高一数学必修三条件概率知识点总结
高中数学必修三知识点

高中数学必修三知识点引言高中数学必修三通常包括概率统计、数列、算法、复数等重要数学领域,这些知识点对于培养学生的逻辑思维和解决问题的能力至关重要。
一、概率与统计1.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
1.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
1.3 条件概率与独立事件定义:条件概率的概念、独立事件的判断。
1.4 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
1.5 统计图类型:条形图、直方图、饼图的绘制与解读。
二、数列2.1 等差数列公式:等差数列的通项公式、求和公式。
2.2 等比数列公式:等比数列的通项公式、求和公式。
2.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
2.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
三、算法3.1 算法的概念定义:算法的定义、特征。
3.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
3.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
四、复数4.1 复数的概念定义:复数的定义、实部与虚部。
4.2 复数的运算规则:复数的四则运算、共轭复数、复数的模。
4.3 复数的几何意义解释:复数与复平面的关系、复数的代数表示与几何意义。
4.4 复数的应用案例:复数在电气工程、流体力学等领域的应用。
五、解析几何5.1 坐标系介绍:直角坐标系、极坐标系的基本概念。
5.2 直线的方程形式:直线的点斜式、斜截式、一般式。
5.3 圆的方程形式:圆的标准方程、一般方程。
5.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
六、逻辑推理6.1 逻辑与推理概念:逻辑推理的定义、演绎推理与归纳推理。
6.2 逻辑语句分析:逻辑语句的真假判断、逻辑运算。
6.3 推理方法总结:直接证明、间接证明、反证法的应用。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
高一数学必修三概率复习总结精品PPT课件

例3.甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者 等一个小时后即离去设二人在 这段时间内的各时刻到达是等 可能的,且二人互不影响。求 二人能会面的概率。
解: 以 X , Y 分别表示甲乙二人到
达的时刻,于是 0X5,0Y5.
即 点 M 落在图中
的阴影部分。所有的 点构成一个正方形, 即有无穷多个结果。 由于每人在任一时刻 到达都是等可能的, 所以落在正方形内各 点是等可能的。
(3) 当事件A、B对立时, P(A)1P(B)
(4 )P (A B )= P (A )+ P (B )-P (A B )
古典概型
1)两个特征:
(1)试验中所有可能出现的基本事件只有 有限个;(有限性)
(2)每个基本事件出现的可能性相等。 (等可能性)
2)古典概型计算任何事件的概率 计算公式为:
15 5
(2)记“取出的鞋不成对”为D , P(D)= 1 - 3 = 4 15 5
例2、函数 f(x)=x2-x-2,x?[5,5] ,几那何概么型任主取要一有体点积x0型, 、使 面f积(x型0)、£长0 的度概型 率等,(解题关键是):找到本题中要
解:用区画到域出A是的函哪几数种何的几度图何量象度占,量的由,几图然何象后度得再量,考当的虑任比子取一
