高分子高能材料研究进展
几种高能固体推进剂的研究进展

感 推 进 剂 的 主要 技术 途 径 有[ : 用低 感 度 的含 能 增 塑剂 3采 1 如 T T 三 乙 醇二 硝 酸酯 ( E D 和 B r ME N、 T G N) T N等 ; 用 新 采 型氧 化 剂代 替 高 感 度 的 A 如 纯 A P, N及各 种 相 稳定 的 A N
技 术 的发 展 , 产生 了许 多 固体 推 进剂 品种 。 二 十世 纪 六 、 七 十 年代 固体 推 进 剂技 术 走 向全 面成 熟 。随 着 聚 合物 化 学 的兴 起 和世 界 各 国战 略武 器 系统 发 展需 求 , 近二 、 十 三 年使 得 它 得 到 迅 速 的发 展 。未 来 的 战术 导 弹 不仅 要 求 固 体 推 进 剂具 有 高 的 能量 , 高 比冲 、 密 度 , 且 要 具 有 即 高 而 低 特征 信 号 、 感 和少 污 染等 特性 。 钝 1 几 种 常见 的高 能 固体 推进 剂 研 究概 况
燃 速 相 近 的 H P 推 进 剂 相 比 , E E 钝 感 推 进 剂 在 慢 速 TB NP
固体 推 进剂 的发 展 经 历 了一个 极 其 漫长 的过新 兴 的聚 合 物科 学 理 论 的发 展 和应 用, 以及第 二 次世 界 大 战 爆 发 , 大 地 推动 了 固体 推 进剂 极
1 1 T E 推 进 剂 . H P
烤燃 反 应方 面性 能要好 , 而且 具有 较 低 的撞击 和 冲击 波 感 度 。N P E E推进 剂在 较 宽温 度 范 围 内具有 极 好 的力 学性 能 及 与衬 层 间 良好 的适应 低温 储存 的粘接 能力 。
13 A . G P推 进 剂
聚乳酸增韧改性研究进展

聚乳酸增韧改性研究进展袁理;李芬芬;康睿玲;施家豪;吴靓;张扬【摘要】从共聚改性和共混改性两方面综述了近年来聚乳酸(PLA)增韧改性的研究现状,并着重介绍了植物纤维共混PLA的增韧机理和研究进展,最后对PLA 的发展前景进行了展望。
%This paper summarized the most recent development of toughening modification for poly (lactic acid)(PLA)in terms of copolymerization and blending technologies.The mechanisms and progresses in toughening techniques for PLA resin with plant fibers were focused, and the development prospects of modified PLA products were predicted.【期刊名称】《中国塑料》【年(卷),期】2017(031)001【总页数】6页(P7-12)【关键词】聚乳酸;增韧;研究进展【作者】袁理;李芬芬;康睿玲;施家豪;吴靓;张扬【作者单位】北京工商大学材料与机械工程学院,北京100048;北京工商大学材料与机械工程学院,北京100048;北京工商大学材料与机械工程学院,北京100048;北京工商大学材料与机械工程学院,北京100048;北京工商大学材料与机械工程学院,北京100048;北京工商大学材料与机械工程学院,北京100048【正文语种】中文【中图分类】TQ321近年来,随着石油资源枯竭以及各种日益突出的环境问题,生物可降解材料已经成为当今高分子材料领域的一个极其重要的研究方向。
其中,PLA因其具有良好的生物相容性和力学性能,无毒、可塑性加工成型,生产过程无污染,可完全生物降解,已被广泛应用于医疗卫生、食品包装、汽车、服装等领域,被认为是最有前途的可再生绿色高分子材料之一。
智能高分子材料

