概率论与数理统计期末复习资料(学生)

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计期末复习

概率论与数理统计期末复习

概率统计期末知识点复习一、概率计算⒈事件的关系和运算⑴ 子事件(事件的包含)B A ⊂:若A 发生,则B 必然发生; ⑵ 相等事件A B =:B A ⊂且A B ⊃; ⑶ 并事件B A :“,A B 中至少发生一个”; ⑷ 交(积)事件AB :“,A B 都发生”; ⑸ 互不相容(互斥)事件:AB =∅; ⑹ 对立事件:若AB =Ω,且AB =∅,称B 为A 的对立事件,记为A B =.⑺ 差事件B A -:“A 发生,而B 不发生”. ⑻ 事件的运算律 ①交换律:A B B A =,AB BA =;②结合律:()()A B C A B C =,()()AB C A BC =; ③分配律:()A B C ACBC =,()()()AB C A C B C =;④摩根律:AB A B =,AB A B =.⒉概率计算的基本公式⑴非负性:设A 为任一随机事件,则0()1P A ≤≤. ⑵规范性:()1P Ω=,()0P ∅=. ⑶并事件概率计算公式:()()()()P AB P A P B P AB =+-;()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+.如果事件12,n A A A ,,两两互不相容,则1212()()()()n n P A A A P A P A P A =+++.⑷差事件概率计算公式:()()()()()P A B P AB P A AB P A P AB -==-=-; 若B A ⊂,则①()()()P A B P A P B -=-; ②()()P B P A ≤. ⑸对立事件概率计算公式:()1()P A P A =-.1A 2A 3A nA 21(|)P A A 1()P A 312(|)P A A A11(|)nnP A AA -B2A ∙1A nA 1()P A 2()P A ()n P A 1()P B A 2()P B A ()n P B A ⒊条件概率公式、乘法公式 ⑴条件概率:()P B A .①公式法:()(),()0()P AB P B A P A P A =>;②代入法:改变样本空间直接计算.⑵乘法公式:()0P A >,有()()()P AB P A P B A =. 设12()0n P A A A >,2n ≥,则12()n P A A A 12131211()(|)(|)(|)-=n n P A P A A P A A A P A A A .适用范围:链式结构⒋全概公式、逆概公式 ⑴全概率公式:1,,n A A 为一完备事件组,则1()()()ni i i P B P A P B A ==∑.适用范围:并列结构⑵贝叶斯公式(逆概公式):1()()()()()i i i nkkk P A P B A P A B P A P B A ==∑.⒌古典概型、几何概型、贝努里概型 ⑴古典概型:()A P A =事件所含样本点的个数所有样本点的个数.掌握简单的排列组合.⑵几何概型:()A P A =Ω的几何测度的几何测度,其中几何测度分别为长度或面积.对比均匀分布.⑶贝努里概型:在n 重贝努里试验中事件A 恰好发生k 次的概率为(1)kkn kn C p p --,其中0,1,2,,k n =,()p P A =,01p <<.对比二项分布.⒍事件的独立性⑴事件A 和B 相互独立的直观理解为事件A 和B 各自发生与否没有任何关系.并会根据实际问题判断事件A 和B 的独立性.⑵事件,A B 相互独立()()()P AB P A P B ⇔=(|)()(()0)P B A P B P A ⇔=>.⑶,,A B C 两两独立⇔()()(),()()(),()()().P AB P A P B P AC P A P C P BC P B P C =⎧⎪=⎨⎪=⎩⑷,,A B C 相互独立⇔,,()()()().A B C P ABC P A P B P C ⎧⎨=⎩两两独立,⑸独立性的有关结论:①设()0P B >,则事件A 和B 相互独立的充要条件为()()P A B P A =.②设,A B 为两个随机事件,如果A 和B 相互独立,则A 和B 相互独立;A 和B 相互独立; A 和B 也相互独立.③设,A B 为两个随机事件,且0()1P B <<,则A 和B 相互独立的充要条件为()()P A B P A B =.④如果随机事件12,,,n A A A 相互独立,则12,,,n A A A 的任一部分事件(至少两个事件)也相互独立.⑤如果随机事件12,,,n A A A 相互独立,则分别将i A 不变或换成i A 后所得事件仍相互独立.例如12,,,n A A A ,12,,,n A A A 等也分别相互独立.⑥如果随机事件1212,,,,,,,m n A A A B B B 相互独立,则由12,,,m A A A 组成的随机事件与由12,,,n B B B 组成的随机事件相互独立.⒎切比雪夫不等式(估计概率) 设μ=EX,2σ=DX ,则对任意的0ε>,有22{}1P X σμεε-<≥- 或22{}P X σμεε-≥≤.⒏利用分布计算概率⑴利用分布函数计算概率:①{}()()P a X b F b F a <≤=-,000{}()(0)P X x F x F x ==--等等. ②1212{,}<≤<≤P x X x y Y y 22211211(,)(,)(,)(,)F x y F x y F x y F x y =--+. ⑵利用分布律计算概率:①{}P X L ∈=i ix Lp ∈∑. ②(,){(,)}i j ij x y DP X Y D p ∈∈=∑.⑶利用密度函数计算概率:①{}{}P a X b P a X b <≤=≤≤{}P a X b =≤<{}P a X b =<<()b af x dx =⎰.②{(,)}(,)DP X Y D f x y dxdy ∈=⎰⎰.③00{}()X Y LP X L Y y f x y dx ∈==⎰;00{}()Y X LP Y L X x f y x dy ∈==⎰.