伺服-运动控制卡的工作原理及其应用

合集下载

控制卡介绍

控制卡介绍

运动控制卡运动控制卡是基于PC总线,利用高性能微处理器(如DSP)及大规模可编程器件实现多个伺服电机的多轴协调控制的一种高性能的步进/伺服电机运动控制卡,包括脉冲输出、脉冲计数、数字输入、数字输出、D/A输出等功能,它可以发出连续的、高频率的脉冲串,通过改变发出脉冲的频率来控制电机的速度,改变发出脉冲的数量来控制电机的位置,它的脉冲输出模式包括脉冲/方向、脉冲/脉冲方式。

脉冲计数可用于编码器的位置反馈,提供机器准确的位置,纠正传动过程中产生的误差。

数字输入/输出点可用于语限位、原点开关等。

库函数包括S型、T型加速,直线插补和圆弧插补,多轴联动函数等。

产品广泛应用于工业自动化控制领域中需要精确定位、定长的位置控制系统和基于PC的NC控制系统。

具体就是将实现运动控制的底层软件和硬件集成在一起,使其具有伺服电机控制所需的各种速度、位置控制功能。

这些功能能通过计算机方便地调用。

插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。

也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。

数控装置根据输入的零件程序的信息,将程序段所描述的曲线的起点、终点之间的空间进行数据密化,从而形成要求的轮廓轨迹,这种“数据密化”机能就称为“插补”。

插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。

直线插补:直线插补(Llne Interpolation)这是车床上常用的一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。

一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向. 插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.圆弧插补:圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。

伺服原理及运动控制介绍2017

伺服原理及运动控制介绍2017
46
伺服系统的实例
47
为什么用伺服
总体是说就是对运动控制特性的更高追求,促 使用户选用伺服系统
高精度的要求 响应速度的要求 平稳性的要求 …
48
伺服电机的主要技术参数(一)
功率:(单位:W,KW)100、200、 400、600、1KW…
持续电流Ic:(单位:A) 峰值电流Ip:(单位:A) 反电动势:(单位:V/千转/分钟) 相间电阻:(单位:Ω)
民用:自动封装、机械制造、航空航天、交通运输、石油 化工、家用电器;
军用:武器控制,如导弹火炮;
狭义地讲,就是伺服控制系统;
3
2、为什么会产生运动控制系统
现实需求:如减轻劳动强度、提高生产效率、 探索自然奥秘;
相关技术的进步:如电力电子、计算机、微 处理器;
3、控制方式
开环控制:控制过程只有顺向作用而没有反 向联系,如步进马达控制;
W ( s ) K e j
• 当相位延迟180度时,系统变成正反馈; • 对于正反馈系统,当K小于1时系统依然稳定; • 可见,K与1的关系对于系统的稳定性具有决定
性的作用; • 由此,引出了增益裕度和相位裕度的概念。
增益(dB)
20
10
0
-10
-21001
102
103
104
100
相位(度)
2、基本功能组成
3、发展历史
控制方式:由模拟控制到数字控制; 功率驱动:50年代后期的晶闸管、70年代后期的
门极可关断晶闸管(GTO)、电力双极型晶体管 (BJT)、电力场效应管(Power-Mosfet)、80 年代后期出现的绝缘栅极双极型晶体管(IGBT)、 目前开始广泛应用的IPM; 执行元件:从直流电机到交流电机

浅谈运动控制卡的功能及使用

浅谈运动控制卡的功能及使用

浅谈运动控制卡的功能及使用
 关于运动控制卡,其实现基于PC的界面,强大的PC功能,两者相互结合,从而使得于东控制器的能力达到了顶尖,但唯一缺点就在于其稳定性和可靠性差。

选项卡插入运动控制卡,以控制经由PCI插槽中的主计算机使用的程序设计语言高电平,如C ++,C#,VB,和LabVIEW创建;接口功能控制资源卡卡用于运动控制伺服控制乘客马达或通过发送一个脉冲,以控制伺服马达或步行,并执行中继传感器和读出输入信号和控制输出信号。

控制IC,例如气缸,主要优点卡运动控制是使用PC的强大的功能,如CAD功能,特征人工视觉,先进的软件编程,等等,通过芯片FPGA + DSP / ARM + DSP(直线插补,圆弧运动的精确功能的述评等,不同的轴,可移动然后PWM控制等)
 运动控制卡的功能
 (1)为了满足新型数控系统的标准化、柔性、开放性等要求;
 (2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;。