这类高分子材料在酸碱环境变化时可以发生颜色变化。它们 通常由酸碱响应性高分子和有机染料组成,通过酸碱环境变 化引起高分子构象变化,进而导致染料聚集状态的变化,表 现出不同的颜色。
氧化还原响应
氧化还原敏感高分子
这类高分子材料能够感知氧化还原环境的变 化,并产生相应的物理或化学变化。例如, 在氧化条件下,氧化还原敏感高分子可以发 生氧化反应,从而改变其物理性质,如溶解 度、粘度、电导率等。
制备技术
将单体和小分子添加剂溶解在适当的溶剂中,然后在 一定条件下进行聚合或缩聚反应,最后将溶剂脱去制
备智能高分子材料。
输入 标题
熔融法
将单体加热至熔融状态,然后在一定条件下进行聚合 或缩聚反应,最后冷却固化制备智能高分子材料。
溶液法
辐射法
利用特定的模板引导单体聚合或缩聚反应,制备具有 特定结构和性能的智能高分子材料。模板法可以获得
智能高分子材料的制造成本较高 ,限制了其广泛应用。
04
安全性问题
智能高分子材料的生物相容性和 长期使用安全性仍需进一步验证
。
发展前景
应用领域拓展
随着技术进步,智能高分子材料有望在更多领域 得到应用,如医疗、航空航天、新能源等。
降低成本
通过技术改进和规模化生产,智能高分子材料的 制造成本有望降低,促进其普及。
发展趋势
未来智能高分子材料将朝着多功能化 、集成化、微型化和智能化方向发展 ,有望在更多领域发挥重要作用。
02
智能高分子材料的响应 机制
温度响应
热敏性高分子
这类高分子材料能够感知温度变化,并 产生相应的物理或化学变化。例如,在 温度升高时,热敏性高分子可以发生相 变或产生可逆的化学键交换,从而改变 其物理性质,如溶解度、粘度、颜色等 。
高分子金属络合物的性能及应用进展

本文1998-04-10收到王贤保,男,29岁,讲师,硕士,从事高分子金属络合物研究。
高分子金属络合物的性能及应用进展王贤保 陈正国 程时远(湖北大学化学与材料科学学院,武汉,430062)摘 要 介绍了高分子金属络合物的种类及合成。
综述了高分子金属络合物不同于低分子络合物的催化性能、电学性能、光学性能和磁性,以及高分子金属络合物作为催化剂、光学材料、电学材料等方面的应用进展。
关键词 高分子金属络合物 高分子催化剂 电学性能 光学性能 磁性分类号 O 641.4高分子金属络合物(P olymer Metal C om plexes )(以下简称PMC )是一种含有高分子配体的金属络合物,其中心金属离子被巨大的高分子链所包围。
由于其高分子配位体的特征,与低分子金属络合物相比,PMC 在催化、电学、光学等方面表现出的性能[1~4],具有更广阔的应用前景和价值,对新型复合材料[5,6]的开发具有十分重要的意义,已引起了各国科学家的极大关注[7]。
PMC 的研究是受金属酶的启发而开始的。
金属酶是一种天然高分子金属络合物,其金属离子被庞大的蛋白质分子所包围,这是一种具有三维结构的蛋白质分子,通过立体配位改变配位方向,使中心离子具有反常的配位结构和氧化态,如质体兰素[8]就是典型例子。
为了认识蛋白质配体的功能,人们对合成PMC 的性能及应用展开了深入的研究,对之研究可以追源于50年代的离子交换树脂和离子交换膜,从60年代末开始全面展开并日益受到国内外学者广泛关注。
我国从70年代才开始此领域的研究。
1 高分子金属络合物种类及合成1.1 高分子配体与金属离子络合这种PMC 是通过金属离子与含有给电子基团(如-NH 2、-C OOH 、-C -、-SH 、氮杂环等)的高分子络合而成的。
1.1.1 侧基络合物高分子配体以侧基与金属离子络合而成,如图示:第9卷 第3期 化 学 研 究 V ol.9 N o.31998年9月 CHE MIC A L RESE ARCHES Sep.1998例如含多授体侧基的聚苯乙烯,被用作金属桥联树脂,能很好地选择吸收金属离子,其行为已有深入研究[9]。
高分子多糖水凝胶功能材料研究与应用进展

