模具钢的热处理工艺及表面技术

合集下载

钢的表面热处理

钢的表面热处理

第八章钢的表面热处理知识要点:表面热处理的目的、分类;常用的表面热处理工艺(感应加热表面淬火和渗碳);了解表面热处理的典型零件。

一、表面热处理的目的1.提高零件的表面性能,具有高硬度、高耐磨和高的疲劳强度。

→保证高精度2.使零件心部具有足够高的塑性和韧性。

→防止脆性断裂。

“表硬心韧”二、表面热处理的分类及工艺特点主要有两大类:表面淬火和化学热处理。

(一)表面淬火1.工艺:将工件表面快速加热到奥氏体区,在热量尚未达到心部时立即迅速冷却,使表面得到一定深度的淬硬层,而心部仍保持原始组织的一种局部淬火方法。

工艺特点:(1)不改变工件表面化学成分,只改变表面组织和性能;(2)表面与心部的成分一致,组织不同。

2.所用材料一般多用中碳钢、中碳合金钢,也有用工具钢、球墨铸铁等。

典型零件:如用40、45钢制作的机床齿轮齿面的强化、主轴轴颈处的硬化等。

3.常用表面淬火方法主要有:感应加热表面淬火、火焰加热表面淬火和激光加热表面淬火。

(1)感应加热表面淬火原理:通以一定频率交变电流的感应线圈,产生的交变磁场在工件内产生一定频率的感应电流(涡流),利用工件的电阻而将工件加热;由于感应电流的集肤效应,使工件表层被快速加热至奥氏体化,随后立即快速冷却,在工件表面获得一定深度的淬硬层。

感应线圈→交变磁场→感应电流→工件电阻→加热,集肤效应→表层加热,快冷→淬硬层。

工件淬硬层的深度与频率有关:A. 0.2~2mm,高频感应加热(100—500KHz),适用于中小型齿轮、轴等零件;B.2~10mm,中频感应加热(0.5—10KHz),大中型齿轮、轴;C.〉10—15mm,工频感应加热(50Hz),用于大型轴、轧辊等零件。

特点:淬火质量好,表层组织细密、硬度高、脆性小、疲劳强度高;生产频率高、便于自动化,但设备较贵,不适于单件和小批量生产。

应用:主要零件类型是轴类、齿轮类、工模具,最常见的有:齿轮,如机床和精密机械上的中、小模数传动齿轮,蒸汽机车、内燃机车、冶金、矿山机械等上的大模数齿轮。

模具表面的化学热处理技术

模具表面的化学热处理技术

甲醇+丙酮
风扇电动机 废气火焰 炉盖 砂封 电阻丝 耐热罐 工件 炉体
图 4-2 滴注式气体渗碳炉工作示意图
4.2.1.3 真空渗碳 真空渗碳是一个不平衡的增碳扩散型渗碳工艺,被处 理的工件在真空中加热到奥氏体化,并在渗碳气氛中渗碳, 然后扩散、淬火。由于渗碳前是在真空状态下加热,钢的 表面很干净,非常有利于碳原子的吸附和扩散。与气体渗 碳相比,真空渗碳的温度高,渗碳时间可明显缩短。
渗碳工艺应用于模具表面强化,主要体现在两个方面。 一方面用于低、中碳钢的渗碳。例如,塑料制品模具的形 状复杂,表面粗糙度要求高,常用冷挤压反印法来制造模 具的型腔。因此,可采用碳含量较低、塑性变形性能好的 塑料模具钢,如20、20Cr、12CrNi3A钢以及美国的P2、 P3、P4、P5钢等。先将退火状态的模具钢冷挤压反印法 成形,再进行渗碳或碳氮共渗处理。
4.2 模具表面的化学热处理技术 化学热处理是指将钢件置于特定的活性介质中加 热和保温,使一种或几种元素渗入工件表面,以改变 表层的化学成分、组织,使表层具有与心部不同的力 学性能或特殊的物理、化学性能的热处理工艺。化学 热处理的种类很多,一般都以渗入的元素来命名,常 用的化学热处理方法有渗碳、渗氮、碳氮共渗/氮碳 共渗、渗硼、渗金属等。
4.2.1.4 CD渗碳 CD渗碳是20世纪80年代后期出现的渗碳方法。CD渗 碳法采用含有大量强碳化物形成元素(如Cr、Ti、Mo、V) 的模具钢在渗碳气氛中加热,在碳原子自表面向内部扩散 的同时,渗层中沉淀出大量弥散合金碳化物,弥散碳化物 含量达50%以上,呈细小均匀分布,淬火、回火后可获得 很高的硬度和耐磨性。 经CD渗碳的模具心部没有像Cr12型模具钢和高速钢中 出现粗大共晶碳化物和严重的碳化物偏析,因而其心部韧 性比Cr12MoV钢提高3~5倍。实践表明,CD渗碳模具的使 用寿命大大超过Cr12型冷作模具钢和高速钢。

