纳米生物材料论文
生物材料小论文

生物材料小论文第一篇:生物材料小论文生物材料的研究生物材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术功能材料。
其研究是介于生物学、医学、材料学和化学之间的交叉性边缘学科,具有知识、技术密集的特点。
纳米技术的兴起为生物材料的发展注入了新的活力。
通常意义上的纳米材料是指颗粒尺寸为1-100nm粒子组成的新型材料。
纳米材料因其尺寸小、比表面大及量子尺寸效应,使之具有常规粗晶材料不具备的特殊性能,在生物活性、材料特性等方面均表现出优异的性能。
纳米技术与生物材料的结合产生了纳米生物材料。
专题:纳米羟基磷灰石的应用羟基磷灰石[ C a10 ( PO4 ) 6 ( OH ) 2 ] ( hydroxyapatite, HAP)是人及动物骨骼、牙齿的主要无机成分,呈纳米微晶状态, 是一种典型的生物材料, 具有优良的生物相容性和生物活性, 植入人体后能在短时间内与人体的软硬组织形成紧密结合, 从而成为广泛应用的植骨代用品。
20世纪50年代以来, 对羟基磷灰石有了比较深入的研究, 不仅合成出纯度很高的HAP单晶, 还利用陶瓷致密的烧结工艺, 烧制出了与人体牙齿的强度和韧性均相近的HAP多晶体。
研究表明, HAP纳米粒子对肝癌、胃癌、骨肉瘤等多种癌细胞的生长具有不同程度的抑制作用。
纳米材料是20世纪80年代中期发展起来的新型材料, 它比负氧离子先进50 年。
由于纳米微粒( 1~ 100nm )的独特结构状态, 使其产生了小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应等,因此, 纳米材料表现出光、电、热、磁、吸收、反射、吸附、催化以及生物活性等特殊功能, 使纳米材料呈现出无限广阔的应用前景。
与此同时, 对羟基磷灰石有了更深入的认识, 由于羟基磷灰石的尺寸达到纳米级表现出来的独特性能, 使对HAP的研究成为生物医学领域中一个非常重要的课题。
本文章论述了纳米羟基磷灰石在生物医学领域中的应用。
[纳米材料与纳米技术论文]纳米技术的应用论文
![[纳米材料与纳米技术论文]纳米技术的应用论文](https://img.taocdn.com/s3/m/b21e9c57a26925c52cc5bfc9.png)
[纳米材料与纳米技术论文]纳米技术的应用论文纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,下面小编给大家分享一些纳米材料与纳米技术论文,大家快来跟小编一起欣赏吧。
纳米材料与纳米技术论文篇一纳米材料的生物安全性摘要:随着纳米科技的迅猛发展,纳米材料得到广泛应用。
本文通过对其生物安全性问题的提出及现今我国面临的问题的分析,希望纳米科技可以得到更好的发展以及纳米材料能更好地应用于生活的各个领域。
关键词:纳米材料;生物安全;应用中图分类号:G301 文献标志码:A 文章编号:1674-932409-0082-02一、什么是纳米材料纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,根据物理形态划分,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体和纳米相分离液体等五类。
由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应等,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。
1984年,德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。
1990年7月在美国召开的第一届国际纳米科学技术会议上,正式宣布纳米材料科学为材料科学的一个新分支。
二、纳米材料生物安全性问题的提出进入21世纪以来,纳米科技发展迅猛,大规模生产的各种人造纳米材料已经在生活消费品和工业产品中广泛使用。
