,X光衍射消光的条件。
[分析]
(hkl)晶面族引起的衍射光总强度
即:
d hkl 1 h l 2hl cos k 2 2 2 2 sin a c ac b
2 2 2 1 2
16
15. 对于面心立方晶体,已知晶面族的密勒指数为 (hkl) 求对应的原胞坐标系中的面指数(h1h2h3)。 若已知(h1h2h3),求对应的密勒指数(hkl)。 [分析] 这类问题可以用倒格矢来处理,因为是同一组晶 面在两种不同坐标系的表示,其对应的倒格矢应 相互平行。 步骤:(1)两种不同倒格基矢的变换关系 (2)将与晶面垂直的倒格矢由一种坐标表示变 为另一种坐标表示 (3)由两种坐标表示的倒格矢平行求相互关系
2
9
[思路2] 利用倒格矢的模与面间距的关系
2 d hkl 1) 设沿立方晶系晶轴a, b, c的单位矢量分别为
a ai, b a j, c ak ,
倒格子基矢为
2 2 2 a i, b j, c k a a a
由已知条件可得
固体物理习题第一章(黄昆)资料

对于构成金刚石结构,n= 4 8 1 6 1 8 ,V= ( 8r )3,
则有:x=
8* 4 πr3 3
( 8r )3
3 16
π
8
≈0.34
2
3
3
1.2 试证六方密排堆积结构中 c (8 )1/ 2 1.633. a3
证明:如图所示,六方密排中取出一个正四
面体,有c=2h
在正四面体中有:
]
a1VC
(2 )3
VC
即倒格子原胞体积为(2)3 Vc .
1.5指证数明为(:h倒1h格2h子3)矢的量晶面G系 h.1b1 h2b2 h3b3 垂直于密勒
证明:如图所示,ABC是晶面族(h1h
2
h
)
3
中离原点最近的一晶面.
因为
AC
( a3
a1 )
BC
( a 3
a2 )
h3 h1
k
0 a2i
i (a3 a1) 0
j 0
k
a a2 j
00a
a00
i (a1 a2) a
j 0
k
0 a2k
0a0
代入有:b1
2
a
i ,b2
2
a
j , b3
2
k
a
2
2 2
倒格子矢量:G hb1 kb2 lb3 h
i k a
a
j l
k a
则密勒指数为(hkl)的晶面系,面间距d为:
2
a -a a
2
22
代入有:b1
2
a2 ( 2 a3
j
k)
2
a
(
j
k)
固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
固体物理一四章测验答案

第一、四章测验一、填空根据是否具有长程有序和周期性特征,固体可分为晶体和非晶体两类,晶体的结构特征是长程有序,非晶体的结构特征是长程无序;NaCl属于立方晶系的面心晶胞,NaCl的结晶学原胞包含8个Na离子和8个Cl离子,NaCl的固体物理学原胞包含1个Na离子和1个Cl离子;CsCl属于立方晶系的体心晶胞,CsCl的结晶学原胞包含2个Cs离子和2个Cl 离子,CsCl的固体物理学原胞包含1个Cs离子和1个Cl离子;金刚石属于立方晶系的面心晶胞,金刚石的结晶学原胞包含8个C原子,金刚石的固体物理学原胞包含2个C原子;硅属于立方晶系的面心晶胞,硅的结晶学原胞包含8个Si原子,硅的固体物理学原胞包含2个Si原子;立方ZnS晶体为闪锌矿结构,它属于六方晶系的六方密堆积晶胞,立方ZnS的结晶学原胞包含3个Zn原子和3个S原子,立方ZnS的固体物理学原胞包含1个Zn原子和1个S原子;GaAs属于立方晶系的面心晶胞,GaAs的结晶学原胞包含4个Ga原子和4个As原子,GaAs的固体物理学原胞包含1个Ga原子和1个As原子;钛酸钡属于立方晶系的简单晶胞,钛酸钡的结晶学原胞包含1个Ba原子、1个Ti原子和3个氧原子,钛酸钡的固体物理学原胞包含1个Ba原子、1个Ti原子和3个氧原子;晶体宏观对称操作中包含1、2、3、4、6、i、m、4共8种独立基本对称操作元素;若某晶体的某一个轴为四度旋转对称轴,则意味着晶体绕该轴转动90°能自身重合;若某晶体的某一个轴为三度旋转对称轴,则意味着晶体绕该轴转动120°能自身重合;若某晶体的某一个轴为六度旋转对称轴,则意味着晶体绕该轴转动60°能自身重合;若某晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为(236),晶向32132a a a R+-=的晶向指数为(231);已知倒格子原胞基矢为1b ,2b ,3b,则()100晶面的法线方程为1h R b =,()110晶面的法线方程为12h R b b =+,()111晶面的法线方程为123h R b b b =++,()100晶面的面间距为12b π,()110晶面的面间距为122b b π+,()111晶面的面间距为1232b b b π++;刃型位错伯格斯矢量与位错线的几何关系为平行; 螺位错伯格斯矢量与位错线的几何关系为垂直;根据缺陷的尺度和几何构形特征,缺陷可分为点缺陷、线缺陷、面缺陷、体缺陷共四种类型;根据对称性由低到高的顺序,七大晶系为:三斜晶系、单斜晶系、正交晶系、三方(角)晶系、四方(角)晶系、六方(角)晶系、立方晶系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 测验
一、填空