钢的热处理原理和工艺

钢的热处理原理和工艺
A3—Ac3—Ar3
A1—Ac1—Ar1
Acm —Accm —Arcm
钢在加热和冷却时的临界温度
2.奥氏体的形成(以共析钢为例)
(1)奥氏体晶核的形成; (2)奥氏体晶核的长大;
(基本过程)
(3)残余渗碳体的溶解;
(4)奥氏体成分的均匀化。
共析钢中奥氏体形成过程示意图
a)形核;b)长大;c)残余渗碳体溶解;d)奥氏体均匀化
铁素体+渗碳体
组织特征:
铁素体 ——长成针片状,互不平行,有一定角度,形成分枝; 渗碳体 ——呈粒状或细小短条状分布在铁素体片内。
a)形成温度范围
350℃ ~ Ms
b)组织——下贝氏体(B下)
形态呈黑色针叶状
C)性能
硬度可达45 ~ 55HRC 具有较高的强度及
下贝氏体组织 630 ×
良好的塑性和韧性。

4秒


6秒



8秒


15秒
对于亚共析钢、过共析钢的奥氏体ห้องสมุดไป่ตู้过程: 1.亚共析钢:
F+P→F+A→A 2.过共析钢:
Fe3C + P → Fe3C + A → A
3.奥氏体晶粒的长大 晶粒的长大主要是依靠较大晶粒吞并较小
晶粒和晶界迁移的方式进行的。
晶粒的吞并与长大过程 为了防止晶粒长的粗大,严格控制加热温度和保温时间。
一、表面淬火 1.定义
是将钢件的表面层淬透到一定的深度,而心部仍 保持未淬火前状态的一种局部淬火方法。 2.方法(快速加热)
火焰加热、感应加热、电接触加热、激光加热等 表面淬火方法。 目前生产上最常用是:

第5章 模具钢料的热处理-模具表面处理技术

第5章 模具钢料的热处理-模具表面处理技术

第二节模具表面处理工艺概述模具是现代工业之母。

随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。

如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。

模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。

这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。

这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。

从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。

在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。

◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。

减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。

◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。

在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。

模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。

下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。

热加工模具的材料选择及热处理

热加工模具的材料选择及热处理

热加工模具的材料选择及热处理随着社会的发展,科学的发展,热加工用模也有了很迅速的发展。

本毕业设计从理论与实践的角度对热加工模模具进行阐述,针对热加工模用料及热处理进行分析,从以下几方面进行论述:热加工类模具用钢的材料分析热加工模是工业产品生产中不可缺少的工艺方法之一。

它主要用于制造业和加工业。

它是和冲压、锻造、铸造成型机械,同时和塑料、橡胶、陶瓷等非金属材料制品成型加工用的成形机械相配套,作为成形工具来使用的。

热加工模具属于精密机械产品,因为它主要由机械零件和机构组成,如成形工作零件(凸模、凹模),导向零件(导柱、导套等),支承零件(模座等),定位零件等;送料机构,抽芯机构,推料机构,检测与安全机构等。