据统计,纳米材料已经应用在近千种消费类产品中,来提高原有的功能或获得崭新的新功能,包括化妆品、食品、服装、生活日用品、医药产品等领域。
然而,近年来的研究发现,由于小尺寸效应、量子效应和巨大比表面积等,纳米材料具有很强的“双刃剑”特性,即在提高原有材料功能同时也存在巨大的安全风险。
例如,美国科学家让一组小鼠生活在含20纳米特氟隆颗粒的空气里,结果小鼠在4小时内全部死亡;而另一组生活在含120纳米特氟隆颗粒的空气里的小鼠,却安然无恙。
《2024年纳米酶的发现与应用》范文

《纳米酶的发现与应用》篇一一、引言随着科技的进步和材料科学的发展,纳米技术已成为现代科学研究的重要领域。
其中,纳米酶作为一种新型的生物纳米材料,在生物医学、环境科学、材料科学等领域展现出巨大的应用潜力。
本文将就纳米酶的发现、性质、应用及其未来发展趋势进行详细阐述。
二、纳米酶的发现纳米酶,顾名思义,是一种具有酶活性的纳米材料。
其发现源于科学家们在研究纳米材料的过程中,意外发现某些纳米材料具有类似天然酶的催化活性。
早期的纳米酶主要是在实验室中通过化学方法合成的,具有尺寸小、比表面积大、活性高等特点。
随着研究的深入,科学家们逐渐发现了更多具有酶活性的纳米材料,如金属氧化物、金属硫化物等。
三、纳米酶的性质纳米酶具有许多独特的性质,如高催化活性、高稳定性、易于修饰等。
首先,由于纳米酶的尺寸小,比表面积大,使得其具有更高的催化活性。
其次,纳米酶在恶劣环境下表现出较高的稳定性,能够在高温、高压、酸碱等条件下保持活性。
此外,纳米酶的表面易于修饰,可以通过化学或生物方法对其表面进行改性,从而改变其催化性能和生物相容性。
四、纳米酶的应用1. 生物医学领域:纳米酶在生物医学领域的应用广泛,如用于疾病诊断、治疗和药物传递等。
由于纳米酶具有高催化活性和生物相容性,可以用于检测生物体内的特定分子或细胞。
此外,纳米酶还可以作为药物载体,将药物定向传递到病灶部位,提高治疗效果。
2. 环境科学领域:纳米酶在环境科学领域的应用主要体现在污染物的降解和修复方面。
由于纳米酶具有较高的催化活性,可以快速降解有机污染物、重金属离子等环境污染物,对改善环境质量具有重要意义。
3. 材料科学领域:纳米酶在材料科学领域的应用主要体现在新型催化剂的制备和储能材料的开发等方面。
纳米酶可以作为催化剂的载体,提高催化剂的活性和稳定性;同时,纳米酶还可以用于开发新型储能材料,如锂离子电池、超级电容器等。
五、未来发展趋势随着科技的进步和研究的深入,纳米酶的应用领域将进一步扩大。
纳米生物材料

纳米生物材料
纳米生物材料是一种新型的生物材料,它结合了纳米技术和生物材料学的优势,具有许多独特的特性和潜在的应用前景。
纳米生物材料的研究和开发已经成为当今生物医学领域的热点之一,对于医疗诊断、药物传递、组织工程和生物传感等方面都具有重要意义。
首先,纳米生物材料具有优异的生物相容性。
由于其纳米尺度的特性,纳米生
物材料能够更好地与生物体内的细胞和组织相互作用,减少免疫排斥反应,降低毒性副作用,从而更好地满足生物医学应用的需求。
其次,纳米生物材料具有较大的比表面积和丰富的表面功能化基团,这使得其
具有优异的药物载体和生物传感器的性能。
纳米生物材料可以将药物载体精确地输送到靶向组织,提高药物的生物利用度,减少药物的剂量和毒性,从而实现精准医疗。
同时,纳米生物材料还可以作为生物传感器,实现对生物体内生理参数的实时监测和反馈,为临床诊断和治疗提供更加精准的信息。
此外,纳米生物材料还具有可调控的物理化学性质和生物学性能。
通过调控纳
米生物材料的尺寸、形貌、表面性质等参数,可以实现对其生物活性、生物降解性、药物释放动力学等方面的精准控制,从而满足不同生物医学应用的需求。
总的来说,纳米生物材料作为一种新型的生物材料,具有许多独特的特性和潜
在的应用前景。
随着纳米技术和生物医学领域的不断发展,纳米生物材料必将在生物医学领域发挥重要作用,为人类健康事业做出更大的贡献。
希望未来能够有更多的科研人员投入到纳米生物材料的研究和开发中,推动其在生物医学领域的广泛应用,为人类健康带来更多的福祉。
2020年浅析纳米材料在生物医学领域的应用方向与特性的论文