根据是否具有长程有序和周期性特征,固体可分为晶体和非晶体两类,晶体的结构特征是___________________,非晶体的结构特征是___________________;NaCl 属于_____晶系的______晶胞,NaCl 的结晶学原胞包含____ 个Na 离子和____个Cl 离子,NaCl 的固体物理学原胞包含______个Na 离子和________个Cl 离子; CsCl 属于______晶系的________晶胞,CsCl 的结晶学原胞包含______个Cs 离子和________个Cl 离子,CsCl 的固体物理学原胞包含______个Cs 离子和________个Cl 离子;金刚石属于______晶系的__________晶胞,金刚石的结晶学原胞包含______个C 原子,金刚石的固体物理学原胞包含______个C 原子;硅属于_______晶系的__________晶胞,硅的结晶学原胞包含_____个Si 原子,硅的固体物理学原胞包含______个Si 原子;立方ZnS 晶体为闪锌矿结构,它属于___晶系的___晶胞,立方ZnS 的结晶学原胞包含____个Zn 原子和___个S 原子,立方ZnS 的固体物理学原胞包含___个Zn 原子和____个S 原子;GaAs 属于_______晶系的__________晶胞,GaAs 的结晶学原胞包含_____个Ga 原子和________个As 原子,GaAs 的固体物理学原胞包含_____个Ga 原子和________个As 原子;钛酸钡属于___晶系的____晶胞,钛酸钡的结晶学原胞包含___个Ba 原子、___个Ti 原子和___个氧原子,钛酸钡的固体物理学原胞包含___个Ba 原子、___个Ti 原子和___个氧原子;晶体宏观对称操作中包含____、____、____、____、____、____、____、____共8种独立基本对称操作元素;若某晶体的某一个轴为四度旋转对称轴,则意味着晶体绕该轴转动___能自身重合;若某晶体的某一个轴为三度旋转对称轴,则意味着晶体绕该轴转动___能自身重合;若某晶体的某一个轴为六度旋转对称轴,则意味着晶体绕该轴转动___能自身重合;
若某晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为_____,晶向32132a a a R +-=的晶向
指数为______;已知倒格子原胞基矢为1b ,2b ,3b ,则()100晶面的法线方程为____,()110晶面的法线方程为
____,()111晶面的法线方程为____,()100晶面的面间距为____,()110晶面的面间距为_____,()111晶面的面间距为____;刃型位错伯格斯矢量与位错线的几何关系为___;螺位错伯格斯矢量与位错线的几何关系为___;根据缺陷的尺度和几何构形特征,缺陷可分为____、____、_____、____共四种类型;根据对称性由低到高的顺序,七大晶系为:___. ___. ____. ____. ____. ____. ____。
立方晶系有____. ____. ____等特征Bravaise 晶胞;单斜晶系有____. ____等特征Bravaise 晶胞;正交晶系有____. ____. ___. ____等特征Bravaise 晶胞;四角晶系有____. ____等特征Bravaise 晶胞;
二、简述: 1、基元的概念;2、结点的概念;3、空间点阵的概念;4、晶格的概念;5、Bravaise 空间点阵学说的基本内容; 6、选取固体物理学原胞和结晶学原胞各遵循什么法则? 7、四角晶系中,为何没有底心四角晶胞和面心四角晶胞? 8、试说明为什么可以用一组互质的整数来表示晶面? 9、在实际操作中,为什么可以将截距的倒数之比化成互质的整数之比并用它来表示晶面?
三、综合 1、画出立方晶系中下列晶向和晶面(Miller 指数):[][][]()()()211211111112011011、、、、
、;2、画出面心立方Bravaise 格子(简单格子)(100)、(110)、(111)面的原子排列情况,并求出它们的面密度和晶面间距; 3、已知GaAs 中Ga 和As 两原子的最近距离为a ,试求:(1)、晶格常数; (2)、固体物理学原胞基矢和倒格子基矢;(3)、密勒指数为(325)晶面族的法线方程和面间距;(4)、密勒指数为(112)和(101)晶面法向方向间的夹角。
4、设二维正三角形晶格相邻原子间距为a ,求:正格子基矢和倒格子基矢;并画出第一布里渊区;5、试证明六方密堆结构中,633.1)38(21==a c ; 6、求bcc 、fcc 、六角密堆积、金刚石等常见晶体结构原子
半径r 与晶格常数a 的关系和致密度。
7、试说明:Laue 方程与Bragg 公式是一致的;8、某简单格子的
基矢为1ˆ3a i = ,2ˆ3a j
= ,3ˆˆˆ1.5(2)a i j k =++ ,ˆˆˆ,,i j k 为直角坐标系中坐标轴方向的单位矢量,(1)、该晶体属于什么晶系,什么Bravaise 格子,(2)、求晶面指数为(121)晶面族的面间距,(3)、求(111)晶面与(111)晶面之间的夹角余弦,(4)、求[111]晶列与[1晶列之间的夹角余弦。
(5)、求原子最密集的晶面族的晶面指数。