为提高模具的质量,性能,精度和生产效率,缩短制造周期,其零、部件(又称模具组合),多由标准零、部件组成。

所以,模具应属于标准化程度较高的产品。

一副中小型冲模或塑料注射模,其构成的标准零、部件可达90%,其工时节约率可达25%~45%。

一、热加工用模模具的功能和作用现代产品生产中,热加工模具由于其加工效率高,互换性好,节约原材料,所以得到很广泛的应用。

现代工业产品的零件,广泛采用冲击、成型锻造、压铸成形、挤压成形、塑料注射或其他成形加工方法,和成形模具相配套,经单工序或多道成形工序,使材料或胚料成形加工成符合产品要求的零件,或成分精加工前的半成品件。

如汽车覆盖件,须采用多副模具,进行冲孔、拉深、翻边、弯曲、切边、修边、整形等多道工序,成形加工为合格零件;电视机外壳洗衣机内桶是采用塑料注射方法,经一次注射成型为合格零件的;发动机的曲轴连杆是采用锻造成形模具,经滚锻和模锻成形加工为精密机械加工前的半成品胚件的。

高精度、高效率、长寿命的冲模、塑料注射成形模具,可成形加工几十万,甚至几千万产品零件,如一副硬质合金模具,可冲压硅钢片零件(E型片、电机定转子片)上亿件,称这类模具为大批量生产用模具。

适用于多品种、少批量或产品试制的模具有:组合冲模、快换冲模、叠层冲模或成型冲模,低熔点合金成型模具等,在现代加工业中,具有重要的经济价值,称这类模具为通用、经济模具。

第十章-模具表面强化技术

第十章-模具表面强化技术
(4) 渗氮处理后,工件的变形很小,适合精密模具的表面强化。
*
表面化学热处理技术
二、渗氮(氮化)
(一)气体渗氮
表2 部分模具钢的气体渗氮工艺规范
牌号
处理 方法
渗氮工艺规范
渗氮层 深度/mm
表面硬度
阶段
渗氮温度/℃
时间/h
氨分解率/%
30CrMnSiA
一段

500±5
25~30
20~30
0.2~0.3
(一)气体渗氮
(1) 经过渗氮后钢表面形成一层极硬的合金氮化物,渗氮层的硬度一般可达到68~72HRC,不需要再经过淬火便具有很高的表面硬度和耐磨层,而且还可以保持到600~650℃而不明显下降。
(2) 渗氮后钢的疲劳极限可提高15%~35%。这是由于渗氮层的体积增大,使工件表面产生了残余压应力。
(3) 渗氮后的钢具有很高的抗腐蚀能力。
>58HRC
Cr12MoV
760~800HV
*
表面化学热处理技术
二、渗氮(氮化)
(二)离子渗氮
离子渗氮有如下特点:
(1) 渗氮速度快,生产周期短。
(2) 渗氮层质量高。
(3) 工件的变形小。
(4) 对材料的适应性强。
氮碳共渗
提高硬度、耐磨性、抗粘附性、抗蚀性、耐热疲劳性
冷挤模、拉深模、挤压模穿孔针
渗硼
具有极好的表面硬度、耐磨性、抗粘附性、抗氧化性、热硬性、良好的抗蚀性
挤压模、拉深模
碳氮硼三元共渗
提高硬度、强度、耐磨性、耐疲劳性、抗蚀性
挤压模、冲头针尖
盐浴覆层 (TD处理)
提高硬度、耐磨性、耐热疲劳性、抗蚀性、抗粘附性、抗氧化性

