全闭环交流伺服驱动技术成为运动控制新技术

合集下载

伺服控制系统课程论文

伺服控制系统课程论文

伺服控制系统课程作业现代伺服系统综述指导教师:学生:学号:专业:班级:完成日期:摘要在自动控制系统中,把输出量能够以一定准确度跟随输入量的变化而变化的系统称为伺服系统。

伺服系统也叫位置随动系统,以精确运动控制和力能输出为目的,综合运用机电能量变换与驱动控制技术、检测技术、自动控制技术、计算机控制技术等,实现精确驱动与系统控制。

伺服系统主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。

伺服系统按其驱动元件划分有步进式伺服系统、直流电动机伺服系统和交流电动机伺服系统。

随着微处理器技术、大功率高性能半导体功率器件技术、电机永磁材料制造工艺的发展及电力电子、控制理论的应用,交流电动机伺服系统近年来获得了迅速发展,广泛用于工业生产的各个领域,如数控机床的进给驱动和工业机器人的伺服驱动等。

因此,在相当大的范围内,交流电动机伺服系统取代了步进电动机与直流电动机伺服系统,时至目前,具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,已成为伺服系统的主流。

关键词:伺服系统自动控制驱动元件1 伺服系统的发展阶段伺服系统的发展与它的驱动元件——伺服电动机的不同发展阶段相联系,并结合老师在第一章所讲的伺服系统分类的知识,伺服电动机至今经历了三个主要的发展阶段。

(1)第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统;伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。

步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°;步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。

数控机床主机运动控制技术发展趋势

数控机床主机运动控制技术发展趋势
性的控带J I 要求相违 背的。 CC 系统软件完荚地解决 了这… P 的 一 题 ,它采 用分时 多任 务机 制构筑其 应用软 件的运f 台 ,
到 r开放性 、策容性和专 、化 的统 ・ l 。这 新技术新软件的 运J 将促使数控机床进 一 - i - I 步向智能 化方向发展 。
() 微机 CAD/C AM 软件 几益深人人心并发挥越来越重 曼的作用。在 2 0世纪 9 0年代 ,能进行复杂形体几何造型和 NC加上 的 C /C M 系统士要是 工作站 f AD A 采朋 UNI X操
作 系统 升 发和 应 的 ,如 美 国 的 P o 、UG I、C DS 5 r E I AD
制、数据 采集 ,报警,P D调节运算 ,通信控制 等,分别编 I 制f挣制程序模块 ( 务) 这些模块既独立运行 ,数据间义 I l 任 ,
保持 ・ 定的相 互关联 ,这 模块经 过分 步骤 的独 编制和调
试之后 , 町一 1 载至 P ,F 4 CC的 C U巾,在 多任务操 作系统 P 的 凋度管理 下 行运 行 ,共 同实现项 口的控制要求 。
P 工 、控 制巾强大的功能优 势,体 现 r可编稃控制 CC I
器 ‘T1控制 计算机及 DC ( J 『 j S 分布式j 业控制 系统 )技术 互 二
相融 合的发展潮流 ,虽然这还足 , 项较 为年轻的技术 ,但往
其越来越 多的J 越用领域巾 ,它正 H益显示 出不可低估的发展
维普资讯
产品与技术
}’ 。r。d¨。t and s T echnoI ogY

数 控机 床 主机
运动控制技术发 展趋势
■ 山东琴 咨资产评 估有限公 司 韩 龙义 ● 济 宁市职业 技术学院 张兴 军

机械工业自动化中的运动控制新技术

机械工业自动化中的运动控制新技术
传 动链 上 的间 隙及 误 差不 能 克 服 或补 偿 。为 了获 得 更 高 的控 制 精 度 , 在 最终 的 运 动部 分 安装 高精 度 应
技术 作 为 其 关 键 组 成 部 分 , 得 到前 所 未 有 的 大 发 也
展 , 内外各个 厂 家相 继推 出运 动 控 制 的新 技术 、 国 新 产 品。本 文主要 介 绍全 闭 环交 流伺 服 驱 动技 术 ( u Fl l Coe C S r ) 直 线 电 机 驱 动 技 术 ( ierM t l dA ev 、 s o Lna o r o
在机 电一 体 化 技 术 迅 速 发 展 的 同时 , 动 控 制 运
般 情况 下 , 种 数 字 式 交 流 伺 服 系 统 大 多 工 这
作 在 半 闭 环 的控 制 方 式 中 , 即伺 服 电机 上 的编 码 器
反馈 既作 速 度 环 , 作 位 置 环 。这 种 控 制 方 式 对 于 也
环交 流伺服 驱动技 术 、 线 电机 驱动技 术、 直 可编程计 算 机控 制 器 、 运动 控 制 卡等 许 多先进 的 实用技 术 , 为
开发 和制造 工 业 自动 化 设备提 供 了 高效 率 的手段 , 这也 必将促 进 我 国的机 电一 体化技 术 水平 不断提 高。 关 键词 : 服驱 动技 术 直线 电机 可 编程计 算机 控制 器 运动 控制 伺
维普资讯
第 1卷 9
第 1 期
郑 州 铁 路 职 业 技 术 学 院学 报
Junl f h nZ e gh uR i a o a o a & e h i l o e e l i c t
器 人 、 能 机 器人 等 许 多 门类 产 品 每年 都 有 新 的 进 智 展 。机 电一 体 化 技 术 已越 来 越 受 到 各 方 面 的关 注 ,