高分子多糖水凝胶功能材料研究与应用进展摘要:与传统高分子水凝胶材料相比,高分子多糖水凝胶因其具有环境友好型、生物相容性、特殊功能性、生物可降解性等优势而倍受重视。
综述了以植物多糖、海洋多糖、微生物多糖及其复合多糖为原料的多糖水凝胶功能材料的制备方法、功能特性和产品表征方法,介绍了多糖水凝胶材料在医药卫生、食品、化妆品、农业和环保等领域的应用情况,分析了多糖水凝胶在生物传感器、生物反应器、人工智能材料和抗菌材料等领域的应用前景,并指出提高材料性能与功能特性、分析凝胶形成机理和功能材料模拟等是未来多糖水凝胶研究的重点。
关键词:高分子多糖;水凝胶;功能材料;研究进展;应用多糖水凝胶是多糖利用的一个重要方面,水凝胶是一类具有三维交联网络结构,能够吸收并保持大量水分,而又不溶于水的功能高分子材料。
水凝胶自身的结构使其同时具备固体和液体的性质,即力学上表现出类固体性质,而在热力学上则表现出类液体行为[1-2]。
水凝胶因其具有低成本、多孔性、较高力学强度、光学透明性、生物可降解性、高溶胀率、生物相容性、刺激响应性等特性,被广泛应用于食品、化妆品、医药卫生、农业、环保等领域。
水凝胶按照制备原料的不同可分为天然高分子水凝胶和合成高分子水凝胶[3]。
用于制备水凝胶的天然高分子包括胶原/明胶、透明质酸、海藻酸盐、纤维素、黄原胶、魔芋葡聚糖、壳聚糖等[4-6]。
用于制备水凝胶的合成高分子包括聚丙烯酸、聚丙烯酰胺、聚乙二醇和聚乙烯醇等。
近年来,高分子多糖如纤维素、半纤维素、壳聚糖、海藻酸钠、黄原胶以及透明质酸等因其优越的生物相容性、天然可降解性以及丰富的来源等特点,越来越多地被用作制备水凝胶的原料,拓宽了多糖的应用领域。
多糖水凝胶材料包括互穿聚合物网络多糖胶、多糖类接枝共聚水凝胶、多糖类大孔冻凝胶和多糖类智能水凝胶。
其中多糖类智能水凝胶,通过在多糖类水凝胶中引入具有刺激响应性的化学基团,从而可以利用大分子链或链段的构象或基团的重排使其内部体积发生突变。
离子注入高分子材料表面改性

摘要叙述了离子注入对高分子材料进行表面改性的新工艺。
其技术原理和特点, 并着重介绍了其在高分子材料表面改性中的应用,综述了国内目前在这方面的研究现状及试验结果及发展前景。
关键词离子注入高分子材料表面改性1.前言近几十年来, 随着高科技的迅猛发展, 对各类材料的表面性能提出越来越高的要求。
因此, 采用新技术、新工艺改善材料的表面性能就越显重要- 离子注入能在不改变材料基本性能的情况下, 有选择地改善材料表面的耐磨性、耐蚀性、抗氧化性和抗疲劳性等- 目前世界上许多国家都有专门从事离子注入研究的队伍。
据了解, 英国Rolls-Roycc股份有限公司为了解决飞机发动机叶片材料的微粒磨损, 曾比较了46种不同的表面处理工艺, 最后选择了3种, 其中之一就是离子注入新工艺。
由此可见, 离子注入技术将会受到人们更加广泛的重视, 它将在我国社会主义现代化建设中发挥越来越大的作用。
2.离子注入的原理离子注入对高分子材料的改性是通过离子注入使材料的结晶、组分以及分子空间位置的变化来实现的。
当带能离子射到高分子表面时,会与材料原子和电子发生一系列的碰撞作用,与电子的碰撞是非弹性碰撞,与原子的碰撞是弹性碰撞。
无论在哪种碰撞过程中,载能离子每经一次碰撞,就将部分能量传递给原子或电子,同时相应减少离子本身的能量,直到经多次碰撞后入射离子的能量几乎耗尽,它才在材料中作为一种杂质原子停留下来。
此外,被撞的晶格节点上的原子,如果接受的能量足以使其克服周围原子对它的束缚就会发生离位,并以一定能量在材料晶格中飞行。
此时,它同样能使别的原子离位。
可以想像,一个入射离子可以产生出一系列的碰撞,产生一系列的离位原子,这种原子与原子、原子与电子的碰撞就是注入离子与高分子材料相互作用的基本物理过程。
离子在加速器中获得一定的能量并藉此进入样品表面以下一定深度, 在靠近表面处形成一层组成和结构都不同于体相的注入层。