Cr12MoV冷模具钢热处理工艺的探讨

Cr12MoV冷模具钢热处理工艺的探讨
2:兰!:
煤 炭技术 g鳖!!g£b22}29
vd.2。.N西
尘::罂:
综采下分层工作面顶板控制探讨
李苏龙, 张青合, 张红军
(晋城煤业集团风凰山矿.山西晋城0480∞)
摘 要:通过对凤凰山矿综采下分层工作面在回采过程中冒硬原因的分析研究,探讨了下分层工作面的顶板控制
措施。
关键词:综采;下分层;冒顶;控制
(1)顶板:下分层直接顶由金属网和灰黑色泥
下分层工作面的主要事故为顶板事故,尤以机道上 岩锈结而成,联网质量和水文情况影响假顶状况,不
的端面冒顶最为突出。因冒顶造成的死架、倒架事故 锈结或锈蚀严重均会导致端面的随采随落。
也屡见不鲜.因此在假顶下回采,顶板管理是影响生
(2)初次来压和周期来压:下分层初次来压步
Crl2M“are approached.
Key words:Crl2MoV steel;die;heattreatHlen‘p70cess
收稿日期:200l一03一15;修订日期:200l一06—0I
作者简万介:方李数苏龙据(1964一).男,工程师,现在晋城煤业集团凤匣山矿从事技术工作
vtd.20.N06
■:::翌:
crl2MoV冷模具钢热处理工艺的探讨
郭晓红
(阳煤集团机电总厂,山西阳泉045008)
摘 要:分析了模具质量的特点,探讨了crl2M“钢的热处理工艺特性。 关键词:crl2M“钢;模具:热处理工艺
中图分类号:TBl62.4
文献标识码:A
文章编号:1008—8725 C2001)06—0嘶5—01
(FI倒an Prov.coal Mne Maclimry P1anI.Fujjan kI埘aTl 364000.china)

模具钢真空热处理讲解

模具钢真空热处理讲解

10.4
二、在真空炉中油冷 真空炉中油淬火:一般分为二室,加热室及冷却室,
二者中间有一密闭之中间门,其真空度可自行调整,其 热处理顺序一般在加热室加热完了再移到淬火室冷却, 此时再充入相当压力的不活性气体,一方面可以空冷处 理件,以免过高温油淬火,产生龟裂现象。 真空热而复杂 之加热与冷却及多目的之热处理,在真空炉之使用是一 件极简单的操作方式。其热处理过程如下图,可自行任 意调整供参考。
一、真空炉中空冷(GAS Quenching)
从1958年美国1psen公司开发成功以来,把风硬钢 在真空淬火变为可能,然由于在真空中,处理件之冷 却速度较一般大气中之冷却速度为慢,尤其是断面较 大者,致影响产品之机械性质。因此在真空淬火之冷 却速度,是诸科学家所研究之对象。兹将改良的方法 叙述于后。
(2)增加循环风量以加速冷却,下图便是在 1026torr装入258kg之N2,在不同的环境风 量下,试片之冷却曲线图。
上图中静止者为在真空压力下冷却,并未加入任何冷却 气体,而图中空冷者则为加入258kg量之N2在1026torr 下之冷却曲线,其余曲线则为各循环风量之下冷却情形, 由此等曲线可知,增加循环风量以加速冷却确是好的办 法,唯在较大的压力下,要循环风速增大所需的动力极 大。
钢材取用方向不正确而易发生龟裂,因材料在制造 过程中,塑性加工是有方向性,若取材不定,热处理 变形也不一定,即有时大,有时小,有时膨胀,有时 收缩。使用模具,受力方向应于材料的压延方向垂直。
3.调质处理可减少热处理时之尺寸变化。 下列二种试料是由真空淬火变形量之测定: (a)试料A:素材 机械加工 细加工 热处理。 (b)试料B:素材 烧钝 机械加工 烧钝 细加工
热处理。 烧钝:850˚Cx30后炉冷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模具钢的热处理工艺及表面技术作者:吴陆兵来源:《中国科技博览》2015年第34期[摘要]伴随工业技术的发展,国内外的模具工业发展速度日益加快。

本文主要对冷作模具钢及热作模具钢的使用现状进行探讨,并对常用的热处理工艺进行了简要的介绍,最后介绍了不同的热处理表面技术在工业中的应用情况。

[关键词]模具钢冷作模具钢热作模具钢热处理工艺热处理表面技术中图分类号:TGl42 文献标识码:B 文章编号:1009-914X(2015)34-0259-02我国模具工业发展迅速,但与工业发达国家相比仍存在较大差距,模具寿命普遍较低。