浅析机械自动化的主要运行控制新技术

浅析机械自动化的主要运行控制新技术
环控制系统的动态效应得到了很大程度的提高 , 机器反应也非常的灵敏: 同 时机械产生的传动间隙与误差也大大地降低 , 通过直线检测反馈控制, 在很 大程度上提高了机床的定位精度 。 直线 电机驱动因驱动是 ’ 值 接驱动 ” , 免去 了启动、换向时中间传动环节 的弹性变形、反 向间隙所 出现 的运行滞后现 象。 从很多程度提 高了传动的刚度 。 直线 电动机还具有速度比较快 、 速度加 与减 的过程 比较短、 行程长度不受限制 、 机械运行 比较安静 、 机 械工作的噪 音偏低等特点。此外 , 直线电动机省掉了一些 中间环节, 机械摩擦损耗就少 了许多, 这样传动效 率就大大地得 到提高。直线 电动机的应用越来越多 , 尤 其在机械 的运行控制行业 当中受到很大重视。 3 、 可编程序计算机控制器 可编程控制器的运行控制技术的研 发应用相对较早 ,已经研发应 用了 将近四十年 的时间, 因此这种技术已经基本较为成熟。 尤其 是近年来微电子 技术的快速发展 , 更是使得可编程控制器技术得到了极大的改进与完善 。 与 传统 的控制器相 比,采 用可编程控制器能够很好的解 决控制器速度被限制 与计算机实时性 需求之间的矛盾 。计算机控制器采用了分 时多任务机制构 筑 了应用软件 的运行平台,那么应用程序的运行周期就与程序的长度没有 关系. 只与循环 周期有大 的关系, 这样达到了实时控制 的要求 。计算机可编
技术在新兴 的电子产业与信息产业等领域都得 到了很好 的应 用与发展, 成 为这些领域的产 品生产中不可替代的先进技术 。 二、 机械 自动化的运行控制新技术 当前 ,社会生产水平的发展对于机械 自动化运行控制技术提 出了更高 的要求 , 为 了满足需求 , 科研技术人 员也在不断的研发和试验新 的运行控制 技术 。就 目前来讲, 机械 自动化的运行控制技术 已经取得了一定的成就, 并 且这些新技术 已经被应用到实际的生产运行中, 取得 了较好的技术效果。 在 此 ,笔者主要介绍 了几种技术性 能较为稳定且应用效果较好 的运行控制新 技术。具体分析如下所示 : 1 、 全 闭环交流伺服驱动技术