一九八四年,我终于考上长沙一所理工学院,当我把这一消息告诉母亲时,我不知母亲那一刻在想什么,我相信给她的那份震撼绝不亚于惊涛骇浪。她说的第一句话就是要去菩萨面前谢恩,要告慰我亲的在天之灵:“九满上大学了!” 因为我不停的升学,这个小心呵护我的母亲,不得不眼睁睁地看着我离开她,而且越来越远,越来越远……我十五岁以后,回家的时间仅仅是节假日或寒暑假,所谓想家,其实就是渴望母亲给我筹集的学费,回家吃顿饱饭……所以,在我的心中,故乡在慢慢地缩小,而母亲的身影却在不断放大! 大学毕业后,当我告诉母亲:我被分配到广州工作。母亲的神情是复杂的,既有欣慰也有失落,传统的“父母在,不远行”的思想,让她觉得儿子不应离开她,而母爱又使她觉得不应阻碍儿子的前程,母亲的失落只有我才感觉到,我知道,母亲是希望儿子留在故乡的。从我离开故乡到广州工作的时间里,母亲经常因挂念儿子而偷偷地落泪,特别是在她患病的时候,一有人提起我,母亲说话就会哽噫,这是我后来听嫂嫂说才知道的。虽然我离家离得断然绝然,但是,从我参加工作的那年开始,只要一休假,虽然要坐十几个小时人满为患的火车,虽然待在家里的时间只有两天三天,我也会带着疲惫和兴奋匆匆往家赶,因为那里有我的母亲。 参加工作后,母亲才终于结束农村对城市的支援,但这时的她,因为年龄的缘故,已经老态龙钟,走路也要借助拐杖。一九九五年,我把母亲从乡下接到广州,以为故人、故乡可以暂时从母亲的脑海里淡出,专事休养。其实不然,母亲就像一本故乡的活字典,昨天说二姐的身体,今天说五哥的夫妻关系。晚上看电视,明明是粤剧,她却说是湖南花鼓戏。当有晚辈从故乡来到广州,母亲便会急迫地向他打听村子里的情况,当听到一切安好时,脸上就会露出欣慰而放心的笑容;当听到村里有人生病或去世时,母亲的情绪就会非常低落,通常好几天都无法从担心和失落的心情里走出来。 母亲在广州还没住满一年,就匆匆地返回故乡了。每每当她得到我要回乡探亲的消息时,母亲的心情就会突然变得开朗起来,精神也比平日好了许多,整天兴奋地念叨:九满还有几天几天就要回来了。我一回到老人身边,母亲的一切就会以我为中心,看着忙前忙后的哥哥嫂嫂,看着满屋子乱串叫嚷着的侄男侄女,老人就会开心,就会快乐。当我在母亲身边坐下来,她总是拿着我的手,重复地对我说:九满,我没有什么要求,只是希望你多回来看看。所以我每次探亲,都会谢绝一切同学朋友聚会,就是想在母亲的身边多待上一点时间,以此减少母亲心里的挂念,多给自己一些尽孝的机会,来弥补距离的缺憾。 我离开故乡返回广州的那天,天还没亮,我总会听到一个不太清淅的声音,睁眼一看,母亲在为她临行的儿子准备我最喜欢的土产,看到母亲的样子,我真的好难过,作为她的儿子,我什么时候能做到像母亲这样关心她呢?临行时,母亲更是依依不舍,眼里饱含着泪花,一句话也说不出来,她很担心自己再也见不到她的小儿子了,我理解母亲的心情,在母亲面前,我祥装坚强,当我转身离开的那一霎那间,我的泪水便随意如流水!
新人教版高中数学选择性必修第三册7.1 条件概率与全概率公式

.
解析 (1)从这批产品中随便地取一件,则这件产品恰好是次品的概率是 81 = 27 .
1 200 400
(2)设A:取出的产品是甲厂生产的,B:取出的产品为次品,
则由已知可得P(A)= 500 ,P(AB)= 25 ,所以这件产品恰好是甲厂生产的次品的概
1 200
1 200
率是P(B|A)= P(AB) = 1 .
第七章 随机变量及其散布
1 |利用定义求条件概率 农历五月初五是我国的传统节日——端午节,这一天,馨馨的妈妈煮了9个粽子,其 中4个大枣馅、3个腊肉馅、2个豆沙馅,馨馨随机选取两个粽子.
第七章 随机变量及其散布
1.若已知馨馨取到的两个粽子的馅不同,则取到的两个粽子分别是大枣馅和豆沙馅
的概率是多少?
P(A) P(D)
+
P(B) P(D)
=
C620 12 180
+
C620 12 180
=
13 58
.
C620
C620
所以他获得优秀的概率是 13 .
58
第七章 随机变量及其散布
4 |乘法公式及其应用 乘法公式的特点及注意事项 1.知二求一:若P(A)>0,则已知P(A),P(B|A),P(AB)中的两个值就可以求得第三个值; 若P(B)>0,则已知P(B),P(A|B),P(AB)中的两个值就可以求得第三个值. 2.P(B)与P(B|A)的区分在于两者产生的条件不同,它们是两个不同的概念,在数值上 一般也不同.
多少?
