高光谱遥感图像解混技术研究
高光谱遥感图像高效分类与解混方法研究

高光谱遥感图像高效分类与解混方法研究高光谱遥感图像高效分类与解混方法研究摘要:高光谱遥感图像具有信息丰富且具体化的特点,被广泛应用于土地利用、环境监测、农业生产等领域。
然而,高光谱遥感图像面临诸多挑战,如高光谱数据的维度高、数据量大、类间互相重叠等。
因此,高效分类与解混方法的研究就显得尤为重要。
本文主要研究了高光谱遥感图像高效分类与解混方法,并探讨了其在实际应用中的优势和问题。
一、引言高光谱遥感图像是一种将地物不同光谱响应从可见光到近红外光谱范围内进行连续采样的遥感技术。
相比于传统的彩色遥感图像,高光谱遥感图像能够提供更为详细的地物光谱信息。
然而,由于高光谱数据的维度高、数据量大,传统的分类与解混方法在处理高光谱遥感图像时面临较大困难。
二、高光谱遥感图像分类方法研究为了高效地对高光谱遥感图像进行分类,研究者们提出了许多分类方法。
其中,基于光谱信息的分类方法是最常见的方法之一。
该方法通过提取光谱特征,并利用统计模型、聚类算法等来进行分类。
此外,基于空间信息的分类方法也得到了广泛应用。
这些方法结合了地物的空间分布特征,通过纹理分析等方法来提高分类效果。
此外,一些结合光谱和空间信息的联合分类方法也是当前的研究热点。
三、高光谱遥感图像解混方法研究高光谱遥感图像解混是指将混合像素分解为其组成物质的过程,是高光谱图像处理的核心问题之一。
目前,解混方法可以分为光谱解混方法和空间解混方法。
光谱解混方法主要是通过最小二乘法、线性光谱混合模型等来对单像元进行解混,适用于像元内部的光谱变化相对较小的情况。
而空间解混方法则利用相邻像元间的相关性,通过构建像元间的约束条件来实现解混。
四、高光谱遥感图像高效分类与解混方法的应用与挑战高光谱遥感图像高效分类与解混方法在土地利用、环境监测、农业生产等领域具有广泛的应用前景。
例如,在土地利用方面,高光谱遥感图像的分类结果能够提供准确的土地利用信息,为土地资源管理和规划提供重要的参考依据。
基于高光谱图像的多源遥感图像融合研究

高光谱图像融合的方法
基于像素的方法
这种方法主要是将来自不同传感器的像素数据进行融合,包括直接融合、多尺度融合和基 于小波变换的融合等方法。
基于区域的方法
这种方法主要是将来自不同传感器的图像数据进行区域分割,然后将每个区域内的像素数 据进行融合,包括基于区域生长、分水岭算法和水平集等方法。
基于深度学习的方法
THANKS
谢谢您的观看
增强空间分辨率和光谱分辨率
融合算法可以有效地提高空间分辨率和光谱分 辨率,从而提高对地物的识别精度。
3
降低噪声和误差
通过多源图像的融合,可以降低噪声和误差, 提高图像的质量和可靠性。
04
基于高光谱图像的多源遥感图像融合实验
与分析
实验数据来于美国宇航局 的Aqua卫星和Terra卫星,以及中国国家 航天局的FY-3卫星。这些卫星搭载了多 种传感器,可以获取不同波段的高光谱数 据。同时,还采用了地面真实样本数据, 以便更好地验证模型的性能。
03
思路与方法。
02
高光谱图像融合技术概述
高光谱图像融合的定义
01
高光谱图像融合是指将来自多个传感器的多光谱图像和超光谱图像,通过一定 的算法将它们融合在一起,以获得比单一图像更丰富的信息。
02
高光谱图像融合技术是一种能够将不同来源、不同分辨率、不同特性的图像数 据进行有效整合的技术。
03
高光谱图像融合技术可以提高图像的分辨率、增加图像的信息量、改善图像的 清晰度和识别率等。
更丰富的信息。
02
基于稀疏表示的融合算法
通过稀疏表示理论,将源图像的波段进行稀疏分解和融合,以获得更
准确的融合效果。
03
基于非负矩阵分解的融合算法