交流伺服电机与运动控制卡的接口实验.概要

交流伺服电机与运动控制卡的接口实验.概要

交流伺服电机与运动控制卡的接口实验一、实验目的1.认知富士交流伺服电机及驱动器的硬件接口电路2.认知MPC2810运动控制卡的硬件接口3.掌握驱动器与MPC2810运动控制卡的硬件连接二、实验器材MPC2810运动控制卡、富士交流伺服电机及驱动器,数控实验台II,若干导线,万用表三、实验内容及步骤有关富士交流伺服电机及驱动器的详细信息参见《富士AC 伺服系统FALDIC-W 系列用户手册》,有关MPC2810运动控制卡的详细信息参见《MPC2810运动控制器用户手册》。

一)、MPC2810运动控制器相关简介MPC2810运动控制器是乐创自动化技术有限公司自主研发生产的基于PC的运动控制器,单张卡可控制4轴的步进电机或数字式伺服电机。

通过多卡共用可支持多于4轴的运动控制系统的开发。

MPC2810运动控制器以IBM-PC及其兼容机为主机,基于PCI总线的步进电机或数字式伺服电机的上位控制单元。

它与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作(例如键盘和鼠标的管理、系统状态的显示、控制指令的发送、外部信号的监控等等);运动控制器完成运动控制的所有细节(包括直线和圆弧插补、脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。

MPC2810运动控制器配备了功能强大、内容丰富的Windows动态链接库,可方便地开发出各种运动控制系统。

对当前流行的编程开发工具,如Visual Basic6.0,Visual C++6.0提供了开发用Lib库及头文件和模块声名文件,可方便地链接动态链接库,其他32位Windows开发工具如Delphi、C++Builder等也很容易使用MPC2810函数库。

另外,支持标准Windows动态链接库调用的组态软件也可以使用MPC2810运动控制器。

MPC2810运动控制器广泛适用于:激光加工设备;数控机床、加工中心、机器人等;X-Y-Z控制台;绘图仪、雕刻机、印刷机械;送料装置、云台;打标机、绕线机;医疗设备;包装机械、纺织机转接板引脚定义基于MPC2810运动控制器的典型运动控制系统由以下几部分组成:(1)MPC2810运动控制器、转接板及其连接电缆;(2)具有PCI插槽的PC机或工控机,安装有Windows2000 / XP 操作系统(不同型号的控制器支持的操作系统可能不同);(3)步进电机或数字式伺服电机;(4)电机驱动器;(5)驱动器电源;(6)直流开关电源,为转接板提供+24V电源。

运动控制卡概述

运动控制卡概述

运动控制卡概述∙∙主要特点∙SMC6400B独立工作型高级4轴运动控制器功能介绍:高性能的独立工作型运动控制器以32位RISC为核心,控制4轴步进电机、伺服电机完成各种功能强大的单轴、多轴运动,可脱离PC机独立工作。

●G代码编程采用ISO国标标准G代码编程,易学易用。

既可以在文本显示器、触摸屏上直接编写G代码,也可以在PC机上编程,然后通过USB通讯口或U盘下载至控制器。

●示教编程可以通过文本显示器、触摸屏进行轨迹示教,编写简单的轨迹控制程序,不需要学习任何编程语言。

●USB通讯口和U盘接口支持USB1.1全速通讯接口及U盘接口。

可以通过USB接口从PC机下载用户程序、设置系统参数,也可用U盘拷贝程序。

●程序存储功能程序存储器容量达32M,G代码程序最长可达5000行。

●直线、圆弧插补及连续插补功能具有任意2-4轴高速直线插补功能、任意2轴圆弧插补功能、连续插补功能。

应用场合:电子产品自动化加工、装配、测试半导体、LCD自动加工、检测激光切割、雕铣、打标设备机器视觉及测量自动化生物医学取样和处理设备工业机器人专用数控机床特点:■不需要PC机就可以独立工作■不需要学习VB、VC语言就可以编程■32位CPU, 60MHz, Rev1.0■脉冲输出速度最大达8MHz■脉冲输出可选择: 脉冲/方向, 双脉冲■2-4轴直线插补■2轴圆弧插补■多轴连续插补■2种回零方式■梯型和S型速度曲线可编程■多轴同步启动/停止■每轴提供限位、回零信号■每轴提供标准伺服电机控制信号■通用16位数字输入信号,有光电隔离■通用24位数字输出信号■提供文本显示器、触摸屏接口技术规格:运动控制参数运动控制I/O 接口信号通用数字 I/O通用数字输入口通用数字输出口28路,光电隔离 28路,光电隔离,集电极开路输出 通讯接口协议。