热处理对模具钢的性能有着重要的影响,通过热处理可以使模具钢具有必要的强韧性,大幅度提高模具的寿命。

因此为了提高我国模具工业的技术水平,充分发挥现有材料的潜力,本文主要对模具钢的热处理工艺及技术进行全面深入的研究。

1.热处理对模具的性能影响模具性能会受到热处理技术的影响,因为通过热处理可以增加模具钢的韧性,从而模具的寿命就会大幅度提高,因此,对模具钢的热处理技术的研究是当前提高我国模具工业技术水平,发挥现有材料的潜能是一条非常有效地方法。

根据性质和使用条件的不同,可分为冷作模具钢和热作模具钢。

相对来说,模具的工作条件更加恶劣复杂些,由于他们均需要与加热的坯料或者液态金属进行直接的接触,并且在整个过程中还会被反复的加热和冷却,同时还有来自冲击载荷的作用,因而热模具钢的性能要求要更为苛刻,才能满足热模具的使用。

普遍存在于当前热做模具的问题就是高温磨损、冷热疲劳会经常失效屠户局部强度不够而造成坍塌。

然而在我国当前现有的材料基础上,还可以通过热处理及表面处理技术来使模具的各项性能指标得到改善和提高,从而促进模具使用寿命的提高。

2.冷作模具钢用作冷冲压模、热锻压模、挤压模、压铸模等模具的钢称为模具钢,冷作模具钢是用于在室温下对金属进行变形加工的模具,包括冷冲模、冷镦模、冷挤压模、拉丝模、落料模等。

2.1工作条件和性能要求处于工作状态的冷作模具承受着强烈的冲击载荷和摩擦、很大的压力和弯曲力的作用,主要的失效破坏形式包括磨损、变形和开裂等,因此冷作模具钢要求具有较高的硬度和耐磨性,良好的韧性和疲劳强度。

截面尺寸较大的模具还要求具有较高的淬透性,高精度模具则要求热处理变形小。

2.2合金化处理为保证获得高硬度和高耐磨性,冷作模具钢碳的质量分数较高,大多超过1.0%C,有的甚至高达2.0%C。

铬是冷作模具钢中的主要合金元素,能提高淬透性形成Cr7C3等碳化物,能明显提高钢的耐磨性。

锰可以提高淬透性和强度,钨、钼、钒等与碳形成细小弥散的碳化物,除了进一步提高淬透性、耐磨性、细化晶粒外,还能提高回火稳定性、强度和韧性。

2.3热处理工艺冷作模具钢热处理的目的是最大限度地满足其性能要求,以便能正常工作,现以Crl2MoV 冷作模具专用钢制造冲孔落料模为例来分析热处理工艺方法及制定生产工艺路线。

冲孔落料模的凸、凹模均要求硬度在(58~60)HRC之内,要求具有较高的耐磨性、强度和韧性,较小的淬火变形。

为此,设计其生产工艺路线:锻造一退火一机加工+淬火+回火+精磨或电火花加工一成品。

Crl2MoV钢的组织与性能与高速钢相类似,合金元素含量较高,锻后空冷易出现马氏体组织,一般锻后都采用缓冷。

钢中有莱氏体组织,可以通过锻造使其破碎并均匀分布。

锻后退火工艺与高速钢的等温退火工艺相似,退火后硬度小于255HBW,可进行机械加工。

Crl2MoV钢的淬火十回火工艺,淬火温度较低,低温回火后钢的耐磨性和韧性较高,组织为回火马氏体+残余奥氏体+合金碳化物,硬度为(58~60)HRC。

如果要求模具具有较高的红硬性,能够在400~450℃条件下工作,则要进行“二次硬化法”处理,将淬火加热温度提高到1100~1150℃,此时由于钢中出现了大量的残余奥氏体,硬度仅为(42~50)HRC,但是随后在510~520'C高温下三次回火,析出了细小弥散的合金碳化物及残余奥氏体转变为马氏体,产生“二次硬化”现象,硬度回升到(60~62)HRC,红硬性也较好,但是淬火加热温度较高,组织粗化会导致强度和韧性下降。