基于深度学习和空谱联合先验的高光谱遥感解混研究

基于深度学习和空谱联合先验的高光谱遥感解混研究基于深度学习和空谱联合先验的高光谱遥感解混研究摘要:高光谱遥感技术在地球观测中起着重要作用,但由于遥感图像中的混合像元问题,精确的解混技术仍然是一个具有挑战性的问题。
本文提出了一种基于深度学习和空谱联合先验的高光谱遥感解混方法。
该方法利用深度学习算法自动提取高光谱遥感图像中的光谱特征,并通过空谱联合先验对混合像元进行解混。
实验结果表明,该方法能够有效地提取高光谱遥感图像中的光谱信息,并获得较好的解混效果。
1. 引言高光谱遥感技术是一种获取地球表面反射率的重要手段,它能够提供丰富的光谱信息,对于农业、环境保护、地质勘探等领域具有重要的应用价值。
然而,由于高光谱遥感图像中像元光谱混合的问题,使用高光谱遥感图像进行定量分析和应用仍然具有挑战性。
因此,提出一种高效准确的解混方法对于充分发挥高光谱遥感图像的潜力至关重要。
2. 相关工作目前,对于高光谱遥感图像解混问题的研究可以分为基于光谱曲线拟合和基于混合模型的方法。
光谱曲线拟合方法通过拟合混合像元的光谱曲线,然后估计每个光谱端元的成分占比来进行解混。
混合模型方法则是将光谱混合问题转化为解线性方程组的问题,通过求解线性方程组来估计像元端元的成分占比。
虽然这些方法在一定程度上可以解决光谱混合问题,但是由于混合像元的非线性和高光谱遥感图像的高维度特性,这些方法的解混精度和效率还有进一步的提升空间。
3. 提出的方法为了解决高光谱遥感图像解混问题,本文提出了一种基于深度学习和空谱联合先验的解混方法。
该方法首先利用深度学习算法,如卷积神经网络(CNN)等,对高光谱遥感图像中的光谱特征进行自动提取。
由于深度学习算法具有强大的非线性建模能力,可以更好地捕捉到混合像元的特征。
然后,通过空谱联合先验对混合像元进行解混。
空谱先验指的是同一遥感图像中不同像元之间的空间相关性,而联合先验则是指遥感图像中不同波段之间的光谱相关性。
通过综合考虑这两种先验信息,可以更准确地估计每个混合像元的端元成分占比,并进行解混。
高光谱遥感图像的解混和波段选择方法研究

高光谱遥感图像的解混和波段选择方法研究高光谱遥感图像能够以纳米级的光谱分辨率提供海量数据信息,但是由于空间分辨率限制,图像中的一个像元可能包含有多种地物类型,形成混合像元,影响了对地表形态的精确测量和分析。
因此,在实际应用时经常需要将混合像元进行分解,从中得到典型地物的光谱(端元)及这些地物所占比例(丰度),以便充分发掘数据中的光谱信息,研究目标物质。
如何快速有效地进行混合像元的分解,是近年来高光谱图像处理中的一个热点问题。
本论文重点针对混合像元问题,分别从统计学和几何学的角度展开分析,并在此基础上提出相应的解混方法。
此外,针对数据的维数问题,我们还研究了复杂网络的方法,将其应用到高光谱波段选择问题中,用于数据的降维处理。
本论文的主要工作和创新点包括以下几个方面:1.提出一种有约束独立分量分析的解混方法。
该方法通过设计新的目标函数,选择符合高光谱图像物理意义的约束条件,在根本上克服了传统ICA的独立性假设,使算法能够适用于遥感数据的分析。
此外还设计了一种自适应的模型来描述数据的概率分布,能够利用蕴含在观测图像中的统计信息实现自动建模,在提高解混结果精度的同时,使算法对各种不同的遥感数据都表现出良好的适用性。
所提出的算法克服了基于独立分量分析的方法进行光谱解混时所出现的问题,能够得出更优的解。
而且,算法即使在端元数估计错误的情况下仍能得到正确结果,作为一种无需光谱先验信息的算法,为混合像元分解问题提供了一种有效的解决手段。
2.提出一种基于三角分解的端元提取框架。