伺服的工作原理

伺服的工作原理

伺服的工作原理
伺服的工作原理是通过传感器检测并测量系统的状态,然后将这些测量值与预设的目标值进行比较。

如果测量值与目标值存在偏差,控制器会发出控制信号,使电机根据反馈信号做出相应的调整,使系统恢复到目标值附近。

伺服系统通常由三个基本组件组成:控制器、执行器和反馈装置。

控制器是系统的核心,负责接收来自传感器的反馈信息,并将其与目标值进行比较,然后计算出控制信号。

执行器是控制信号的接收者,通常是电机或液压装置,它们将接收到的控制信号转化为机械运动。

反馈装置用于监测执行器的运动状态,并将其转化为反馈信号,反馈给控制器进行实时调整。

在伺服系统中,控制器的设计是至关重要的。

控制器通常采用比例积分微分(PID)控制器,通过对误差的比例、积分和微
分进行加权,来计算控制信号。

其工作原理是根据当前的误差状态和误差变化率来调整控制信号,使系统能够稳定地接近目标值。

伺服系统的关键在于反馈机制,它实现了系统的闭环控制。

反馈装置通过监测执行器的运动状态,将实际测量值反馈给控制器。

控制器根据反馈信号进行实时调整,以便使系统尽可能地接近目标值。

通过持续的反馈和调整,伺服系统能够响应外部干扰,并保持系统在变化之间稳定运行。

总而言之,伺服的工作原理是通过传感器检测系统的状态,并与预设的目标值进行比较,然后通过控制器计算控制信号,使
执行器根据反馈信号进行调整,以使系统接近目标值。

通过持续的反馈和调整,伺服系统能够实现闭环控制,稳定地运行并应对外部干扰。

运动控制卡概述

运动控制卡概述∙∙主要特点∙SMC6400B独立工作型高级4轴运动控制器功能介绍:高性能的独立工作型运动控制器以32位RISC为核心,控制4轴步进电机、伺服电机完成各种功能强大的单轴、多轴运动,可脱离PC机独立工作。

●G代码编程采用ISO国标标准G代码编程,易学易用。

既可以在文本显示器、触摸屏上直接编写G代码,也可以在PC机上编程,然后通过USB通讯口或U盘下载至控制器。

●示教编程可以通过文本显示器、触摸屏进行轨迹示教,编写简单的轨迹控制程序,不需要学习任何编程语言。

●USB通讯口和U盘接口支持USB1.1全速通讯接口及U盘接口。

可以通过USB接口从PC机下载用户程序、设置系统参数,也可用U盘拷贝程序。

●程序存储功能程序存储器容量达32M,G代码程序最长可达5000行。

●直线、圆弧插补及连续插补功能具有任意2-4轴高速直线插补功能、任意2轴圆弧插补功能、连续插补功能。

应用场合:电子产品自动化加工、装配、测试半导体、LCD自动加工、检测激光切割、雕铣、打标设备机器视觉及测量自动化生物医学取样和处理设备工业机器人专用数控机床特点:■不需要PC机就可以独立工作■不需要学习VB、VC语言就可以编程■32位CPU, 60MHz, Rev1.0■脉冲输出速度最大达8MHz■脉冲输出可选择: 脉冲/方向, 双脉冲■2-4轴直线插补■2轴圆弧插补■多轴连续插补■2种回零方式■梯型和S型速度曲线可编程■多轴同步启动/停止 ■每轴提供限位、回零信号 ■每轴提供标准伺服电机控制信号 ■通用16位数字输入信号,有光电隔离 ■通用24位数字输出信号 ■提供文本显示器、触摸屏接口技术规格: 运动控制参数运动控制I/O 接口信号通用数字 I/O通用数字输入口 通用数字输出口28路,光电隔离28路,光电隔离,集电极开路输出通讯接口协议控制器电源与尺寸主要接口插座定义:2 3 4 5 6 7 8 9 10EGNDINPUT9INPUT10INPUT11INPUT12INPUT13INPUT14INPUT15INPUT16121314151617181920OUT15OUT14OUT13OUT12OUT11OUT10OUT9COMEGND2345OUT23OUT22OUT21OUT2078910OUT18OUT17EGND软件:提供PC模拟触摸屏软件;PC G 代码编译软件。