运动控制产品 技术分类

运动控制产品 技术分类

运动控制产品技术分类
运动控制产品可以根据其技术分类进行区分,主要包括运动控制器、运动控制卡、运动控制模块、运动控制器和伺服驱动器等几个方面。

首先是运动控制器,它是一种能够控制电机运动的设备,通常具有多种控制模式和功能,例如位置控制、速度控制、力控制等。

运动控制器一般由控制器主板、输入/输出模块、通信模块等组成,可以根据具体需求选择不同型号和品牌的运动控制器。

其次是运动控制卡,它是一种用于控制运动控制系统的设备,通常通过PCI、PCIe、USB等接口连接到计算机,实现对电机的控制。

运动控制卡具有高速、稳定的控制性能,能够满足各种运动控制需求。

另外,运动控制模块是一种集成了运动控制功能的模块,通常包括控制芯片、驱动器、传感器等组件,能够简化系统设计和搭建过程,提高系统的稳定性和可靠性。

运动控制模块广泛应用于机器人、自动化设备、数控机床等领域。

此外,运动控制器是一种专门用于控制伺服系统的设备,通常具有闭环控制、高精度定位、快速响应等特点,能够实现对电机的精准控制。

运动控制器广泛应用于需要高精度控制和运动控制的领域,如半导体制造、医疗设备等。

最后,伺服驱动器是一种用于控制伺服电机的设备,通常具有高性能、高可靠性、高精度等特点,能够实现对电机的精准控制。

伺服驱动器广泛应用于需要高精度控制和动态响应的领域,如数控机床、印刷设备等。

综上所述,运动控制产品根据其技术分类可以分为运动控制器、运动控制卡、运动控制模块、运动控制器和伺服驱动器等几个方面,每种产品都具有特定的控制功能和特点,可以根据实际需求选择合适的产品来搭建运动控制系统。

关于六自由度并联机器人运动控制系统的结构设计

关于六自由度并联机器人运动控制系统的结构设计

关于六自由度并联机器人运动控制系统的结构设计运动控制系统作为六自由度并联机器人的关键控制系统,对机器人的精准快速运动具有至关重要的作用。

通过对六自由度并联机器人结构、内部控制结构及其工作原理的介绍,提出运动控制系统的设计思路,并对其中的关键技术问题进行了深入分析,对提高六自由度并联机器人的研发和应用水平具有积极的推动作用。

标签:六自由度;并联机器人;运动控制系统;结构分析近年来,随着计算机和电子信息技术的进步,机器人运动控制技术取得了突破性发展,机器人运动控制技术是将控制传感器、电机、传动机和驱动器等组合在一起,通过一定的编程设置对电机在速度、位移、加速度等方面的控制,使起机器人按照预定的轨迹和运动参数进行运动的一种高科技技术。

伴随着机械工业自动化技术的发展,运动控制技术经过了由低级到高级,由模拟到数字,再到网络控制技术的发展演进过程。

运动控制技术作为机械工业自动化的一项重要技术,主要包括全封闭伺服交流技术,直线式电机驱动技术、基于编程基础上的运动控制技术、基于运动控制卡的控制技术等。

其中,基于运动控制卡的控制技术通过内部各种线路的集成组合,可以实现对各种复杂的运动进行控制,该技术系统驱动程序主要包括:运动控制软件、网络动态链接数据库、运动控制参数库等子系统。

运动控制卡控制技术的出现和发展有效的满足了工业机械行业数控系统的柔性化、标准化要求,在工业自动化领域的应用越来越广泛。

1 六自由度并联机器人的构造六自由度并联机器人作为现代工业自动化技术发展的代表,主要结构包括床身、连杆和运动平台等几个部分。

其中运动平台与六个连杆相联接,每个连杆各自联接一个由虎克材料制成的滑块,这些滑块又与滚珠丝杠相连,在电机的驱动下可以带动滑块沿滚珠运动,进而带动连杆有规则的运动,从而改变平台的运动方向。

通过在运动平台上安装不同的机械,可以有效满足不同工作的需求。

在六根连杆工作程序中,每根连杆都由一台电机进行控制驱动来保证连杆运动的独立性,因此,可以实现六自由度的机器控制运动。

机械工业自动化中运动控制新技术

机械工业自动化中运动控制新技术

浅析机械工业自动化中的运动控制新技术摘要:计算机与微电子技术的快速发展,带动了工业运动控制技术的提高,出现了直线电机驱动技术、全闭环交流伺服驱动技术、计算机控制技术、运动控制卡等控制新技术。

这些技术为我国工业水平的提高与机电一体化水平的进步发挥了比较大的作用。

本文就机械工业自动化中的运动控制新技术进行浅显的分析。

关键词:机械工业;自动化;运动控制新技术一、引言传统产业在高新技术产业的发展冲击下,不断革新,这也为传统产业的发展带来了机会。

机械工业是传统产业之一。

新技术的革新使其产品结构与生产系统的结构都发生了重大变化。

微电子技术、微计算机技术的快速发展,促进了机械工业自动化的进程。

机电一体化不断的技术改革,使得机电一体化的产品比如汽车、家用电器、冶金机械、工业机器人、包装机械等,每隔一段时间都会有新的进展。

机电一体化技术在现代生活、生产中发挥着比较重要的作用,提高了人民的生活水平与工作效率,降低了材料的消耗,增强了企业发展当中的竞争力。

机电一体化迅速发展的同时,运动控制技术也得到不断发展。

机械工业自动化中的运动控制新技术得到大大发展,出现了全闭环交流伺服驱动技术(full closedac servo)、直线电机驱动技术(linear motor driving)、可编程序计算机控制器(programmable computer controller,pcc)和运动控制卡(motion con-trolling board)等新技术。

