自动控制原理试验3_线性系统校正
自动控制原理习题答案3

若实测结果就是:加10V电压可得1200得稳态转速,而达到该值50%得时间为1、2s,试求电机传递函数。
提示:注意,其中,单位就是
解依题意有:
(伏)
(弧度/秒) (1)
(弧度/秒) (2)
设系统传递函数
应有 (3)
由式(2),(3)
得
解出 (4)
将式(4)代入式(3)得
3-6单位反馈系统得开环传递函数,求单位阶跃响应与调节时间。
解由结构图写出闭环系统传递函数
令闭环增益,得:
令调节时间,得:。
3-4在许多化学过程中,反应槽内得温度要保持恒定,图3-46(a)与(b)分别为开环与闭环温度控制系统结构图,两种系统正常得值为1。
(1)若,两种系统从响应开始达到稳态温度值得63、2%各需多长时间?
(2)当有阶跃扰动时,求扰动对两种系统得温度得影响。
解依题
,;
,;
,
综合以上条件可画出满足要求得特征根区域如图解3-8所示。
3-9电子心脏起博器心律控制系统结构图如题3—49图所示,其中模仿心脏得传递函数相当于一纯积分环节。
(1)若对应最佳响应,问起博器增益应取多大?
(2)若期望心速为60次/min,并突然接通起博器,问1s钟后实际心速为多少?瞬时最大心速多大?
解依题,系统传递函数为
令 可解出
将代入二阶系统阶跃响应公式
可得
时,系统超调量,最大心速为
3-10机器人控制系统结构图如图3-50所示。试确定参数值,使系统阶跃响应得峰值时间s,超调量。
解依题,系统传递函数为
由联立求解得
比较分母系数得
3-11某典型二阶系统得单位阶跃响应如图3-51所示.试确定系统得闭环传递函数.
《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。
采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。
1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。
1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。
num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。
由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。
p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。
Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。
自动控制原理校正课程设计-- 线性控制系统校正与分析

自动控制原理校正课程设计-- 线性控制系统校正与分析课程设计报告书题目线性控制系统校正与分析院部名称机电工程学院专业10电气工程及其自动(单)班级组长姓名学号设计地点工科楼C 214设计学时1周指导教师金陵科技学院教务处制目录目录 (3)第一章课程设计的目的及题目 (4)1.1课程设计的目的 (4)1.2课程设计的题目 (4)第二章课程设计的任务及要求 (6)2.1课程设计的任务 (6)2.2课程设计的要求 (6)第三章校正函数的设计 (7)3.1设计任务 (7)3.2设计部分 (7)第四章系统动态性能的分析 (10)4.1校正前系统的动态性能分析 (10)4.2校正后系统的动态性能分析 (13)第五章系统的根轨迹分析及幅相特性 (16)5.1校正前系统的根轨迹分析 (16)5.2校正后系统的根轨迹分析 (18)第七章传递函数特征根及bode图 (20)7.1校正前系统的幅相特性和bode图 (20)7.2校正后系统的传递函数的特征根和bode图 (21)第七章总结 (23)参考文献 (24)第一章 课程设计的目的及题目1.1课程设计的目的⑴掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。
⑵学会使用MATLAB 语言及Simulink 动态仿真工具进行系统仿真与调试。
1.2课程设计的题目 已知单位负反馈系统的开环传递函数)125.0)(1()(0++=s s s K s G ,试用频率法设计串联滞后校正装置,使系统的相角裕量 30>γ,静态速度误差系数110-=s K v 。
\第二章课程设计的任务及要求2.1课程设计的任务设计报告中,根据给定的性能指标选择合适的校正方式对原系统进行校正(须写清楚校正过程),使其满足工作要求。
然后利用MATLAB对未校正系统和校正后系统的性能进行比较分析,针对每一问题分析时应写出程序,输出结果图和结论。
自动控制原理课件:线性系统的校正

U i (s) 1 ( R1 R2 )Cs 1 s
➢在整个频率范围内相位都
滞后,相位滞后校正。
滞后环节几乎不影响系统的高频相位;
但使系统的高频幅值衰减增大
19
01 滞后校正装置的频率特性:
20 lg Gc ( j )
1
m
j 1
Gc ( j )
线性系统的校正
CONTENTS
目
录
6.1
校正的基本概念
6.2
线性系统的基本控制规律
6.3
常用串联校正及特性
6.4
期望特性串联校正
6.5
MATLAB在线性控制系统校正
中的应用
6.1
校正的基本概念
为某种用途而设计的控制系统都必须满足一定的性能指标,如时域指标、
频域指标及广义的误差分析性能指标。
自动控制系统一般由控制器及被控对象组
m sin 1
1
1
1 sin m
1 sin m
11
03
小结
1.相位超前校正装置具有正的相角特性,利用这个特性,
可以使系统的相角裕量增大.