提示:用C表示事件“取到的两个粽子为同一种馅”,D表示事件“取到的两个粽子
都为腊肉馅”,
则P(C)=
C24
C32 C92
高一数学必修三条件概率知识点归纳.doc

高一数学必修三条件概率知识点总结高一数学必修三条件概率知识点条件概率的定义:(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(BIA)来表示.(2)条件概率公式:称为事件A与B的交(或积).(3)条件概率的求法:①利用条件概率公式,分别求出P(A)和P(AB),得P(BIA)=②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(AB),得P(BIA)=P(BIA)的性质:(1)非负性:对任意的A ,;⑵规范性:P( IB)=1;(3)可列可加性:如果是两个互斥事件,则P(BIA)概率和P(AB)的区别与联系:(1)联系:事件A和B都发生了;(2)区别:a、P(BIA)中,事件A和B发生有时间差异,A 先B后^P(AB)中,事件A、B同时发生。
b、样本空间不同,在P(BIA)屮,样本空间为A,事件P(AB)中,样本空间仍为。
高一数学必修三条件概率基本性质知识点互斥事件:事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
如果Al, A2, , An中任何两个都不可能同时发生,那么就说事件Al, A2, An彼此互斥。
对立事件:两个事件中必有一个发生的互斥事件叫做对立事件,事件A 的对立事件记做注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。
事件A+B的意义及其计算公式:(1)事件A+B:如果事件A, B中有一个发生发生。
(2)如果事件A, B互斥时,P(A+B)=P(A)+P(B),如果事件Al, A2, An 彼此互斥时,那么P(Al+A2++An)=P(Al)+P(A2)+ +P(An)o(3)对立事件:P(A+)=P(A)+P()=1O概率的几个基本性质:(1)概率的取值范围:[0, 1].(2)必然事件的概率为1.(3)不可能事件的概率为0.(4)互斥事件的概率的加法公式:如果事件A, B互斥时,P(A+B)=P(A)+P(B),如果事件Al, A2,An 彼此互斥时,那么P(A1+A2+ +An)二P(A1)+P(A2)++P(An)o如果事件A, B对立事件,则P(A+B)=P(A)+P(B)=lo互斥事件与对立事件的区别和联系:互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。
高一数学必修三概率复习总结共23页

1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
高一数学必修三概率复习总结
6
、
露
凝
无
游
氛
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
高中数学知识点总结概率与条件概率

高中数学知识点总结概率与条件概率高中数学知识点总结——概率与条件概率概率是数学中一个重要的分支,它研究的是事件发生的可能性大小。
概率可以用来解决各种实际问题,而条件概率则是概率的一种特殊情况,它考虑了事件发生在某个条件下的可能性。
以下是对高中数学中概率与条件概率知识点的总结与概述。
一、概率的基本概念概率是描述事件发生可能性的数值,用介于0和1之间的实数表示。
0表示事件不可能发生,1表示事件一定发生。
基本概念包括:样本空间、随机事件、事件的概率、等概率事件等。
样本空间是指一个随机试验所有可能结果的集合。
例如,掷一枚硬币的样本空间为{正面,反面}。
随机事件是指样本空间的子集,即事件是样本空间的一部分。
例如,掷一枚硬币出现正面的事件。
事件的概率是指事件发生的可能性大小,用P(A)表示,其中A是一个事件。
例如,掷一枚硬币出现正面的概率为P(正面)。
等概率事件是指样本空间中所有的结果具有相同的可能性。
例如,掷一个均匀骰子,每个面的概率都是1/6,因此每个面是等概率事件。
二、概率的计算方法概率的计算方法分为古典概率和统计概率两种。
古典概率适用于等概率事件,计算公式为P(A) = 事件A的基本结果数/样本空间的基本结果数。
统计概率适用于不等概率事件,计算公式为P(A) = 事件A的频数/试验总数,其中频数是事件A在试验中出现的次数。
三、概率的性质概率具有以下性质:1. 非负性:概率的值始终大于等于0,即P(A) ≥ 0。
2. 正则性:样本空间的概率为1,即P(样本空间) = 1。
3. 可列可加性:对于两个互不相容的事件A和B,它们的联合概率等于它们的概率之和,即P(A∪B) = P(A) + P(B)。
4. 对立事件:事件A的对立事件为A的补集,两者的概率之和为1,即P(A) + P(A的对立事件) = 1。
四、条件概率条件概率是在给定某个条件下,事件发生的可能性大小。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中A和B是两个事件。
高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳概率统计是高中数学必修3中的一门重要课程,它研究的是随机事件的发生规律和变化趋势。
概率统计知识点在高中数学习中占据着重要的位置,对于培养学生的逻辑思维、数学建模和解决实际问题的能力具有重要意义。
下面将对高中数学必修3概率统计知识点进行全面归纳。
1.基础概念概率统计的基础概念包括样本空间、随机事件、事件的概率等。