浅析纳米材料在生物医学领域的应用方向与特性的论文纳米材料是结构单元尺寸小于100nm的晶体或非晶体。
以下所述纳米材料都具有三个共同的结构特点:1.纳米尺度的结构单元或特征维度尺寸在纳米数量级 (1-100nm) ;2.有大量的界面或自由表面;3.各纳米单元之间存在着或强或弱的相互作用。
由于这种结构上的特殊性, 使纳米材料具有一些独特的效应, 包括小尺寸效应、表面效应和界面效应等, 因而表现出许多优异的性能和全新的功能。
1984年GIeiter首次用惰性气体蒸发原位加热法制备成功具有清洁表面的纳米块材料并对其各种物性进行了系统研究。
从那时以来, 用各种方法所制备的人工纳米材料已多达数百种, 人们正广泛地探索新型纳米材料, 石墨烯、碳纳米管、碳点、碳纳米角迅速成为生物医学领域中的新星。
(1) 氧化石墨烯的特性石墨烯在生物医学领域的研究是近两年才开始的, 氧化石墨烯(或称石墨烯氧化物) 被应用的方面较为广泛。
氧化石墨烯 (GO) 是在石墨烯的基础上进一步氧化, 表面富含羟基、羧基、环氧树脂等官能团, 这些都称之为含氧活性集团, 因而具有较好的生物相容性和水性能, 比表面积高。
GO的表面活性羧基被酰胺化或酯化, 是一种与各种小有机分子、聚合物和生物酰胺相连接的生物活性分子, 生物相容性和功能化都得到了相应的提高。
除此之外, 良好的溶液稳定性也是其独特特性, 对提高中药和化学合成药物的疗效具有重要作用。
(2) 氧化石墨烯在生物医学中的应用(1) 氧化石墨烯作为生物载体材料。
因为其具有突出的药物负荷性能和优良的生物相容性, 较高载药率、靶向性药物传递等。
作为一种运载工具, 它不但能与DNA、抗体、蛋白质和其他大分子结合, 而且可以运载小分子。
起到了降低药物不良反应, 改善药物稳定性的作用。
作为一种递送载体, 其结构的特殊性使其具有一定的杀菌作用。
水溶液中氯霉素的稳定性低, 易于水解。
张雁雯等根据氯霉素和β-CD-GO分子间存在氢键作用, 将β-CD-GO作为氯霉素的运载体, 包封率达到115%, 经过了两项实验包括加速和长期稳定实验, 测定出了二醇物含量7.28%, 含量低于市面上所含的10.13%处方, 表明该药物载体体系能提高药物的稳定性, 改善氯霉素的生物利用度。
纳米材料制备分析论文

纳米材料制备分析论文纳米材料是指尺寸在1至100纳米之间的材料,具有与其它普通材料不同的特殊物理和化学性质,广泛应用于电子、材料、医学等领域。
制备纳米材料的方法有很多,包括溶胶-凝胶、热处理、高能球磨、溶剂热法、化学还原法等。
本篇文档主要介绍制备纳米材料的分析论文,以帮助研究人员更好地了解和应用纳米材料。
一、论文选题论文的选题需根据当前研究热点和前沿来确定,如纳米材料在生物医学方面的应用、纳米材料的复合应用等。
同时还需充分考虑到实验条件、材料选择和论文结构的合理性等影响选题的因素。
二、材料准备制备纳米材料需要合适的前驱体,多数前驱体都需要化学合成。
例如,通过阴离子OA-AcOH压缩法含上硫化镉的溶胶得到硫化镉纳米材料。
在准备过程中还需要优化反应条件、控制反应速率等以增加材料的纯化程度和产率。
三、合成方法制备纳米材料的方法有多种,例如溶胶-凝胶法、湿化学法、物理法等。
溶胶-凝胶法分为凝胶法和溶胶法两大类,前者需要将材料的凝胶前驱体加入溶液中,再将混合溶液沉淀经过干燥等后得到纳米凝胶;后者是将纳米粒子的溶液浸渍在固体表面上,溶液中的纳米粒子逐渐成为固体材料的一部分,形成有序立方结构的纳米材料。
湿化学法包括还原、沉淀、包覆等各种方法,其中最为常用的是还原法。
还原法在低温下加入还原剂来还原金属离子,最终形成纳米材料。
物理法包括高能球磨、反应喷雾干燥等,高能球磨是将钨束、束顶、碾磨体、袋壳和压力等置于一定温度、气氛和功率的环境中,进行球磨加工,得到毫微米和纳米粒子材料;反应喷雾干燥则是通过细密喷雾应用相分离法制备纳米颗粒,具有较好的分散性和表面有机修饰优点。
四、纳米材料的表征方法在制备纳米材料后,需要进行详细的性能和形态表征,常用的表征方法有X射线衍射、透射电镜、扫描电子显微镜、拉曼光谱等。