DEH伺服卡工作原理

DEH伺服卡工作原理
DEH伺服卡是一种用于控制伺服电机的电气设备,它的工作
原理如下:
1. 输入信号:用户通过输入设备(如旋钮、按钮或编码器)发送指令信号给DEH伺服卡,以指定所需的电机运动方式和速度。

2. 信号处理:DEH伺服卡接收到输入信号后,进行信号处理,将输入信号转换成适合驱动电机的信号。

3. 环路控制:DEH伺服卡通过使用反馈装置(如编码器)来
检测电机的实际位置和速度,并与用户指定的目标位置和速度进行比较。

然后,它使用一种叫做比例-积分-微分(PID)控
制的算法来计算适当的电机控制信号。

4. 输出信号:DEH伺服卡将计算得到的电机控制信号发送给
电机驱动器,驱动器通过控制电流或电压来控制电机的转动。

5. 反馈控制:DEH伺服卡不断监测电机的实际运动情况,并
将反馈信息传回控制算法中进行处理。

如果实际位置与目标位置不一致,伺服卡会调整控制信号,使电机向目标位置移动。

总结起来,DEH伺服卡的工作原理是通过处理输入信号、使
用PID控制算法进行环路控制,并通过控制信号驱动电机,
最终实现对电机位置和速度的精确控制。

运动控制卡和运动控制器的区别

运动控制卡和运动控制器的区别在工业生产当中,工业机器人以及智能机床的应用越来越广泛,而这些设备几乎都要用到运动相关的控制方案,如果精度要求较高,就会选择伺服电机,精度要求没那么高,就是步进电机。

但不论是步进电机还是伺服电机,都需要一个对应的运动控制解决方案来完成最后的驱动,目前来说,这类解决方案主要有PLC、运动控制卡、运动控制器、软PLC等几种。

PLC和软PLC本篇暂时不谈,这次我们主要谈下运动控制卡和运动控制器的区别。

控制方式:运动控制卡与运动控制器都是依靠发射脉冲来控制伺服电机,通过改变脉冲频率来控制电机速度,从原理上来说,两者是一样的。

不同的是,运动控制器主要通过本身固有的程序来传达命令,或者接收上位计算机的新命令来执行;而运动控制卡有庞大的PC数据库可以利用,可以执行的命令更多,控制方式也更加灵活。

连接方式:运动控制卡是基于PC机的上位控制单元,需和配套的PC机一同使用,二者也需要通过PCI协议或104协议来完成连接。

运动控制器是独立安装运行的,安装方式上有面板式、仪表式、导轨式等。

可拓展性:运动控制器类似PLC,主要依靠自身储存的程序来执行命令,如果遇到储存程序之外的功能需求,则需要从上位计算机接受收新的程序后才能执行。

运动控制卡依靠PC平台,本身就可以实现制图、排版、视觉识别等诸多功能的拓展,拓展性更强。

稳定性:运动控制器本身结构相对简单,系统独立运行,稳定性会更好。

运动控制卡基于PC平台运行,在工作时,需优先保证PC机自身系统运行稳定,其次才是运动控制卡与相应的控制软件的稳定,并且各类连接线路也会受到电磁干扰的影响,相对而言稳定性不如运动控制器。

应用场景:运动控制卡的应用领域包括机床、工业机器人、半导体、包装、纺织等,比较常见的包括激光切割机和振动刀切割机等,在服装、鞋类、广告、厨具、车饰、钣金、电子3C、医疗器械等多种行业有着广泛的应用。

运动控制器在重工业领域更受关注,如冶金、采矿、锻造、机械、风电等。

科普电气伺服控制器说明书

科普电气伺服控制器说明书电气伺服控制器是一种用于控制电机运动的设备,它可以通过精确的反馈机制,实时调节电机的位置、速度和力矩。

本说明书将深入介绍电气伺服控制器的原理、结构和应用,并提供详细的操作指南和注意事项,致使用户能够更好地理解和使用该设备。

一、电气伺服控制器的原理电气伺服控制器是一种将控制信号转化为能够控制电机运动的高精度设备。

它由三个主要组成部分组成:发送器、接收器和执行器。

发送器将控制信号发送给接收器,并通过接收器将信号转化为电流或电压控制信号。

执行器接收控制信号,并通过调节电机的电流或电压来实现精确的运动控制。

二、电气伺服控制器的结构电气伺服控制器通常由下列几个主要组件组成:1. 控制卡:控制卡是电气伺服控制器的核心部件,它负责接收来自发送器的控制信号,并将其转化为电流或电压信号,以实现精确的运动控制。