样本空间是指所有可能的结果组成的集合,用S表示;随机事件是样本空间的子集,用A、B、C等表示;事件的概率是指一个随机事件发生的可能性大小,用P(A)表示。
2.排列组合排列组合是概率统计中常用的工具,主要用于计算事件的可能性。
在排列中,元素的顺序是重要的,而在组合中,元素的顺序是不重要的。
排列可以表示为n!,组合可以表示为C(n,m)。
3.基本概率公式基本概率公式是指计算事件的概率的公式。
对于一个随机事件A,它的概率可以用公式P(A) = n(A) / n(S)来表示,其中n(A)表示事件A 的样本点数量,n(S)表示样本空间的样本点数量。
4.互斥事件与对立事件互斥事件是指两个事件不可能同时发生的事件,它们的概率相加等于两个事件发生的总概率。
对立事件是指两个事件互为对方的补集,它们的概率之和等于1。
5.条件概率条件概率是指在已知某个条件下,事件发生的概率。
条件概率可以用公式P(A|B) = P(A∩B) / P(B)来表示,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。
6.全概率公式和贝叶斯公式全概率公式和贝叶斯公式是处理复杂事件概率的重要方法。
全概率公式可以用于计算一个事件在不同条件下发生的概率,贝叶斯公式可以用于根据已知条件计算相应的概率。
7.随机变量与概率分布随机变量是指与随机事件相对应的数值,概率分布是指随机变量各取值的概率情况。
常见的概率分布有离散型概率分布和连续型概率分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修三条件概率知识点总结
条件概率的定义:
(1)条件概率的定义:对于任何两个事件A和B,在已知事件A
发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来
表示.
(2)条件概率公式:
称为事件A与B的交(或积).
(3)条件概率的求法:
①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=
②借助古典概型概率公式,先求出事件A包含的基本事件数
n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即
n(A∩B),得P(B|A)=
P(B|A)的性质:
(1)非负性:对任意的A∈Ω,
;(2)规范性:P(Ω|B)=1;
(3)可列可加性:如果是两个互斥事件,则
P(B|A)概率和P(AB)的区别与联系:
(1)联系:事件A和B都发生了;
(2)区别:a、P(B|A)中,事件A和B发生有时间差异,A先B后;在P(AB)中,事件A、B同时发生。
b、样本空间不同,在P(B|A)中,样本空间为A,事件P(AB)中,样本空间仍为Ω。
互斥事件:
事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。
对立事件:
两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做
注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。
事件A+B的意义及其计算公式:
(1)事件A+B:如果事件A,B中有一个发生发生。
(2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
(3)对立事件:P(A+)=P(A)+P()=1。
概率的几个基本性质:
(1)概率的取值范围:[0,1].
(2)必然事件的概率为1.
(3)不可能事件的概率为0.
(4)互斥事件的概率的加法公式:
如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,
A2,…An彼此互斥时,那么
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
如果事件A,B对立事件,则P(A+B)=P(A)+P(B)=1。
互斥事件与对立事件的区别和联系:
互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。
因此,对
立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即
“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件。
随机事件的定义:
在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:
必然会发生的事件叫做必然事件;
不可能事件:
肯定不会发生的事件叫做不可能事件;
概率的定义:
在大量进行重复试验时,事件A发生的频率
总是接近于某个常数,在它附近摆动。
这时就把这个常数叫做事件A的概率,记作P(A)。
m,n的意义:事件A在n次试验中发生了m次。
因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能
发生的事件的概率0。
随机事件概率的定义:
对于给定的随机事件A,随着试验次数的增加,事件A发生的频
率
总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
频率的稳定性:
即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;
“频率”和“概率”这两个概念的区别是:
频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
看了<高一数学必修三条件概率知识点总结>的人还看了:。