二、机械工业自动化当中的几种运动控制新技术(一)全闭环交流伺服驱动技术机电一体化产品的定位精度与动态响应若要求比较高,通常会用到交流伺服系统,其中的数字交流伺服系统更合适数电控制。

数字交流伺服系统采用了数字信号处理器的驱动器,可以对机械电机轴后端部的光电编码器进行位置采样,电机与驱动器之间就构成了位置与速度的闭环控制系统。

这种闭环交流伺服驱动系统具有高速的运算控制能力,能够自动完成整个伺服系统的增益调节,对于机械中负载的变化也可以跟踪到,能够根据负载情况实时地调节系统的增益,甚至有的驱动器还具有快速傅立叶变换的功能,能把机械共振点测算出来,还通过陷波滤波方式能消除机械共振。

机械自动化的永动力——工业运动控制技术

机械自动化的永动力——工业运动控制技术
l 全 闭环 交流 伺服 驱 动 技 术
在一 些定 位精 度 或 动态 响应 要 求 比较 高 的机 电 一 体 化 产 品 中 , 交 流 伺 服 系统 的应 用越 来 越 广 泛 , 中数 字 式 交 流 伺 服 系 统 更 符 合 其 数 字 化控 制 模 式 的潮 流 , 且 调 试 、 用 十 分 简 单 , 而 被 受 青 睐 。 而 使 因 这 种 伺服 系统 的 驱 动器 采 用 了 先进 的数 字信 号处 理 器 , 以 对 电 机 可 轴 后 端部 的光 电 编码 器 进 行 位 置采 样 , 驱 动 器 和 电 机 之 间 构 成 位 在 置 和 速度 的闭 环 控 制系 统 , 充 分 发 挥 D P的 高 速 运 算 能 力 , 并 S 自动 完 成 整个 伺 服 系 统 的增 益 调 节 , 至 可 以 跟 踪 负 载 变 化 , 时 调 节 甚 实 系 统增 益 ; 的驱 动器 还 具 有 快 速傅 立 叶 变 换 (F ) 功 能 , 算 出 有 FT 的 测 设 备 的机 械 共 振点 , 通 过 陷 波 滤波 方 式 消 除机 械 共 振 。 并 般 情 况 下 , 种数 字 式 交 流伺 服系 统 大 多 工作 在半 闭 环 的 控 这 制 方式 , 即伺 服 电 机上 的 编 码 器 反 馈 既 作 速 度 环 , 作 位 置 环 。这 也 种 控 制方 式 对 于传 动 链 上 的 间 隙及 误 差 不 能 克 服 或 补 偿 。为 了获 得更 高的 控 制 精 度 , 在 最 终 的 运 动 部 分 安 装 高 精 度 的 检 测 元 件 应 ( : 如 光栅 尺 、 电编 码 器等 )即 实 现全 闭 环 控 制 。 比较 传 统 的全 闭 光 , 环控 制 方 法是 : 服 系 统 只 接受 速 度 指 令 , 成 速 度 环 的控 制 , 置 伺 完 位 环 的控 制 由上 位 控 制 器来 完 成 ( 多 数 全 闭环 的机 床 数 控 系统 就 是 大 这样 这 样 大大 增 加 了 上 位 控 制 器 的 难 度 , 限 制 了伺 服 系 统 的 也 推广 。 目前 , 国外 已出 现 了 一 种 更 完 善 、 以 实 现 更 高 精 度 的 全 闭 可 环 数 字 式伺 服 系 统 , 得 高精 度 自动 化设 备 的实 现更 为容 易 。 使
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全闭环交流伺服驱动技术成为运动控制新技术
在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。

本文主要介绍了全闭环交流伺服驱动技术(Full Closed AC Servo)、直线电机驱动技术(Linear Motor Driving)、可编程序计算机控制器(Programmable Computer Controller,PCC)和运动控制卡(Motion Controlling Board)等几项具有代表性的新技术。

随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。

机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。

机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。

在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。

这种伺服系统的驱动器采用了先进的数字信号处理器(Digital Signal Processor, DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺
服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。

一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。

这种控制方式对于传动链上的间隙及误差不能克服或补偿。

为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。

比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。

这样大大增加了上位控制器的难度,也限制了伺服系统的推广。

目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统,使得高精度自动化设备的实现更为容易。

其控制原理如图1所示。

该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。

这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。

而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动
化设备的改造和研制中,开始采用这种伺服系统。

整理:fengshenluke。

相关文档
最新文档