2.当 m 时,相角超前量最大.
3.最大超前角 m仅与 有关, 越小, m 越大.其关系可用
曲线表示.
13
02
3.选用相位超前校正装置.根据对相角裕量的要求,计算需
产生的最大相角超调量
0 40 15.52 5.52 30
4.
根据 m 确定 值
1 sin 30
0.333
1 sin 30
14
自动控制原理第六章线性系统的校正方法

对数幅频特性曲线如下图
16
10 3) 预选Gc(s)=τs+1,则 Gk ( s ) = (τs + 1) s ( s + 1)
′ 要求τ使系统满足 γ ′′ 和 ω c′ 的要求。 ′ 选择 ω c′=4.4dB/dec,求τ,则:
" L( wc ) = 20 lg 10 − 20 lg 4.4 − 20 lg 4.4 + 20 lg 4.4τ
1 / 2T 则 Gk ( s ) = s (Ts + 1)
其相频特性为: ϕ (ω ) = −90o − arctan Tω
1 = 63.5o γ (ωc ) = 180 + ϕ (ωc ) = 180 − 90 − arctan T ⋅ 2T
o o o
h=∞
21
∴由 ξ = 0.707 得性能指标为:
2
N R E
串联 校正 控制器 对象
已知被控对象数学模型 G p (s),即根据生产要求而 得到的系统数学模型,称为 固有部分数学模型,在工程 实际中是不能改变的。
C
反馈 校正
根据固有数学模型和性能要求进行分析,若现有闭环情况 下没有满足的性能指标或部分没有满足要求的性能指标,则人 为的在固有数学模型基础上,另加一些环节,使系统全面满足 性能指标要求,这个方法或过程称为校正,也称为系统设计。 所附加的环节被称为控制器,其物理装置称为校正装置。 通常记为Gc(s)
2 2 典型二阶系统可表示为: ωn ωn Φ(s) = 2 Gk ( s) = 2 s ( s + 2ξω n ) s + 2ξω n s + ω n
ξ
19
2 ωn C ( jω ) Φ ( jω ) = = =1 2 2 R ( jω ) ( jω ) + 2ξωn ⋅ jω + ωn 2 ωn
自动控制原理实验报告-线性系统串联校正设计

实验五线性系统串联校正设计实验原理:(1)串联校正环节原理串联校正环节通过改变系统频率响应特性,进而改善系统的动态或静态性能。
大致可以分为(相位)超前校正、滞后校正和滞后-超前校正三类。
超前校正环节的传递函数如下Tαs+1α(Ts+1),α>1超前校正环节有位于实轴负半轴的一个极点和一个零点,零点较极点距虚轴较近,因此具有高通特性,对正频率响应的相角为正,因此称为“超前”。
这一特性对系统的穿越频率影响较小的同时,将增加穿越频率处的相移,因此提高了系统的相位裕量,可以使系统动态性能改善。
滞后校正环节的传递函数如下Tαs+1Ts+1,α<1滞后校正环节的极点较零点距虚轴较近,因此有低通特性,附加相角为负。
通过附加低通特性,滞后环节可降低系统的幅值穿越频率,进而提升系统的相位裕量。
在使系统动态响应变慢的同时提高系统的稳定性。
(2)基于Baud图的超前校正环节设计设计超前校正环节时,意图让系统获得最大的超前量,即超前网络的最大相位超前频率等于校正后网络的穿越频率,因此设计方法如下:①根据稳态误差要求确定开环增益。
②计算校正前系统的相位裕度γ。
③确定需要的相位超前量:φm=γ∗−γ+(5°~12°) ,γ∗为期望的校正后相位裕度。
④计算衰减因子:α−1α+1= sin φm。
此时可计算校正后幅值穿越频率为ωm=−10lgα。
⑤时间常数T =ω√α。
(3)校正环节的电路实现构建待校正系统,开环传递函数为:G(s)=20s(s+0.5)电路原理图如下:校正环节的电路原理图如下:可计算其中参数:分子时间常数=R1C1,分母时间常数=R2C2。
实验记录:1.电路搭建和调试在实验面包板上搭建前述电路,首先利用四个运算放大器构建原系统,将r(t)接入实验板AO+和AI0+,C(t)接入AI1+,运算放大器正输入全部接地,电源接入±15V,将OP1和OP2间独立引出方便修改。
基于另外两运算放大器搭建校正网络,将所有电容值选为1uF,所有电阻引出方便修改。
自动控制原理实验教案省名师优质课赛课获奖课件市赛课一等奖课件
0.0478z 0.0464 G(z) z2 1.81z 0.9048