由于离子的注入深度h 和离子能量的平方根E1/ 2成正比, 所以在不同加速器中得到的表面改性层是不一样的。
形状记忆高分子材料

形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。
1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。
这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。
而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。
1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。
热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。
1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。
以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。
形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。
高分子_无机纳米复合材料的研究进展

收稿日期:2002-03-03。
作者简介:严满清,女,25岁,在读研究生,主要从事塑料改性及应用开发方面的研究工作。
高分子/无机纳米复合材料的研究进展严满清 王平华(合肥工业大学化工学院高分子科学与工程系,230009) 摘要:详细概述了采用纳米粒子直接填充分散法制备高分子基无机纳米复合材料,对纳米粒子表面处理方法及纳米复合材料的性能及应用进行了介绍。
关键词: 无机纳米粒子 表面处理 纳米复合材料 纳米粒子直接填充分散法 纳米科学与技术是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米机械学、纳米加工及表征等[1]。
由于纳米科学与技术而制得的纳米材料表现出许多与众不同的特殊性质如光吸收性、高混合性、压缩性等,有着广阔的应用前景[2]。
因此,纳米材料被称为最有前途的材料。
1 纳米材料纳米结构为至少一维尺寸在1~100nm 区域的结构,它包括纳米粒子、纳米纤维、纳米薄膜、纳米块状和纳米晶等。
纳米粒子,又称超微粒子(ultrafine powders ,简称U FP ),统指1~100nm 的细微颗粒(结晶的或非结晶的)。
纳米粒子既不同于微观原子、分子团簇,又不同于宏观体相材料,是一种介于宏观固体和分子间的亚稳中间态物质。
当粒子尺寸进入纳米数量级(1~100nm )时,由于纳米粒子的表面原子与体相总原子数之比随粒径尺寸的减少而急剧增大,使其显示出强烈的体积效应、量子效应、表面效应和宏观量子隧道效应。
纳米材料指的是纳米结构按一定方式堆积或一定基体中分散形成的宏观材料,包括纳米块状材料和纳米复合材料。
制备纳米材料的方法有:化学气相沉积法、物理气相沉积法、机械合金法、液相化学合成法、超声波辐射法。
从物质的类别来分,可分为金属纳米材料、无机氧化物纳米材料、无机半导体纳米材料和有机小分子和聚合物纳米材料。
纳米材料是一种具有广泛应用潜力的新型材料,纳米材料能全面改善聚合物的综合性能,而且能赋予其奇特的性能,为聚合物的增韧增强改性提供了新的途径[3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子高能材料研究进展材料化学091班
091304131
洪荣
摘要: 系统地介绍了几类新一代功能高分子材料,旨在为进一步的研究开发与应用。
提供有价值的参考方法,在分析现有功能高分子材料结构特征的基础上着重阐述了几种新一代功能高分子材料的性能特点、功能原理及发展动态。