这既是一种单形体类的几何方法,同时又建立在三角分解的代数原理之上。
我们通过最小化单形体体积寻找端元,在这一过程中引入了三角分解,利用递归操作,只需对数据做一轮体积比较便可完成端元提取任务,得到全局最优解。
该算法能够在原始高维数据上快速而稳定地运行,在实时处理领域有着很好的应用前景。
降维处理不是必要步骤,所以在实际应用中可以根据具体情况选择是否进行降维,具有很好的灵活性。
高光谱遥感影像混合像元分解

04
混合像元分解实验与分析
实验数据介绍
数据来源
01
实验数据来自中国的某高光谱遥感卫星,覆盖了多个地区和不
同的土地利用类型。
数据特点
02
数据具有高光谱分辨率,包含了数百个波段,能够提供丰富的
地物光谱信息。
数据预处理
03
为了提高混合像元分解的精度,需要进行数据预处理,包括辐
射定标、大气校正、几何校正等。
端元数量与分解精度
实验结果表明,随着端元数量的增加,混合像元分解的精度逐渐提高。但端元数量过多会导致解的不稳定,因此需要 选择合适的端元数量。
不同土地利用类型的识别
通过混合像元分解,可以有效地识别不同类型的土地利用,如植被、水体、城市等。这为土地利用变化监测、生态保 护等方面提供了有力支持。
比较不同方法的结果
混合像元分解的必要性
为了更准确地提取地物信息,提高遥感应用的效果,对高光谱遥感影像进行混合像元分解是必要的。通过混合像 元分解,可以将一个混合像元分解成若干个纯像元的线性组合,从而更准确地表达地物的光谱特征。
混合像元分解研究现状
早期研究方法
早期的研究主要采用端元提取和丰度反 演的方法进行混合像元分解。端元提取 的方法主要基于空间和光谱的统计分析 ,从高光谱数据中提取出纯像元;丰度 反演的方法则是基于线性混合模型,通 过优化算法反演出各纯像元的丰度。
VS
近期研究方法
近年来,随着深度学习技术的发展,越来 越多的研究开始采用深度学习的方法进行 混合像元分解。深度学习方法能够自动地 学习和提取高光谱数据中的复杂结构和特 征,从而更准确地分解混合像元。目前, 常见的深度学习方法包括卷积神经网络 (CNN)、生成对抗网络(GAN)等。
8-高光谱遥感影像混合像元分解

纯净端元指数提取示意图
A、B、C、D的纯净像元指数分别为2,2,1,1
(2)N-Finder
主要是利用高光谱数据在特征空间中的凸面单形体结 构,寻找最大体积的单形体,从而自动获取图像中的 所有端元。 下式当误差项n满足很小时,所有的点正好满足落在单 形体的体积内。
以两个波段三个端元为例,说明它们之间的几何关系, A,B,C分别是三角形的顶点,三角形内部的点对应
(3)几何光学模型。
该模型适用于冠状植被地区,它把地面看成由 树及其投射的阴影组成。从而地面可以分成四 种状态:光照植被面(C)、阴影植被面 (T)、光照背景面(G)、阴影背景面(Z)。 像元的反射率可以表示为:
R ( Ac Rc AT RT AG RG AZ RZ ) / A
混合像元分解模型示意图
本实验数据选取分辨率为30m的TM影像。该 影像区域为湖北省武汉市,大小为400像素 ×400像素,获取时间为1998年10月26日
原始TM影像
训练样区
长江 居民地 植被 湖泊
四种地物波段光谱曲线图
BP算法分类结果
分解结果
线性分解结果
长江
ANN分解结果
湖泊
植被
居民区
长江
首先给定一个初始向量(一般为图像中所有光谱的均 值向量),对图像进行约束性解混,得到误差图像。
误差最大的像元作为第一个端元,对图像进行约束性 解混,得到误差图像中误差最大的像元作为新的端元, 再将新端元再加入到下一步的约束线性解混操作中, 直到求出图像中的所有端元。
全自动选择端元实例:
AVIRIS图像立方体
线性光谱混合
非线性光谱混合
8.2 混合像元分解技术