X射线衍射可以得到样品的晶体结构和粒度;透射电镜能用于表征金属或非金属纳米材料的粒度和形貌;扫描电子显微镜可以得到样品形态和结构的表征;拉曼光谱则可用于材料的分析、表征以及在分子、原子水平上的信息的获取。
纳米材料在生物领域的应用
纳米材料在生物领域的应用纳米技术的发展给人类带来了无限的想象和可能性,尤其是在生物领域中,纳米材料有着许多的应用。
纳米材料作为一种新型的材料,其特定的结构和性质为其在生物领域中的广泛应用提供了可能性。
本文将围绕着纳米材料在生物领域中的应用展开探讨。
一、纳米材料在癌症治疗中的应用癌症已经成为困扰人类健康的世界性问题,而纳米材料的独特结构和性质为癌症治疗提供了许多新的思路和方法。
纳米粒子可以通过表面修饰功能化,精确靶向癌细胞,使药物在肿瘤组织内释放,避免了传统化疗药物对正常细胞造成的损伤。
目前,纳米脂质体、纳米颗粒和纳米管结构可以用于包裹药物分子,改善药物溶解性、稳定性和药效。
而且纳米材料通过易于调控的反应边缘以及大小分布等纳米特有的性质可以提高药物的生物活性及半衰期。
纳米粒子搭载着药物靶向肿瘤时,它的大小比正常细胞小得多,可以轻松穿透肿瘤细胞并治疗癌症。
其次,纳米颗粒具有极高的表面积和丰富的表面反应基团,这为其在控制表面化学反应、光学性质、电学性质等方面提供了许多可能性。
例如,通过修饰纳米颗粒表面上的分子,使其具有可切换、可调节的荧光表现,在荧光显微镜中极易被检测到,为癌症治疗提供了新的方式。
此外,纳米材料还可以快速清除体内剩余癌细胞,提高治疗效果。
二、纳米材料在医用器械中的应用在医用器械及设备领域中,纳米材料也有着广泛的应用,例如:人工骨骼、义眼、耳蜗、心脏起搏器等。
其中,一些应用纳米材料的医用器械比如人工骨骼,利用纳米碳纤维复合材料、纳米制造技术和仿生设计来使其更好地适应人体以及更好地维护持久稳定性,招呼了大量的高质量应用需求。
此外,纳米材料在舒适度、生物相容性、材料稳定性等方面的技术发展,也是医学材料创新发展的主要导向。
例如,配备了纳米材料特性的人工离子溶液,已经被商业化用于多种医用眼镜、口罩等产品的制造。
三、纳米材料在生物检测中的应用纳米材料在生物检测领域的应用愈加广泛,主要应用在基因诊断、蛋白质诊断、疾病标志识别、检测病毒、细胞、药物等方面。
纳米与生物技术论文
纳米与生物技术论文磁性纳米材料的特性研究及应用前景班级:地质1001姓名:李梦萍学号:10016121磁性纳米材料的特性研究及应用前景李梦萍(中国石油大学地球科学与技术学院地质1001)摘要:随着纳米技术的发展,磁性纳米材料作为一种新兴的纳米材料逐渐受到人们的重视。
磁性纳米材料不仅具有纳米材料特有的四种特性,即:表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应,而且结合了磁性材料的特点,使其具有一些更为特殊的性质,如单磁畴,高矫顽力,低居里温度,超顺磁效应等。
磁性纳米颗粒因有良好的生物相容性和活性功能团,以及超顺磁性、比表面积大的特点,在生物、医药、材料、工业等方面具有很好的应用前景。
关键词:磁性纳米粒子特性应用前景The characters and outlook of application ofMagnetic Nano-materialLi Mengping(Earth Science and Technology institute of China University of Petroleum,geology 1001)Abstract:With the development of nanotechnology, magnetic nano-materials as a new kind of nano-materials gradually get attention of people. Magnetic Nano-material not only has four unique characteristics of nano-materials, namely: surface effect, small size effect, and