二、随机变量的分布⒈分布函数及性质⑴一维随机变量的分布函数:(){},F x P X x x =≤-∞<<+∞. ⑵一维随机变量分布函数的性质:①0()1F x ≤≤; ②()0F -∞=,()1F +∞=; ③()F x 处处单调不减; ④()F x 处处右连续. ⑶二维随机变量的分布函数:(,){,}=≤≤F x y P X x Y y ,2(,)x y R ∈. ⑷二维随机变量分布函数的性质: ①0(,)1F x y ≤≤,其中2(,)x y R ∈;②(,)1,(,)(,)(,)0F F x F y F +∞+∞=-∞=-∞=-∞-∞=; ③(,)F x y 分别为关于变量x 和y 单调不减的函数; ④(,)F x y 分别关于变量x 和y 处处右连续. ⒉分布律及性质⑴一维离散型随机变量的分布律:{}i i P X x p ==,1,2,i =;或1212~i ix x x X p p p ⎛⎫⎪⎝⎭. ⑵一维离散型随机变量分布律的性质:①0i p ≥,1,2,i =; ②1iip=∑.⑶二维离散型随机变量的分布律:{,}i j ij P X x Y y p ===,1,2,,1,2,i j ==;或2j y121j p⑷二维离散型随机变量分布律的性质: ①0ij p ≥,1,2,,1,2,i j ==; ②1ijijp=∑∑.⒊密度函数及性质⑴一维连续型随机变量的密度()f x :()f x 满足()()x F x f t dt -∞=⎰,x -∞<<+∞.⑵一维连续型随机变量密度函数的性质: ①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.⑶二维连续型随机变量的密度(,)f x y :(,)f x y 满足(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰,2(,)x y R ∈.⑷二维连续型随机变量密度函数的性质: ①(,)0≥f x y ,2(,)x y R ∈; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰.⒋常见分布及其数字特征⑴01-分布~(1,)X B p :1{}(1)k k P X k p p -==-,0,1;,k EX p DX pq ===. ⑵二项分布(,)B n p :{}(1),0,1,2,,,01kkn kn P X k C p p k n p -==-=<<;,EX np DX npq ==.应用背景..:记X 为n 重贝努利试验中A 发生的次数..,则(,)X B n p .⑶泊松分布()P λ:{},0,0,1,2,!kP X k e k k λλλ-==>=,EX DX λ==.⑷均匀分布~[,]X U a b :1,,()0,a x b f x b a ⎧<<⎪=-⎨⎪⎩其它.()2,212b a a b EX DX -+==. ⑸指数分布()E λ:,0,()00,0.x e x f x x λλλ-⎧>=>⎨≤⎩,211,EX DX λλ==.⑹正态分布X ~),(2σμN:22()2()x f x μσ--=,x -∞<<+∞;2,EX DX μσ==.5.常见分布的性质⑴(了解)设随机变量12,,,n X X X 相互独立,且~(,),1,2,,i i X B n p i n =,则11~(,)nnii i i XB n p ==∑∑.特别地,设随机变量12,,,n X X X 相互独立,且~(1,),1,2,,i X B p i n =,则1~(,)nii XB n p =∑.反之,服从二项分布(,)B n p 的随机变量X 可以分解为n 个相互独立,且均服从(1,)B p 的随机变量12,,n X X X 之和.⑵(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X P i n λ=,则11~()nnii i i XP λ==∑∑.⑶(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X E i n λ=,则121min{,,,}~()nn i i X X X E λ=∑.⑷(了解)设随机变量12~[,]X U θθ,则12~[,](0)aX b U a b a b a θθ+++>;21~[,](0)aX b U a b a b a θθ+++<.⑸(了解)设二维随机变量(,)X Y 服从均匀分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从均匀分布.⑹设随机变量2~(,)X N μσ,则22~(,)Y aX b N a b a μσ=++,其中0a ≠.特别地,~(0,1)X N μσ-.⑺设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i i i X N i n μσ=,12,,,n a a a 是不全为零的常数,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.特别地,设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i X N i n μσ=,则211~(,)n i i X N n nσμ=∑. ⑻设二维随机变量(,)X Y 服从二维正态分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从二维正态分布.⑼设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=.⒌边缘分布 ⑴离散型{}i ij jP X x p ==∑,1,2,i =;{}j ijiP Y y p==∑,1,2,j =.关于X 的边缘分布律可对表中的i j p 进行纵向求和即得;关于Y 的边缘分布律可对表中的i j p 进行横向求和即得.⑵连续型()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞;()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.()X f x 可通过在给定点x 处,),(y x f 的纵向积分(对y 从-∞到+∞积分)求得,()Y f y 可通过在给定点y 处,),(y x f 的横向积分(对x 从-∞到+∞积分)求得.⒍条件分布 ⑴离散型1212()~i jj ij j jjjx x x p p p X Y y p pp⎛⎫⎪= ⎪ ⎪⎝⎭;1212()~j ij i i i iiiy y y p Y X x p p p p p ⎛⎫⎪= ⎪ ⎪⎝⎭. ⑵连续型(,)()()X Y Y f x y f x y f y =,x -∞<<+∞;(,)()()Y X X f x y f y x f x =,y -∞<<+∞.