2. 电源:电源为电气伺服控制器提供所需的电能。

3. 反馈装置:反馈装置用于实时监测电机的位置、速度和力矩,并将这些信息反馈给控制卡,以使控制卡能够根据实际情况进行调节。

4. 电机:电机是电气伺服控制器的执行机构,它能够根据接收到的控制信号进行精确的运动。

三、电气伺服控制器的应用电气伺服控制器广泛应用于各种需要精确运动控制的场合,比如机械加工、自动化生产线和机器人等。

它可以精确控制电机的位置、速度和力矩,以满足不同应用的需求。

在机械加工中,电气伺服控制器可以精确控制切削工具的位置和速度,确保加工质量和工件的精度。

在自动化生产线中,电气伺服控制器可以控制各种运动传动装置的位置和速度,从而实现自动化生产的高效率和高精度。

在机器人技术中,电气伺服控制器可以精确控制机器人的关节运动,使其能够完成各种复杂的任务。

四、电气伺服控制器的操作指南为了正确使用电气伺服控制器,以下是一些操作指南:1. 在使用前,请确保电气伺服控制器安装正确,且与电机连接正确。

检查所有电气连接是否牢固。

2. 在控制卡上设置适当的控制参数,如增益和阈值等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服-运动控制卡的工作原理及其应用
作者:深圳众为兴数控
运动控制卡通常是采用
专业的运动控制芯片或高速DSP来满足一系列运动控制需求的控制单元,其可通过PCI、PC104等总线接口安装到PC和工业PC上,可与步进和伺服驱动器连接,驱动步进和伺服电机完成各种运动(单轴运动、多轴联动、多轴插补等),接收各种输入信号(限位原点信号,sensor),可输出控制继电器、电磁阀、气缸等元件。

用户可使用VC、VB等开发工具,调用运动控制卡函数库,快速开发出软件。

以一个通用的XYZ三轴通用控制平台开发为例,此平台加上胶枪、刀具等模块后可用于点胶、切割等用途,运动控制卡采用深圳众为兴数控开发的ADT8940A1,ADT8940A1运动控制卡是一款经济实用型运动控制卡,4轴伺服/步进电机控制,最大脉冲输出频率为2MHz,每轴均有位置反馈输入;可实现2-4轴直线插补,可实现XYZ三轴插补,进行整体配合动作;带有40路隔离数字输入,16路隔离数字输出,可控制胶枪、刀具等模块;具有外部信号驱动、硬件缓存等功能,能满足绝大部分的4轴以下工作平台的运动控制需求。

ADT8940A1能驱动绝大多数的伺服驱动器。

ADT8940A1运动控制卡采用脉冲的方式驱动伺服,脉冲数量决定伺服电机的转动圈数,脉冲频率决定伺服电机的转动速度,同时ADT8940A1卡能够将伺服电机的位置实时反馈给控制系统软件。

可将伺服报警、伺服到位等信号接入ADT8940A1卡,实时反馈伺服状态。

用输出可实现伺服的伺服使能和伺服报警清除等功能。

我们XYZ轴采用丝杠传动方式的话,XY假如选用5mm间距的丝杠,将伺服的每转脉冲设置为10000,ADT8940A1控制卡控制精度为1个脉冲,机械的精度将可以达到
5mm/10000=0.0005mm;ADT8940A1控制卡的速度可达2000000脉冲/秒,伺服电机的转速可以高达12000转/分钟,XY轴的速度可达1000mm/s。

为了使机械运行更平稳,运用ADT8940A1的硬件加减速功能,能在很短时间内从低速加速到高速,同时也在运动中改变速度,实现速度灵活控制,设置也很简单,只需用运动控制函数库中的
set_startv设置低速,set_speed设置高速,set_acc设置加速度即可
将整个运动过程中速度交给运动控制卡处理来实现一个梯形加减速。

为了消除软件发送指令之间的间隙而造成的伺服电机速度突变,ADT8940A1运动控制卡提供了硬件缓存功能,用户可以将大容量的运动指令提前放入到运动控制卡中,ADT8940A1运动控制卡自动将一条一条指令顺序执行,实现伺服电机运行间隙完美的衔接,使整台机器运行平稳无抖动。

运动控制卡因其性价比好、功能强大、开发便利等优势已经广泛运用切割机、点胶机、激光打标机电路板钻/铣机、超声波焊机、丝印机、AOI检测机、飞针测试机、激光焊接机、雕刻机、喷绘机、快速成型机等测量与自动化设备领域。

相关文档
最新文档