macroscopic quantum tunneling effect of quantum size effects, andcombines the characteristics of magnetic materials, give it some more special characters, such as a single magnetic domain, high-coercivity, low Curie temperature, Super ParaMagnetic effect and so on. Magnetic Nanoparticles are good biocompatibility and reactive functional groups, as well as characteristics of Super paramagnetism, large specific surface area.So it will widely develop in the areas of biotechnology, medicine materials and industry.Key word: Magnetic Nano-material characters the outlook of application广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(0.1nm-100nm)或由他们作为基本单元构成的材料。
生物纳米技术论文
生物纳米技术论文生物纳米技术论文纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。
下面是小编精心推荐的生物纳米技术论文,希望你能有所感触!生物纳米技术论文篇一纳米技术在生物医药中的应用摘要纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。
介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。
关键词纳米技术纳米材料生物医药1990年在美国召开了第一届纳米技术国际学术会议,成为纳米科技发展进步的一个重要标志。
1999年,美国的Robert A Fr Eitas Jr 出版了《纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。
纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。
1 纳米技术纳米是英文nanometre的译名,像米、厘米、毫米等一样,是一个长度单位。
1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。
更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。
在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。
纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。
这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者Richard Feynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。
纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。
纳米生物医用材料
纳⽶⽣物医⽤材料纳⽶⽣物医⽤材料余传威滁州学院材料与化学⼯程学院摘要:⽣物医⽤材料作为功能材料的⼀种,早在距今约7000年前就有使⽤记录。
⽬前⽣物医⽤材料需求巨⼤且对各⽅⾯性能要求越来越⾼。
20世纪30年代以来,⽣物医⽤材料随着⼯业的发展得到长⾜进步。
近年来,随着纳⽶技术的重⼤突破,纳⽶⽣物医⽤材料应运⽽⽣。