⒎随机变量的独立性⑴随机变量X 和Y 相互独立的直观意义是指X 和Y 的各自取值情况没有任何关系. ⑵利用分布函数:(,)()()X Y F x y F x F y =. ⑶利用分布律:ij i j p p p =,1,2,,1,2,i j ==.⑷利用密度函数:(,)()()X Y f x y f x f y =. ⑸随机变量独立性的有关结论①设随机变量X 与Y 相互独立,则对任意实数集合12,L L ,有1212{,}{}{}P X L Y L P X L P Y L ∈∈=∈∈.②如果随机变量12(,,,)m X X X 和12(,,,)n Y Y Y 相互独立,,g h 分别为m 元连续函数和n 元连续函数,则随机变量12(,,,)m g X X X 与12(,,,)n h Y Y Y 也相互独立.特别地,设随机变量X 与Y 相互独立,(),()g x h y 是连续函数,则随机变量()g X 与()h Y 也相互独立.⒏随机变量函数的分布⑴离散型随机变量函数的分布可直接列表求得. ⑵连续型随机变量函数分布采用分布函数法①()Y g X =:先求()(){}{()}()Y X g x yF y P Y y P g X y f x dx ≤=≤=≤=⎰,②(,)Z g X Y =:先求(,)(){}{(,)}(,)Z g x y zF z P Z z P g X Y z f x y dxdy ≤=≤=≤=⎰⎰,然后对y 或z 进行讨论然后求导数.⑶熟记1max i i nM X ≤≤=和1min i i nN X ≤≤=的分布函数和密度函数公式.①若随机变量12,,,n X X X 相互独立,i X 的密度函数为()i f x ,分布函数为()i F x ,1,2,,i n =,则M 和N 的分布函数(),()M N F x F x 和密度函数(),()M N f x f x 分别为12(){}()()()M n F x P M x F x F x F x =≤=,()()M Mf x F x '=; ()()()12(){}1[1][1][1]N n F x P N x F x F x F x =≤=----,()()N Nf x F x '=. ②当12,,,n X X X 独立同分布时,()()i f x f x =,()()i F x F x =,1,2,,i n =,则 ()[()]n M F x F x =,1()[()]()n M f x n F x f x -=;()1[1()]n N F x F x =--,1()[1()]()n N f x n F x f x -=-.⒐数字特征计算⑴数学期望(均值):①一维随机变量函数的数学期望:1(),(())()().i i i g x p E g X g x f x dx ∞=+∞-∞⎧⎪=⎨⎪⎩∑⎰注: 2,()EX E X 为其特例.②二维随机变量函数的数学期望:11(,),((,))(,)(,).i j i j i j g x y p E g X Y g x y f x y dxdy ∞∞==+∞+∞-∞-∞⎧⎪⎪=⎨⎪⎪⎩∑∑⎰⎰注: 22,(),,(),()EX E X EY E Y E XY 为其特例.⑵方差:222()()()DX E X EX E X EX =-=-.⑶协方差:ov(,)[()()]()C X Y E X EX Y EY E XY EXEY =--=-.⑷相关系数:XY ρ=.⑸数字特征的性质(见教材). ⑹不相关:①若0XY ρ=,称X 与Y 不相关;X 与Y 不相关的直观意义指X 与Y 没有线性关系. ②X 与Y 不相关ov(,)0C X Y ⇔=()D X Y DX DY ⇔±=+()E XY EXEY ⇔=.③设221212(,)~(,,,,)X Y N μμσσρ,则X 与Y 的相关系数XY ρρ=.④设221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=⇔X 与Y 不相关.⑤如果X 与Y 相互独立,且X 与Y 的相关系数XY ρ存在,则X 与Y 不相关.反之未必.⒑中心极限定理的应用 ⑴设12,,n X X X 独立同分布,且2,0i i EX DX μσ==≠(1,2,)i =,则当n 充分大(30n ≥)时,有21~(,)nii XN n n μσ=∑近似.⑵设~(,)X B n p ,则当n 充分大(30n ≥)时,~(,(1))X N np np p -近似.三、计算过程中需要分段讨论的几种类型与方法⒈已知X 的分布律,求X 的分布函数()F x .三个特征: ⑴分1n +段;⑵每段上,将概率逐次累加(初始值为0,终值为1); ⑶每个区间为左闭右开. ⒉已知X 的密度函数()f x (分段函数),求X 的分布函数()F x . ⑴分1n +段;⑵每段上,将()f x 在(,]x -∞上积分;⑶由于()F x 为连续函数,故每个区间为开闭均可.⒊已知(,)X Y 的密度函数(,)f x y (分段函数),求X 的分布函数(,)F x y . ⑴结合(,)F x y 的原理图和(,)f x y 特征图,将全平面分若干块; ⑵每块上,将(,)f x y 在区域(,](,]x y D -∞⨯-∞上积分.⒋连续型随机变量函数的分布⑴一维连续型随机变量函数()Y g X =的分布函数()Y F y :①先确定()Y g X =取值范围;例如m Y M ≤≤,其中,m M 为实数,则采用三段式讨论.②当y m <时,()0Y F y =.③当m y M <≤时,利用定积分()()()Y X g x yF y f x dx ≤=⎰计算.④当y M ≥时,()1Y F y =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Y 为连续型随机变量,则Y 的密度函数()()Y Y f y F y '=. ⑵二维连续型随机变量函数(,)Z g X Y =的分布函数()Z F z :①确定(,)Z g X Y =的取值范围;例如m Z M ≤≤,其中,m M 为实数,则采用三段式讨论.②当z m <时,()0Z F z =.③当m z M <≤时,利用二重积分(,)()(,)Z g x y zF z f x y dxdy ≤=⎰⎰计算.④当z M ≥时,()1Z F z =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Z 为连续型随机变量,则Z 的密度函数()()Z Z f z F z '=. ⒌二维连续型随机变量(,)X Y 的边缘密度 ⑴()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞.①作出),(y x f 的特征图.②用垂直直线x m =和x M =将D 夹住. ③当x m <或x M >时,()0X f x =. ④当m x M ≤≤时,()(,)X f x f x y dy +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论. ⑵()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.①作出),(y x f 的特征图.②用水平直线y m =和y M =将D 夹住. ③当y m <或y M >时,()0Y f y =. ④当m y M ≤≤时,()(,)Y f y f x y dx +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论.四、数理统计的基础知识⒈总体X ,样本12(,,,)n X X X 和观察值的概念.关注简单随机样本的独立性和代表性.⒉常用统计量:样本均值∑==n i i X n X 11,样本方差2211()1n i i S X X n ==--∑, 顺序统计量*11min i i nX X ≤≤=,*1max n i i nX X ≤≤=.⒊常见分布⑴正态分布:见概率论中的内容. ⑵2χ分布:设12(,,,)n X X X 为来自总体~(0,1)X N 的一个样本,就称统计量22222121ni ni X X X X ===+++∑χ服从自由度为n 的2χ分布,记作)(~22n χχ. ①设)(~22n χχ,则2()E n =χ,2()2D n =χ. ②设~(0,1)X N ,则22~(1)X χ.③设22~()i i n χχ,1,2i =,且2212,χχ相互独立,则2221212~()n n ++χχχ.⑶ t 分布:设随机变量~(0,1)X N ,2~()Y n χ,且X 与Y 相互独立,就称T =服从自由度为n 的t 分布,记作)(~n t T .⑷F 分布:设随机变量)(~12n X χ,)(~22n Y χ,且X 与Y 相互独立,就称21n Y n X F =服从第一自由度为1n ,第二自由度为2n 的F 分布,记作),(~21n n F F . ①如果~()T t n ,则2~(1,)T F n . ②如果12~(,)F F n n ,则211~(,)F n n F. ⒋上侧分位点p x :{},{}1p p P X x p P X x p ≥≥≤≥-. 如U α,2()t n α,21()n αχ-,2121(,)Fn n α-等等(下标为该点处右侧的面积). 注意:1U U αα-=-,1()()t n t n αα-=-,112211(,)(,)F n n F n n αα-=.⒌单正态总体2~(,)X N μσ中X 和2S 的分布(其中12(,,,)n X X X 为样本): ⑴2~(,)X N nσμ,或nX /σμ-~)1,0(N ;⑵nS X /μ-~)1(-n t ;⑶2212()()nii Xn μχσ=-∑;⑷222122()(1)(1)nii XX n Sn χσσ=--=-∑,且X 与2S 相互独立.五、参数估计⒈点估计 ⑴矩估计:①原理:用样本矩估计理论矩.②方法:建立方程(组)11()n rr i i X E X n ==∑,1,2,r =,解出θ,得θ的矩估计θ.⑵最大似然估计:①原理:概率最大的事件最有可能出现. ②方法:构造似然函数)(L θ=12)(,,,;n L x x x θ(似然函数体现了样本12(,,,)n X X X 出现的概率大小),求似然函数L 的最大值点,即为θ的极大使然估计θ. ③步骤:第一步:写出似然函数)(L θ.如果连续型总体X 的密度函数为(;)f x θ,则1()(;)n i i L f x θθ==∏.如果离散型总体X 的分布律为(;)p x θ,则1()(;)ni i L p x θθ==∏. 第二步:取对数ln )(L θ,并令ln 0)(d d L θθ=,或ln 0)(i L θθ∂=∂,1,2,,i k =,建立方程(组).如果从中解得惟一驻点θˆ,则θˆ即为θ的最大似然估计; 第三步:如果上述方程无解,则通过单调性的讨论,在某边界点处,求出θ的最大似然估计量θˆ. ⒉估计量的评价标准⑴无偏性:如果E θθ=,就称θ为θ的无偏估计.主要结论有:①如果总体X 的数学期望EX 存在,则X 是μ的无偏估计,即E X μ=. ②如果总体X 的方差DX 存在,则2S 是2σ的无偏估计,即22()E S σ=.③设估计量12ˆˆˆ,,m θθθ均为θ的无偏估计,12,,,m c c c 为常数,且11mi i c ==∑,则1ˆmi i i c θ=∑仍为θ的无偏估计.注意:即使ˆθ为θ的无偏估计,而ˆ()g θ未必为...()g θ的无偏估计. ⑵(较)有效性:设21ˆ,ˆθθ均为θ的无偏估计,如果12ˆˆD D θθ<,就称1ˆθ比2ˆθ有效.⑶一致性(相合性):设ˆθ为θ的估计量,如果对任意的0ε>,均有ˆl i m {}1n P θθε→∞-<=,就称θˆ为θ的一致估计量或相合估计量. ⒊单正态总体2(,)N μσ中2,σμ的区间估计⑴2σ已知,μ的置信度1α-的置信区间为22X u X u αα⎛⎫-+ ⎝. ⑵2σ未知,求μ的置信度为1α-的置信区间为2(X t n α⎛⎫±- ⎝. ⑶2σ的置信度为1α-的置信区间为2222122(1)(1),(1)(1)n Sn S n n ααχχ-⎛⎫-- ⎪ ⎪-- ⎪⎝⎭. 六、假设检验⒈假设检验的有关概念了解假设检验的背景,假设的提法,假设检验中的反证法思想,假设检验的基本原理,显著性检验,双侧检验和单侧检验等相关内容.⒉假设检验的两类错误⒊假设检验的四个步骤⑴根据给定的问题,建立假设检验问题01(,)H H . ⑵根据检验问题01(,)H H 及条件,选择检验统计量12(,,,)n g X X X .当0H 为成立时,确定该统计量12(,,,)n g X X X 的分布.⑶根据显著性水平α,确定临界值和原假设0H 的拒绝域W . ⑷通过样本值12(,,,)n x x x ,计算统计量12(,,,)n g X X X 的值12(,,,)n g x x x .若12(,,,)n g x x x W ∈,则拒绝0H ,否则接受0H .⒋单正态总体中均值和方差的假设检验。