把像元的反射率表示为端元组分的光谱特征和它们的 面积百分比(丰度)的函数。Charles 在1996年将像 元混合模型归结为以下五种类型:
高光谱图像混合像元解混技术研究

高光谱图像混合像元解混技术研究高光谱图像混合像元解混技术研究随着高光谱遥感技术不断发展,高光谱图像具有显著特点:光谱分辨高,图谱合一,并广泛应用到各个领域。
但遥感技术向定量化方向进一步发展的主要障碍是广泛存在着混合像元。
为了突破遥感图像空间分辨率低的障碍与地物具有复杂多样性的影响,多种类型的地物常包含于独立的单个像元中,要在亚像元级别的精度上得到混合像元的真实属性信息,提高图像分类精度。
在高光谱图像中,关键问题之一是如何有效地对混合像元进行分解已经得到了广泛关注,并一直进行着深入地研究。
本文首先对其所研究内的相关技术及应用进行了叙述,并阐述了高光谱解混的研究现状,混合像元分解存在的问题,如解混效果不理想,算法的目标函数收敛速度慢,图像分类不精确,耗时多等。
针对以上问题,本文在NMF算法的基础上,提出了3种混合像元分解算法:(1)基于图正则和稀疏约束半监督NMF的混合像元分解算法。
该算法加入了拉普拉斯图正则化约束和部分样本的类别信息,并对丰度矩阵施加稀疏约束,最后融合到同一目标函数中,能够改善解混效果;(2)基于图正则和稀疏约束的INMF高光谱解混。
该算法将稀疏非负矩阵分解与增量型学习相结合,既能降低平均运行时间又能提高图像分类精度;(3)基于双图正则的半监督NMF混合像元解混。
该算法不仅考虑了高光谱数据流形与特征流形的几何结构,还将已知的标签类别信息施加于非负矩阵分解中,极大加快了目标函数的收敛速度,改善效果得到进一步提高,耗时少。
本文分别对提出的3种算法在真实遥感数据集上进行仿真实验,在解混性能评价指标均方根误差和光谱角度距离上与NMF和改进的NMF算法作比较,实验结果表明本文提出的3种算法解混可靠性和有效性高。
最后,对3种解混算法进行比较,得到基于双图正则的半监督NMF 混合像元解混算法耗时最少,解混效果最优。
高光谱遥感图像高效分类与解混方法研究

高光谱遥感图像高效分类与解混方法研究高光谱遥感兴起于20世纪80年代,是一种融合光谱学理论与成像技术的前沿技术。
高光谱遥感图像包含几十至几百个窄波段的光谱信息,能够为人类社会提供丰富且精细的观测数据。
地物识别与分析作为高光谱遥感图像的研究热点,是高光谱遥感图像处理的重要组成部分,主要可通过地物分类与像元解混两种技术实现。
地物分类技术是一种像元级处理技术,通过对观测像元进行类别标定与识别来完成对地物的分析与识别;而像元解混技术是一种亚像元级处理技术,通过对观测像元中所包含的不同纯地物进行分析并计算其含量来完成对地物的识别与分析。
虽然,高光谱图像具有光谱分辨率高及图谱合一的特点,可以为地物分类与像元解混处理提供丰富的细节信息,但同时给这两种技术带来了巨大的挑战和难度,主要原因有:(1)高光谱图像容易受到高光谱传感器在空间分辨率上的限制以及光照、大气、云层厚度等自然环境因素的影响,出现“同物异谱”和“异物同谱”的现象,这两种现象不同程度地增加了地物分类与像元解混的难度。
(2)高光谱图像光谱维度高,由小样本引起“Hughes”现象的出现,使高光谱图像地物识别性能呈现先增加后下降趋势。
(3)高光谱图像的大数据量给高光谱图像处理带来了极大的计算量。
针对上述高光谱图像在地物分类与像元解混中存在的问题,本文深入研究了基于人工神经网络的地物分类技术与基于稀疏回归的像元解混技术,提出了高效的地物分类方法和像元解混方法。
具体工作概括如下:一、基于优化极限学习机的高光谱图像分类方法研究针对高光谱图像数据量大,导致分类方法计算复杂度高、样本训练时间长等问题,本文开创性的将极限学习机方法应用在高光谱图像分类中,并提出了一种基于优化极限学习机的高效高光谱图像分类方法。