2.4常用冷作模具钢对于几何形状比较简单、截面尺寸和工作负荷不太大的模具可用高级优质碳素工具钢T8A、T10A、T12A和低合金刃具钢9SiCr、9Mn2V、CrWMn等,它们耐磨性较好,淬火变形不太大。

对于形状复杂、尺寸和负荷较大的模具多用Crl2型钢如Crl2、Crl2MoV钢或W18Cr4V等,它们淬透性、耐磨性和强度较高,淬火变形较小。

3.热作模具钢热作模具钢是用于制造在受热状态下对金属进行变形加工的模具,包括热锻模、热挤压模、热镦模、压铸模、高速锻模等。

3.1工作条件和性能要求热作模具钢在工作时经常接触炽热的金属,型腔表面温度高达400~600℃。

金属在巨大的压应力、张应力、弯曲应力和冲击载荷作用下,与型腔作相对运动时,会产生强烈的磨损。

工作过程中还要反复受到冷却介质冷却和热态金属加热的交替作用,模具工作面出现热疲劳“龟裂纹”。

因此,为使热作模具正常工作,要求模具用钢在较高的工作温度下具有良好的强韧性,较高的硬度、耐磨性、导热性、抗热疲劳能力,较高的淬透性和尺寸稳定性。

3.2合金化处理热作模具钢碳的质量分数一般保持在(0.3%~0.6%)C之间,以获得所需的强度、硬度、耐磨性和韧性,碳含量过高,会导致韧性和导热性下降;碳含量过低,强度、硬度、耐磨性难以保证。

铬能提高淬透性和回火稳定性;镍除与铬共存时可提高淬透性外,还能提高综合力学性能;锰能提高淬透性和强度,但是有使韧性下降的趋势;钼、钨、钒等能产生二次硬化,提高红硬性、回火稳定性、抗热疲劳性、细化晶粒,钼和钨还能防止第二类回火脆性。

3.3热处理工艺热作模具钢热处理的目的主要是提高红硬性、抗热疲劳性和综合力学性能,最终热处理一般为淬火加高温(或中温)回火,以获得均匀的回火索氏体(或回火托氏体)。

现以5CrMnMo钢制造板牙热锻模为例来分析热处理工艺方法及制定生产工艺路线。

板牙热锻模要求硬度为(351~387)HBW,抗拉强度大于1200~1400MPa,冲击值大于32~56J,同时还要满足对热作模具淬透性、抗热疲劳性等的要求。

其生产工艺路线:锻造一退火一粗加工一成型加工+淬火+回火+精加工(修型、抛光)。

由于钢在轧制时会出现纤维组织,导致各向异性,所以要予以锻造消除。

锻后要缓冷,防止应力过大产生裂纹,采用780~800℃保温4~5h退火,消除锻造应力,改善切削能力,为最终热处理作组织上的准备。

5CrMnMo钢制热锻模淬火+回火工艺,为降低热应力,大型模具需在500℃左右预热,为防止模具淬火开裂,一般先由炉内取出空冷至750~780℃预冷,然后再淬人油中,油冷至150~200C(大致为油只冒青烟而不着火的温度)取出立即回火,避免冷至室温再回火导致开裂。

回火消除了应力,获得回火索氏体(或回火托氏体)组织,以得到所需的性能。

3.4常用热作模具钢制造中、小型热锻模(有效厚度小于400mm)一般选用5CrMnMo钢,制造大型热锻模(有效厚度大于100mm)多选用5CrNiMo钢,它的淬火加热温度比5CrMnMo钢高10℃左右,淬透性和红硬性优于5CrMnMo钢。

热挤压模冲击载荷较小,但模具与热态金属常时间接触,对热强性和红硬性要求较高,常选用3Cr2W8V或4Cr5W2Vsi钢,淬火后多次回火产生二次硬化,组织与高速钢类似。