采样时间Ts=0.1s,试分析系统旳稳定性。
4、已知有一离散系统如图5.2所示,其中
G1 ( s)
K s(s 1)
。
设采样时间Ts=0.5s,利用根轨迹图,试分析要保持系
统稳定,增益系数K旳取值范围。
F (s)
1 esT s
产生传递函数:
10 ----------------s^2 + 2 s + 10
产生闭环传递函数:
10 ----------------s^2 + 2 s + 20
求闭环传递函 数旳极点
求开环和闭环传递函 数旳单位阶跃响应
绘制开环和闭环传递函数 旳单位阶跃响应波形图
试验一 线性系统时域分析
2、利用SIMULINK构建模型。
s 10 s2 2s 20
Y(s)
图3.1
试验三 线性系统旳综合校正
二、试验内容
2、有一制导控制系统如图3.2所示。其中飞行器等 效传函G(s)=23/(s+23),设PI控制器传函 为Gc(s)=Kp+Ki/s,现设计PI控制器,使得 系统加入PI控制器后到达下列要求:
(1)稳定时间不大于1秒(超调不大于2%)。
[mag,phase,w]=bode(sys)
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w)
figure (3) nyquist(sys)
绘制Nyquist图
Using the margin function。 Gm=gain margin Pm=phase margin Wcg=freq.for phase=-180 Wcp=freq.for gain=0db
自动控制原理--第6章 线性控制系统的校正
自动控制原理
4
6.2 校正装置及其特性 6.2.1 无源校正装置
1. 无源超前网络
复阻抗:
Z1
1
R1 R1Cs
Z2 R2
所以超前网络的传递函数为:
Gc
(s)
Uo (s) Ui (s)
Z2 Z1 Z2
R2 1 R1Cs R1 R2 1 R1R2 Cs
1 1 aTs a 1 Ts
式中:
T R1R2 C R1 R2
立
g g 0 (c ) c (c )
(6-23)
(4)根据下述关系式确定滞后网络参数b和T
20 lg b L0 (c ) 0
1 bT
(1 5
~
1 10
)
c
(6-24) (6-25)
(5)验算已校正系统相角裕度和幅值裕度。
自动控制原理
25
例6-2 设一控制系统如图所示。要求校正后系统的静态速度误差 系数等于30s-1,相角裕度不低于40°,幅值裕度不小于10 dB,
系统剪切频率c4.4rad/s,相角裕度g 45°,幅值裕度
Kg (dB) 10dB。试选择串联无源超前网络的参数。
解 首先调整开环增益K。未校正系统为Ⅰ型系统,所以有
ess
1 K
0.1
故K值取为10时,可以满足稳态误差要求,则
Go (s)
10 s(s 1)
(6-22)
自动控制原理
21
画出其对数幅频渐近特性,由图中得出未校正系统剪切
串联校正
G(s)为系统不可变部分传递函数 Gc(s)为校正装置的传递函数
自动控制原理
2
并联校正
G(s)为系统不可变部分传递函数 Gc(s)为反馈通道中安置传递函数
(完整word版)自动控制原理线性系统串联校正实验报告五..(word文档良心出品)
武汉工程大学实验报告专业电气自动化班号指导教师姓名同组者无
SIMULINK仿真模型:
单位阶跃响应波形:
分析:由以上阶跃响应波形可知,校正后,系统的超调量减小,调节时间变短,稳定性
单位阶跃响应:
单位阶跃响应:
分析:由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发散
单位阶跃响应:
单位阶跃响应:
由以上仿真结果知,校正后,系统由不稳定变为稳定,系统的阶跃响应波形由发要求:正文用小四宋体,1.5倍行距,图表题用五号宋体,图题位于图下方,表题位于表上方。
西工大、西交大自动控制原理 第六章 线性系统的校正方法_04_反馈校正1231
,即:G2(s)G3(s) 1
则:E(s) 0 。完全消除了由输入信号 r(t) 引起的误差。
此时称为完全补偿。
复合控制不改变系统的稳定性(加入顺馈不改变系统的 闭环特征方程式),很好地解决了提高精度和稳定性之 间的矛盾。
二、对干扰信号的复合控制
要减小或消除由干扰信号引起的系统的稳态误差, 可采用如图所示的复合控制:
1800 900 86.90 82.40 56.30 43.30 故小闭环(内回路)稳定; 再计算小闭环(内回路)在ωc=13处的幅值:
20lg 2.86c 18.9db
0.25c 0.1c
满足 |G2Gc|>>1
(5)求反馈校正装置的传递函数Gc(s) 在求出的G2(s)Gc(s)中,代入已知的
G3 (s)
F (s)
R(s) E(s)
G1 (s)
G2 (s) C(s)
R(s) 0
C
f
(s)
E(s)
[1
G1 1
( s)G3 ( s)]G2 G1(s)G2 (s)
(
s)
F
(s)
不加补偿环节 G3(s) 时,
C
f
(
s)
E(s)
1
G2 ( s) G1 ( s )G2
(
s)
F
(
s)
显然,加入补偿环节 G3(s) 后,系统误差 e f (s) 减小了。
一、对输入信号的复合控制
要减小或消除由输入信号引起的系统稳态误差,可 以采用如下图所示的复合控制:
G3 (s)
R(s)
E(s) G1 (s)
G2 (s) C(s)
其中 G3(s) 为补偿环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 线性系统校正
一、实验目的
1. 利用Z-N 临界增益法则,初步调节PID 控制器参数。
2. 设计串联校正环节,使整个系统指标满足要求(附加题)。
二、实验内容与步骤
1. 已知阀控缸电液位置伺服系统开环传递函数为
⎪⎪⎭⎫ ⎝⎛++=1604.036001
)(2s s s s G
用Z-N 临界增益法则,设计串联PID 控制器参数,对比校正前后闭环系统阶跃响应指标 及幅频特性的变化。
试验步骤:
(1) 利用simulink 构建闭环系统模型。
(2) 构建P 控制器(见图1),找出系统的临界稳定增益Kc ,记录Kc 值,并根据示波器Scope 的图形求得系统临界稳定时的振荡周期Tc (见图2)。
图1 带有P 控制器的系统模型
(3) 依据Z-N 临界增益法(见图3),确定PID 控制器参数
图2 临界振荡阶跃响应曲线 图3 Z-N 临界增益法
(4) 构建PID 控制器,测试校正后系统的阶跃响应。
2.
已知单位负反馈系统开环传递函数为
()15.0100
)(+=s s s G
设计串联校正环节,使系统的相角裕度不小于30度,wc 不低于30rad/s 。
试验步骤:
(1) 写出校正后整个系统的传递函数()ys xs
s s s G +++='1115.0100)(。
(2) 令30)(180,1)(=+=='c c G ωϕγω,用solve 函数解二元一次方程组。
(3) 校验:将得出的x 、y 值代入)(s G '中,验证相角裕度及幅值裕度是否满足要求。
sqrt 函数举例:21x + matlab: sqrt(1+x^2)
atan 函数举例:u arctg matlab: atan(u)
solve 函数举例:
求()
()()ys s xs G +++=111100剪切频率为20rad/s ,相角裕度为20º时的x 、y 值。
[x y]=solve(…方程1‟,‟方程2‟)
方程1:()
()1201201201100)20(222=+++=y x j G .
matlab :100*sqrt(1+(x*20)^2)/(sqrt(1+20^2)*sqrt(1+(y*20)^2))=1
方程2:20)20()20()20(18020)(180=--+⇒=+=y arctg arctg x arctg c ωϕγ
matlab :180+atan(x*20)*180/3.1416-atan(20)*180/3.1416-atan(y*20)*180/3.1416=20 运行后,结果为x=0.005, y=0.246.
验证:()
()()s s s G 246.011005.01100+++=
matlab: num=[100*0.005 100];den=conv([1 1],[0.246 1]);sys=tf(num,den);margin(sys); 可知,此时系统剪切频率为20rad/s ,相角裕度为20.1º。
三、实验报告要求
1. 第1题:设定PID 参数后,存储simulink 模型,模型名称为“sim_学号1_学号
2.mdl ”。
2. 第2题:给出校正环节传递函数。