纳⽶⽣物医⽤材料因其独特的⼒学性能、可靠地⽣物相容性、良好的降解性能、⾼度的靶向性等等优点成为⽣物医⽤材料中的新星。
专家预计,在20世纪⼈类未能彻底攻克的主要疾病,如⼼脏病、艾滋病、中风、糖尿病等,都有望在21世纪纳⽶⽣物和医学的成功应⽤中得到解决[1]。
本⽂主要针对纳⽶⽣物医⽤材料的概念、分类、进展、应⽤、发展趋势等⽅⾯进⾏评述,并在最后作出结论。
关键词:⽣物医⽤材料;功能材料;纳⽶⽣物医⽤材料;性能;医学⽣物医⽤材料是⽤于和⽣物系统结合治疗或替换⽣物机体中的组织器官或增进其功能的材料[2]。
纳⽶⽣物医⽤材料则由现代化的纳⽶技术和⽣物材料交叉、融合的全新⾼科技领域,其应⽤前景也必定会带来⽣物医学界的新⼀代⾰新。
颗粒在1~100nm范围内的材料被称为纳⽶材料,纳⽶⽣物医⽤材料体现在纳⽶级药物(可以有很强的靶向性,能制作“⽣物导弹”药物,增强疗效)、纳⽶表⾯特性置换物(对⼈⼯脏器进⾏表⾯或者整体纳⽶处理改性,减⼩毒副作⽤,延长使⽤寿命和安全性)、纳⽶级微⼩检测仪器(纳⽶级颗粒可有效进⼊体内细⼩组织,⼤⼤提⾼疾病的诊断率)等⽅⾯。
⽬前,⽣物医⽤材料应⽤很⼴泛,⼤到器官移植,⼩到⽛齿修复和⼿术缝合线等。
纳⽶⽣物医⽤材料的研究还很有限,离⼴泛应⽤于临床还有相当⼤距离。
很多技术上的难题难以解决。
即便如此,其如此多的优越性让各国政要⼤商以及科研机构和个⼈异常狂热。
纳⽶⽣物医⽤材料是⼀个多学科交叉前景⼗分⼴阔的领域,它所具有的独特结构使它显⽰出独特的性能如量⼦尺⼨效应、⼩尺⼨效应、表⾯效应和宏观量⼦隧道效应,故⽽显⽰出许多特有的性质诸如磁引导靶向性、⽣化相容性、耐持久磨损等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物材料课程论文
题目:纳米生物材料的研究及发展趋势
院(系):机电工程学院
专业:机械设计制造及其自动化
班级:
学号:
姓名:******
提交日期:2012 年10 月20 日
课程论文评分等级:
教师签字:
纳米生物材料的研究及发展趋势
学号:姓名:
摘要:纳米生物无机材料和纳米生物高分子材料的研究现状与应用进行综述,探讨了纳米生物材料的发展趋势。
关键词:纳米生物技术 ,纳米生物高分子材料,纳米生物无机材料。
一、引言
纳米生物技术是纳米技术和生物技术相结合的产物,它既可以用于生物医学,也可以服务于电子学、材料科学以及其他社会需求。
随着纳米科技的发展,纳米技术被广泛用于生物材料的研究中,具有纳米尺度的生物材料称为纳米生物材料,可产生许多新奇的优良特性。
纳米材料在21世纪很可能成为生物材料的核心材料,这是因为生物体的骨骼、牙齿等都发现有纳米结构和纳米磷灰石的存在;贝壳、甲虫壳、珊瑚等天然材料具有特别优异的力学性能,它们是由被某种有机黏合剂连接起来的有序排列的纳米碳酸钙颗粒构成的。
和生物材料相对应,纳米生物材料主要包括纳米生物无机材料、纳米生物高分子材料等。
总之,纳米生物材料就是纳米材料和纳米技术与生物材料的结合,纳米生物材料有着广泛的应用前景,以下介绍了纳米生物无机材料和纳米生物高分子材料的研究与应用,并讨论了纳米生物医用材料的发展趋势。
二、纳米生物无机材料
纳米无机生物材料纳米生物无机材料可分为纳米生物陶瓷材料、纳米生物碳材料、纳米生物玻璃陶瓷、纳米生物复合无机材料等几类,其中应用最广泛的是纳米生物陶瓷材料与纳米生物碳材料等。
生物陶瓷如磷酸钙、
生物玻璃、氧化铝等是一类重要的生物材料在临床上已有广泛的应用主要用于制造人工骨、骨螺钉、人工齿、牙种植体以及骨的髓内固定材料等。
纳米陶瓷的制备将会使陶瓷材料的强度、硬度、韧性和超塑性都大为提高。
由于量子尺寸效应和具有极大的比表面积及不同的抗菌机制无机纳米抗菌剂具有传统无机抗菌剂所无法比拟的优良抗菌效果,其综合抗菌效果也优于有机类和天然类抗菌剂。
对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌、芽枝菌和曲霉等具有很强的杀伤能力。
这种抗菌剂不仅抗菌能力强、范围广而且具有极高的安全性是种长效抗菌剂可用作伤口敷料。
Ag可使细胞膜上蛋白失去活性从而杀死细菌。