压铸模钢的选用与成型金属种类有关,压铸熔点为400~450℃的锌合金,一般选用低合金钢30CrMnSi或40Crr等;压铸熔点为r850~920℃的铜合金,可选用3Cr2W8V钢。

4.热处理工艺在常用的热处理工艺中主要有以下流程:预热-淬火-冷却-回火。

4.1预热高速钢中合金元素含量很高,碳当量很高,导热性差,如果直接加热到淬火温度,容易导致内力过大,产生严重的变形和开裂。

并且冷态高速钢直接加热到淬火温度需要较长的加热时间,会加剧高速钢的氧化并增加了脱碳倾向。

为了缩短高温停留时间,在淬火之前进行二次预热,减少工件和高温炉之间的温差防止弯曲变形。

4.2淬火高速钢中的合金元素含量很高,并且很多是难容碳化物,在温度为1200℃左右时才能够有效融入奥氏体。

因此只有控制好温度,才能保证冷却后形成的马氏体中有足够的合金浓度,从而提高马氏体的强度和耐磨性,提高模具的硬度和耐磨性。

需要注意,淬火温度不能太低,也不能太高,超过1300℃之后会导致奥氏体晶粒尺寸增加,导致冷却后力学指标不符合设计要求。

因此,淬火过程中要严格控制时间和温度,在保证淬火效果的前提下,尽量降低温度并缩短高温停留时间,按照工件有效直径或者厚度计算,特小件加热时间不得小于2min。

[2]4.3冷却采取空冷能够获得马氏体,但是空冷会导致工件表面氧化并析出二次碳化物,造成淬火硬度和红硬性的下降。

所以高速钢冷却选择油冷,保证淬火后硬度达到HRC632以上,金相组织以马氏体、残余奥氏体、碳化物为主。

4.4回火淬火应力是高速钢模具断裂的主要原因,为了消除淬火应力,同时提高奥氏体的转化率,高速钢至少要在二次硬化峰值温度下完成三次回火。

残余奥氏体转化为马氏体,残余奥氏体的量仅剩1%-3%,硬度上升到HRC65,此时金相组织主要为黑色回火马氏体,夹杂少量残余奥氏体和颗粒状碳化物。

4.5尺寸变形预防选择淬火加热温度时需要考虑残留奥氏体对淬火变形的影响。

对于一些要求较高的模具,选择硝盐分级淬火方式能够避免模具因形状复杂、截面不均匀等出现相变不等时的现象,同时还能够控制尺寸胀缩变形量,冷却过程产生的热应力和组织应力峰值也相应减小,是控制对尺寸要求较高的模具的变形的有效方法。

5.模具钢的表面处理技术一般常用的表面强化技术有以下几种:化学热处理、高能束表面强化、物理或化学气相沉积。

常见的化学热处理主要有渗碳、渗氮、渗硼等。

这些表面处理的工艺都是一些传统的工艺,与其它工艺相比具有成本低,可靠性高的特点,而且可供选择的方式也很多,尽管这些工艺比较传统,但目前仍然被广泛的应用。

比如,虽然现在己经发展了很多新的可以用来提高压铸模具表面磨损抗力的工艺,然而在实际生产中气体渗氮工艺在通常所进行的表面处理中却占到了90-95%,并且在将来很长一段时间仍将保持现在的地位[3]。

目前对渗氮的研究主要集中在等离子渗氮上,气体渗氮、盐浴渗氮等传统工艺尽管在工业上己经取得了较好的应用,但是由于这些传统工艺所用材料往往具有易爆炸性,有毒性,因此在实际的应用中往往会对工人及环境造成伤害,这些限制了他们的应用。

等离子渗氮就没有气体盐浴渗氮的上述问题而且可以避免复合层也即白亮层的形成和控制扩散层的质量。

高能束表面强化技术的特点是加热速度快、工件变形小、不需冷却介质、可控性能好、便于实现自动化控制,在高能束表面强化技术中尤以激光表面改性的研究应用最多。

相关文档
最新文档