介绍了几种新型功能高分子材料的发展及应用,包括二氧化碳功能高分子材料、形状记忆功能高分子材料、糠醛系功能高分子材料、导电高分子材料、生态可降解高分子材料等,并展望了功能高分子的未来。
关键词:功能高分子材料;进展;导电;医用;复合;生物降解;智能;展望。
功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。
其于20 世纪60 年代迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。
功能高分子材料分为两类:一类是在原来高分子材料的基础上,使其成为更高性能和功能的高分子材料,另一类是具有新型功能的高分子。
而功能高分子材料又分为:化学功能高分子材料、光功能高分子材料、电功能高分子材料、高分子液晶等。
新型功能高分子材料因为其特殊的功能而受到人们广泛关注。
二氧化碳功能高分子材料
CO2 是污染环境的废气,不活泼且难以利用,作为一种配位能力较强的物质,它具有与金属形成种种络合物的能力,故CO2 有很多机会被活化而参加某些化学反应,在一定条件下CO2 能插入到金属、碳、硅、氢等元素组成的化学键中,反应过程中CO2的碳或与被插入键较贫电子的一端连接。
它与其他共聚单体轮流与催化剂金属络合物而插入金属杂原子键中。
这种插入反应是制备各种羧酸或羧酸盐、氨基甲酸酯、碳酸酯、有机硅、有机磷化合物的基础,作为可聚合单体, 利用CO2 可得到许多有机物。
自 1969 年, Inoue S.等报道二氧化碳与环氧丙烷(PO)共聚制备高交替的聚丙撑碳酸酯(PPC)以来,以二氧化碳作为单体合成全降解脂肪族聚碳酸酯已成为各国化学家研究的热点之一。
在此领域,研究最为广泛的是二氧化碳与PO共聚合成PPC 和二氧化碳与环氧环己烷(CHO)共聚合成聚环己撑碳酸酯(PCHC)。
但由于PPC 的玻璃化转变温度低(35-40℃左右)和PCHC 较脆而大大限制了它们的应用范围。
用稀土三元催化剂合成了二氧化碳、环氧丙烷和环氧环己烷的三元共聚物,并研究了单体配比对三元共聚物的组成、微结构、热力学性能和力学性能的影响。
以CO2 为基本原料与其他化合物在不同催化剂作用下,可缩聚合成多种共聚物,其中研究较多、已取得实质性进展、并具有应用价值和开发前景的共聚物是由CO2 与环氧化合物通过开键、开环、缩聚制得的CO2 共聚物脂肪族碳酸酯。
目前只有美、日、韩等国已建成脂肪
族碳酸酯共聚物生产线。
美国的Air Products and Chemicals 公司于20 世纪90 年代初通过购置日本专利,并申请了改进催化剂的美国专利后,已建成20 kt/ a 的生产能力,并已有商品出售,主要用做牛肉的保鲜材料;日本也形成了3~4 t/ a的生产能力;韩国正在筹建年产3 t/ a 的生产线。
由于产品成本昂贵,具有些性能有待改善,该产品目前仍未获推广使用。
导电高分子材料
导电高分子材料科学是近年来发展较快的领域,自1977 年第一个导电高分子聚乙炔(PAC) 发现以来,对导电聚合物的合成、结构、导电机理、性能、应用等方面有许多新认识,现已发展成为一门相对独立的学科。
从导电机理的角度看,导电高分子大致可分为2 大类:一类是复合型导电高分子材料,它是指在普通的聚合物中加入各种导电性填料而制成的,这些导电性填料可以是银、镍、铝等金属的微细粉末、导电性碳黑、石墨及各种导电金属盐等,此类导电高分子材料在国内外已得以广泛的应用,如抗静电、电磁波屏蔽、微波吸收、电子元件中的电极等。
还有一类是结构型导电高分子材料,即依靠高分子本身产生的导电载流子导电,这类导电高分子材料一般经“掺杂”(P 型掺杂或N 型掺杂) 后具有高的导电性能(电导率增加几个数量级) ,多为共轭型高聚物。
目前研究较多的导电高分子有聚乙炔( PAC) 、聚苯胺(PAN) 、聚吡咯(PPY) 、聚噻吩(PTP) 、聚对苯撑(PPP) 、聚苯基乙炔等。
聚乙炔(PAC)是最早发现具有金属电导性的高分子材料,曾出现。