概率论与数理统计期末复习课件

概率论与数理统计期末复习课件

置信水平
用于确定样本统计量的不 确定性范围。
置信区间
根据置信水平和抽样分布, 估计未知参数的可能值范 围。
点估计与最优性
点估计
用单一的数值估计未知参数的值。
无偏估计
样本统计量的期望值等于真实参数 值。
最小方差估计
选择一个点估计,使得预测误差的 方差最小。
假设检验与p值
假设检验
根据样本数据对未知参数 提出假设,并进行检验。
详细描述
一元线性回归是一种最简单的回归分析方 法,用于研究一个因变量和一个自变量之 间的线性关系。
一元线性回归模型通常表示为`Y = β0 + β1*X + ε`,其中Y是因变量,X是自变量, ε是误差项。β0和β1是需要估计的参数。
重要概念
适用范围
一元线性回归模型假设因变量Y和自变量X 之间存在线性关系,即Y的变化可以由X的 变化来解释。
02
置信区间
根据自助法计算的统计量的置信区间,可以用来估计总体参数的区间范
围。
03
应用
在社会科学和医学研究中,自助法和置信区间被广泛应用于估计样本参
数的可靠性和精度。例如,在估计人口平均年龄的置信区间时,自助法
可以用来确定样本大小和置信水平之间的关系。
CHAPTER 06
实验设计初步
完全随机设计
描述 马尔科夫链通常用状态转移图来表示,其中每个状态通过 箭头连接到其他状态,箭头上标记了从一个状态转移到另 一个状态的概率。
实例 例如天气预报、股票价格等都可以被视为马尔科夫链。
平稳过程与遍历性
定义
平稳过程是一类特殊的随机过程,它具有“时间齐次性”和“空 间齐次性”的性质。
描述