该方法研究并发掘出训练样本数目与隐层神经元数目之间存在一种经验的线性关系,且这种线性关系可从小样本数据集延伸至大样本数据集,因此避免了大样本数据集所带来的大计算量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高光谱遥感图像解混技术研究
高光谱遥感图像具有高光谱分辨率、图谱合一和光谱波段多的特点,能够提供丰富的地球表面信息,因此被广泛的应用于土地利用、资源调查和自然灾害监测等领域。
但是,由于高光谱遥感图像空间分辨率限制和地物分布的复杂多样性,图像中包含了大量的混合像元,不利于像元级的数据处理和分析。
为了更好地利用高光谱数据,提高遥感应用的精度,必须对混合像元进行分解,提取不同地物的端元,并求得每种端元对应的丰度。
在高光谱遥感图像中,地物的空间分布具有不同的特点,分布广泛的地物含有纯像元,而分布稀少的地物则只能以亚像元形式存在。
该类图像带来的处理难题是如何精确提取所有地物的端元,并进行有效的光谱解混。
当不同的地物极为贴近或者具有不同空间层次的地物同时存在时,非线性光谱混合现象也往往不能忽略。
另外,地物光谱数据库的非完备性以及偏远地区地面真实测量难以实现等因素,使得端元的自动获取也比较困难。
本文围绕高光谱遥感图像解混技术,针对高光谱图像存在的上述几个问题展开研究。
主要的研究工作包括:(1)针对现有光谱解混算法存在难以同时有效提取亚像元和纯像元级地物端元的不足,提出了一种凸面几何理论和非负矩阵分解(nonnegative matrix factorization,NMF)技术相结合的有限光谱解混算法。
首先,通过基于凸面几何理论的端元提取方法提取纯像元端元候选像素集合。
然后,根据纯像元和混合像元分布特点的不同,计算候选像素的空间纯度指数以判断纯像元端元。
进而,对NMF方法作适应性修改,提出部分非负矩阵分解(partial NMF,PNMF)算法,构造相应的目标函数,推导迭代求解过程,通过分解求
得亚像元端元光谱和所有端元的丰度。
实验结果表明,所提出的有限光谱解混方法能够弥补现有光谱解混算法的不足,实现对纯像元端元和亚像元端元光谱的有效提取。
(2)针对高光谱图像中端元个数过多导致非线性混合像元分解方法比较耗时和丰度估计不够精确的问题,提出了一种结合空间信息的非线性混合像元分解算法。
首先,利用无约束最小二乘法逐像元估计端元丰度,并在此基础上得到初步高光谱图像分类图。
然后,根据相邻像元内地物分布的空间相关特性,选取适当大小的局部窗口确定每个像素的真实端元集合。
最后,对双线性混合模型进行改进,基于改进的双线性混合模型,将混合像元分解问题转换为约束的二次规划优化问题,并采用有效集方法进行求解。
综合仿真结果和真实高光谱图像实验结果,通过利用空间邻域信息,非线性光谱混合分析技术的计算代价大幅度降低,并且丰度的估计精度得到了提高。
(3)针对非线性光谱混合模型比较复杂且参数难以确定的问题,采用核函数方法,通过非线性映射将原始高光谱数据映射到高维特征空间,使混合像元在特征空间中可以用线性混合模型表示。
进而结合NMF算法和核学习理论,构建核NMF (kernel NMF,KNMF)算法,并对高维特征空间中映射后的数据进行解混。
同时为了使得解混结果趋于唯一,考虑到高光谱数据在高维特征空间中仍然构成单形体结构以及丰度分布的平滑性特点,在KNMF算法中引入两个辅助约束,即单形体体积约束和丰度平滑约束。
合成数据及真实高光谱数据集的实验表明,所提出的约束KNMF算法相比线性解混算法能够得到更好的端元光谱和丰度估计结果。