添加纳米银粒子制成的医用敷料对如金黄色葡萄球菌、大肠杆菌、绿浓杆菌等外科感染细菌有较好抑制作用。
纳米无机生物材料的方向将从植入体在人体内随时间变化、力学性能包括抗磨损、耐疲劳、柔韧性等、可降解、生化活性等方面切入研究。
三、纳米生物高分子材料
现代医学的发展,对材料的性能提出了愈来愈高的要求,大多数金属材料和无机材料难以满足,而合成高分子材料与天然高分子材料有着极其相似的化学结构,从坚硬的牙齿和骨头、强韧类似筋腱和指甲,到柔软而富于弹性的肌肉组织、透明角膜和晶状体等,都可用高分子材料制作,而且可加工成各种复杂的形状。
因此,生物高分子材料在生物材料领域占绝对优势。
纳米生物高分子材料可分为天然生物医用高分子材料和合成生物医用高分子材料;根据其稳定性可分为生物降解型高分子材料和不可降解型高分子材料;根据其应用可分为人工脏器,固定、缝合材料,药用高分子材料,诊断用高分子材料及血液净化高分子材料等。
目前纳米高分子材料的应用已涉及免疫分析、介入性诊疗、药物控制释放载体、组织工程学
中生长因子控制释放及作为转基因载体等许多方面。
已开发出用于制备纳米囊和纳米粒的一些常见的聚合物,已报道的主要有:聚D、L一丙交酯、聚乳酸(PLA)、聚D、L一乙交酯(PLG)、丙交酯一乙交酯共聚物(PLGA)以及聚氰基丙烯酸酯(PCA)、聚氰基丙烯酸烷基酯(PACA)、聚e一羟基已酸内酸(PCL)。
较早以前的还有壳聚糖、明胶、海藻酯钠等亲水性、可生物降解天然聚合物。
近年来生物可降解型高分子纳米粒子,在基因治疗中的DNA载体以及半衰期较短的大分子药物,如蛋白质、多肽、基因等活性物质的口服释放载体方面,具有广阔的应用前景。
一般说来,药物被溶解、包封或吸附在纳米粒载体上。
聚合物纳米粒能有效地把药物输送到特定的靶部位,如器官或组织,从而增加疗效,降低毒副作用,能增强药物特别是蛋白类药物的稳定性,并且具有较好的缓释、控制释放特性。
四、纳米生物材料发展趋势
纳米生物材料是一个多学科交叉发展前景十分广阔的领域,它所具有的独特结构使它显示出独特的性能。
尽管对纳米生物医用材料的制备、结构与性能进行了大量的研究,但在基础理论及应用开发等方面还有许多工作尚待进行,随着材料学、医药学、生物工程学、纳米科技等学科的进一步发展,纳米生物材料的基础研究和应用研究必将迎来一个新的发展阶段。
今后生物材料研究的主要趋势是:继续筛选现有或新出现的材料;深入研究材料的组织相容性、血液相容性、生理机械性能和耐生物老化性,并建立它们的标准和评价方法;加强材料表面修饰和生物化处理方法的研究,以使材料与活体表面的接触面有一相容性好的过渡层;注意材料结构与性能关系的研究,积累数据资料,逐步发展生物材料的分子设计,在改性和
分子设计基础上合成新的生物材料。
纳米生物材料将会使介入性诊断和治
疗各微型、微量、微创或无创、快速,功能性和智能化的方向发展;纳米
药物载体的控释系统具有光明的应用前景,在基因工程迅速发展的今天,
纳米材料作为基因载体将是今后很长时间的研究重点。
随着纳米技术研究的深入,在分子、甚至原子水平上实现材料的功能结
构设计、复合与加工生产成为可能,材料的功能进一步得到扩展,呈现前所
未有的创新。
可以预言,新一代纳米生物材料的春天已经来临,纳米生物材
料必将成为新世纪材料发展的主流,也必将对新世纪的高新技术如生物技
术、生命科学的研究产生极为深远的影响。
参考文献
【l】李会东.纳米技术在生物学与医学领域中的应用.湘潭师范学院学报(自然科学版).2005年6 月第27卷第2期:49-51
【2】徐辉碧。
杨祥良.纳米医药.清华大学出版社.2004年2月,第l版
【3】靳刚.纳米生物技术与纳米医学.专家论坛.2005年6月第2卷第3期
【4】纳米材料在医学上的应用前景广阔.技术与市场.2005年第07A期
【5】俞耀庭,张兴栋.生物医用材料.天津大学出版社,2000年12月,第1版
【6】李世普.生物医用材料导论.武汉工业大学出版社.2000年8月,第1版
【7】郭宗科,章庆国,刘斌等.纳米陶瓷支架的研制及其生物相容性评价,江苏医药杂志,2004
年8月第30卷第8期。