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
率。分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
(2)连 续型随 机变量 的分布 密度

概率论与数理统计期末考试复习资料汇编

概率论与数理统计期末考试复习资料汇编


P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) ……P( An | A1A2 … An 1) 。
①两个事件的独立性
(14) 设事件 A 、B 满足P(AB) P(A)P(B) ,则称事件 A 、B 是相互独立 独立性 的。
若事件 A 、B 相互独立,且P(A) 0 ,则有
学习-----好资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
(6)事 件的关 系与运 算
B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B, 也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发
德摩根率:
Ai



Ai
AB AB,AB AB
i1
i 1
设 为样本空间,A 为事件,对每一个事件 A 都有一个实数 P(A),

概率论与数理统计复习资料要点总结--学生

概率论与数理统计复习资料要点总结--学生

概率论与数理统计复习资料要点总结--学⽣《概率论与数理统计》复习资料⼀、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之⽤。

考试内容以教学⼤纲和实施计划为准;注明“了解”的内容⼀般不考。

1、会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应⽤这些性质进⾏概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运⽤全概率公式与贝叶斯公式解题;掌握事件独⽴性的概念及性质。

5、理解随机变量的概念,掌握离散性随机变量分布率的性质及求法,掌握(0—1)分布、⼆项分布、泊松分布的分布律。

6、理解分布函数的概念及性质,理解并掌握连续型随机变量的概率密度及性质。

7、掌握指数分布(参数λ)、均匀分布、正态分布8、会求特殊的⼀维随机变量函数分布的分布律或概率密度。

9、会求分布中的待定参数。

会求区间的概率.10、会求边缘分布律、边缘密度函数,会判别随机变量的独⽴性。

11、掌握⼆维连续型随机变量未知参数的计算,落在区域概率的计算。

12、理解⼆维随机变量的概念,理解⼆维随机变量的联合分布函数及其性质,掌握⼆维离散型随机变量的联合分布律及其性质,掌握⼆维连续型随机变量的联合概率密度及其性质,并会⽤它们计算有关事件的概率。

13、会求⼆维离散型随机变量函数的分布率.14、掌握数学期望和⽅差的定义及性质,会熟练地求随机变量及其函数的数学期望和⽅差。

会熟练地默写出⼏种重要随机变量的数学期望及⽅差。

15、较熟练地求协⽅差与相关系数.16、会⽤独⽴正态随机变量线性组合性质解题。

17、理解总体、样本、简单随机样本、统计量及抽样分布概念,样本均值与样本⽅差及样本矩概念,掌握χ2分布(及性质)、t 分布、F 分布及其分位点概念。

18、理解正态总体样本均值与样本⽅差的抽样分布定理;会⽤矩估计⽅法来估计未知参数。

19、掌握极⼤似然估计法,⽆偏性与有效性的判断⽅法。

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

概率论与数理统计期末复习

概率论与数理统计期末复习

概率论与数理统计总复习本课件仅供用作《概率论与与数理统计》课程复习1一、随机事件与概率主要问题: 事件间的关系与运算, 条件概率,乘法公式, 全概率公式, 贝叶斯公式,事件的独立性, Bernoulli概型.常见考点: 全概率公式和Bayes 公式; 加法公式与乘法公式.2同则结合异则分配34由因说果执果溯因5•若P(AB)=0,则P(ABC)=0?P ABC=P C AB P(AB)•Bernoulli概型(n重Bernoulli试验)随机试验只有两个可能结果A,A,记P A=p,P A=q,把该随机试验独立地重复n次记B 为“在n重Bernoulli试验中事件A恰好发生k次”,则P B k=C n k p k q1 k,0≤k≤n6P AB=P A −B =P(A −AB)•对立和互斥之间的关系:除A⋂B =∅外,互斥还要求A⋃A =ΩΩABA ΩA BA −BA −B78910二、随机变量及其概率分布求密度函数f(x); 求分布函数F xf(x),F(x) 的性质:F x =P X ≤x F x = f(t)xdtf x dx=1P x 1<X ≤x 2=F x 2−F x 1= f x dxx 2x 1做完一定要验算:F′(x)=f(x)!11121314已知连续型随机变量X的概率密度f x 求随机变量Y=g(X) 的概率密度f (y)• 分布函数微分法*• 积分转化法f xϕxdx=f(ϕ(x))ϕ′(x)更一般地1516积分转化法(容易推广到多维随机变量情形)设随机变量X 的概率密度为fx ,g(x)是连续或单调函数,Y =g(X)。

如果对任何有界连续函数ℎ(x),成立ℎg x f x dx= ℎ(y)p y dy其中,−∞≤α<β≤∞,则Y =g(X)的概率密度为f y =p y ,α<y <β0, 其他换元、交换积分次序等变换17181920六种重要分布(三种离散型+三种连续型)1、如果随机试验只有两个结果:A 与A ,则称该试验为Bernoulli 试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计期末复习资料一 填空1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______.3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______.4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______.5.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______.6.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为则P {X <1,Y 2≤}=______.8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______.9.设随机变量X 服从二项分布)31,3(B ,则E (X 2)= ______.10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=ni iX1的极限分布是_________________11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑==101101i ixx ,则)(x D = ______.·12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则∑=512i ix服从自由度为______的2χ分布.15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________.17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.18.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.19.设离散型随机变量X 的分布律为,则常数C=_________.22.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤≤-≤≤-=,,0;11,11,41),(其他y x y x f 则P{0≤X ≤1,0≤Y ≤1}=___________.23则P{Y=2}=___________.24.设随机变量X ~ B ⎪⎭⎫ ⎝⎛31,18,则D (X )=_________.25.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (X )=________.27.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=ni iX1的极限分布是_________________28.设总体X 的概率密度为⎪⎩⎪⎨⎧<=.,0;1||,23)(2其他x x x f x 1 , x 2 , … , x n 为来自总体X 的一个样本,x 为样本均值,则E (x )=____________.29.设x 1 , x 2 , … , x 25来自总体X 的一个样本,X ~ N (25,μ),则μ的置信度为0.90的置信区间长度为____________.(附:u 0.05=1.645)30.设总体X 服从参数为λ(λ>0)的泊松分布,x 1 , x 2 , … , x n 为X 的一个样本,其样本均值2=x ,则λ的矩估计值λˆ=__________. 31. 100件产品中有10件次品,不放回地从中接连取两次,每次取一个产品,则第二次取到次品的概率为________ 32. 设A ,B 为随机事件,且()0.8P A =,()0.4P B =,(|A)0.25P B =,则(A|B)P =_______34. 设连续型随机变量X 的分布 函数为()F x= 31xe -- x>0 , 则{1}P X ≤=________0 x 035. 设随机变量~()X P λ,且1{0}P X e -==,则{}(1,2,)P X k k ==…=_________ 36. 设随机变量X 的分布律为 记2Y X =,则{4}P Y ≥=_________38. 设二维随机变量(,)X Y 服从区域G :02x ≤≤,02y ≤≤上的均匀分布,则{1,1}P X Y ≤≤=________ 39. 设二维随机变量(,)X Y 的概率密度为(,)f x y= (2)2x y e -+ x>0,y>0 , 则(,)X Y0 其他的分布函数为________则()E XY =________41. 设随机变量X 的数学期望()E X 与方差()D X 都存在,且有()10E X =,2()109E X =,试由切比雪夫不等式估计{|10|6}P X -≥≤_________42. 设随机变量~(0,1)X N ,2~()Y x n ,且X ,Y 相互独立,则~Z =________ 43. 由来自正态总体~(,0.09)N N μ、容量为15的简单随机样本,得样本均值为2.88,则μ的置信度0.95的置信区间是__________0.0250.05( 1.96, 1.645)μμ==44. 设α,β分别是假设检验中犯第一、二类错误的概率,0H ,1H 分别为原假设和备择假设,则00{H |H }P 拒绝不真=_________45. 已知一元线性回归方程为 04y x β=+,且3x =,6y =,则 0β=________二 选择1.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )2.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151B .51 C .154 D .313.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f4.设随机变量X ~ B ⎪⎭⎫⎝⎛31,3,则P{X ≥1}=( )A .271B .278C .2719 D .2726 5则P{XY=2}=( ) A .51 B .103 C .21 D .53 6.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x21B .2xC .y21D .2y7.设二维随机变量(X 则E (XY )=( ) A .91- B .0C .91D .319.设x 1, x 2, …, x 100为来自总体X ~ N (0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N (0,16) B .N (0,0.16) C .N (0,0.04) D .N (0,1.6)10.要检验变量y 和x 之间的线性关系是否显著,即考察由一组观测数据(x i ,y i ),i =1,2,…,n ,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,需要检验假设( )A .0∶,00100≠=ββH H ∶B .0∶,0∶1110≠=ββH HC .0ˆ∶,0ˆ∶0100≠=ββH HD .0ˆ∶,0ˆ∶1110≠=ββH H11.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A .P (A )=1-P (B ) B .P (A -B )=P (B ) C .P (AB )=P (A )P (B )D .P (A -B )=P (A )12.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( ) A .1 B .P (A ) C .P (B )D .P (AB )13.下列函数中可作为随机变量分布函数的是( ) A .⎩⎨⎧≤≤=.,0;10,1)(1其他x x F 1B .⎪⎩⎪⎨⎧≥<≤<-=.1,1;10,;0,1)(2x x x x x FC .⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x FD .⎪⎩⎪⎨⎧≥<≤<=.1,2;10,;00,0)(4x x x x F15.设二维随机变量(X ,Y)的分布律为且X 与Y 相互独立,则下列结论正确的是( ) A .a =0.2,b =0.6 B .a =-0.1,b =0.9 C .a =0.4,b =0.4D .a =0.6,b =0.216.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎪⎩⎪⎨⎧<<<<,,0;20,20,41其他y x则P{0<X <1,0<Y <1}=( )A .41B .21 C .43 D .117.设随机变量X 服从参数为21的指数分布,则E (X )=( ) A .41 B .21 C .2 D .418.设随机变量X 与Y 相互独立,且X ~N (0,9),Y ~N (0,1),令Z =X -2Y ,则D (Z )=( ) A .5B .7C .11D .1319.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是( ) A .)()()(Y E X E XY E ⋅= B .)()(Cov Y D X D (X,Y)XY ⋅⋅=ρ C .)()()(Y D X D Y X D +=+D .),(Cov 2)2,2(Cov Y X Y X =20.设总体X 服从正态分布N(2,σμ),其中2σ未知.x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0:μ=μ0,H 1:μ≠μ0,则检验统计量为( ) A .σμ0-x n B .sx nμ- C .)(10μ--x nD .)(0μ-x n21.设A 、B 为随机事件,且A B ⊂,则AB =( )A .AB. BC. A B ⋃D. AB22. 对于任意两事件A ,B ,()P A B -=( )A . ()()P A PB - B. ()()()P A P B P AB -+C. ()()P A P AB -D. ()()()P A P A P AB --23. 设随机变量X 的分布律为1{}()2nP X n a ==,(1,2,)n =…则a=( )A .1 B.12C. 2D. 324. 设随机变量2~(1,2)X N ,(1)Φ=0.8413,则{13}P X ≤≤=( ) A .0.1385B. 0.2413C. 0.2934D. 0.341325. 设二维随机变量()X Y 、的联合分布律为则{0}P X ==( ) A .14B.13C.512D.71226. 设二位随机变量()X Y 、的概率密度为()f x y =、 x y + 0x 1,0y 1 , 0 其他 则{}P X Y <=( )A .13B.23C.12D.1427.设随机变量~(0,1)X N ,~(0,1)Y N ,令Z X Y =+,则有( ) A .()0E Z =B. ()2E Z =C. ()0D Z =D. ()2D Z =28. 设总体~(0,1)X N ,1,2,(1)X X Xn n >…来自X 的一个样本,X ,S 分别是样本均值与样本方差,则有( ) A .~(0,1)X N B. ~(0,1)nX N C.221~()ni i X x n =∑ D.~(1)Xt n S- 29.设1X ,2X 来自任意总体X 的一个容量为2的样本,则在下列()E X 的无偏估计量中,最有效的估计量是( )A .211233X X + B. 131244X X + C. 231255X X + D. 111222X X + 30. 对非正态总体X ,当样本容量50n ≥时,对总体均值进行假设检验就可采用( )A .u 检验 B. t 检验 C. 2x 检验 D. F 检验三、综合应用 1、设变量y与x的观测数据在某条直线的附近已知∑∑∑∑==========1012101101101.8250,88700,350101,25,101i i i i i i i i i x y x y y x x试用最小二乘法建立y 对x 的线性回归方程.2.设一批产品中有85%的合格品,且在合格品中一等品的占有率为65%. 求:(1)从该批产品中任取1件,其为一等品的概率;(2)在取出的1件产品不是一等品的条件下,其为不合格品的概率.3.某气象站天气预报的准确率为0.9,且各次预报之间相互独立.试求: (1)6次预报全部准确的概率p 1; (2)6次预报中至少有1次准确的概率p 2.已知E (X )=0.2,试求:4.设离散型随机变量X 的分布律为 ,且(1)p 1和p 2; (2)D (6X-3).5.设某厂生产的零件长度X ~N (2,σμ)(单位:mm),现从生产出的一批零件中随机抽取了10件,经测量并算得零件长度的平均值x =2000,标准差s =150,如果2σ未知,在显著水平05.0=α下,是否可以认为该厂生产的零件的平均长度是2015mm? (t 0.025(15)=2.131)。

相关文档
最新文档