北师大版九年级中考数学模拟试卷(含答案)
北师大版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
北师大版九年级下册数学中考测试卷(含答案)

北师大数学中考模拟测试卷一、选择题:(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的.)1.(3分)的倒数是()A.2 B.﹣2 C.D.2.(3分)如图所示的物体是一个几何体,其主视图是()A.B.C.D.3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×1054.(3分)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.5.(3分)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x66.(3分)今年春节期间,我市某景区管理部门随机调查了1000名游客,其中有900人对景区表示满意.对于这次调查以下说法正确的是()A.若随机访问一位游客,则该游客表示满意的概率约为0.9B.到景区的所有游客中,只有900名游客表示满意C.若随机访问10位游客,则一定有9位游客表示满意D.本次调查采用的方式是普查7.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元8.(3分)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.9.(3分)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.10.(3分)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F11.(3分)正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.212.(3分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为()A.2 B.3 C.4 D.5二、填空题(本题共4小题,每小题3分,共12分).13.(3分)因式分解:ax2﹣4a=.14.(3分)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若BD=10cm,BC=8cm,则点D到直线AB的距离是cm.15.(3分)如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于.16.(3分)如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OAE的面积为.三、解答题(本题共7小题,其中第17小题6分,第18小题5分,第19小题8分,第20小题8分,第21小题8分,第22小题8分,第23小题9分,共52分.)17.(6分)计算:.18.(5分)解方程:.19.(8分)某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是台.20.(8分)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)21.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?22.(8分)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.(1)证明:△OAB∽△EDA;(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.23.(9分)已知,如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动,过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)求出S与t的函数关系式.参考答案与试题解析一、选择题:(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的.)1.(3分)(2016•巨野县二模)的倒数是()A.2 B.﹣2 C.D.【解答】解:∵﹣2×(﹣)=1,∴﹣的倒数是﹣2.故选;B.2.(3分)(2011•深圳)如图所示的物体是一个几何体,其主视图是()A.B.C.D.【解答】解:从物体正面看,看到的是一个等腰梯形.故选C.3.(3分)(2011•深圳)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×105【解答】解:56000=5.6×104.故选B.4.(3分)(2016•历城区二模)下列图案中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.5.(3分)(2011•深圳)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x6【解答】解:A、x2+x3≠x5,故本选项错误;B、(x+y)2=x2+y2+2xy,故本选项错误;C、x2•x3=x5,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.6.(3分)(2016•深圳二模)今年春节期间,我市某景区管理部门随机调查了1000名游客,其中有900人对景区表示满意.对于这次调查以下说法正确的是()A.若随机访问一位游客,则该游客表示满意的概率约为0.9B.到景区的所有游客中,只有900名游客表示满意C.若随机访问10位游客,则一定有9位游客表示满意D.本次调查采用的方式是普查【解答】解:根据题意,弄清这样一个抽样调查,从中知道若随机访问一位游客,则该游客表示满意的概率约为0.9,故A是正确的;1000名游客,其中有900人对景区表示满意,故B不正确;由题意知,满意的概率为0.9,这是一个统计数据,不一定随机访问10位游客,就一定有9位游客表示满意,故C不正确;由题意知,本次调查是用样本估计总体,是抽样调查,故D不正确.故选A.7.(3分)(2011•深圳)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选A8.(3分)(2010•深圳)已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B.C.D.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选C.9.(3分)(2005•深圳)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖、参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是()A.B.C.D.【解答】解:因为20个商标有5个中奖,翻了两个都中奖,所以还剩18个,其中还有3个会中奖,所以这位观众第三次翻牌获奖的概率是.故选B.10.(3分)(2014•深圳)如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.11.(3分)(2014•天津)正六边形的边心距为,则该正六边形的边长是()A.B.2 C.3 D.2【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选:B.12.(3分)(2016•扬州二模)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为()A.2 B.3 C.4 D.5【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故选A.二、填空题(本题共4小题,每小题3分,共12分).13.(3分)(2015•梧州)因式分解:ax2﹣4a=a(x+2)(x﹣2).【解答】解:ax2﹣4a=a(x2﹣4)=a(x﹣2)(x+2).故答案为:a(x﹣2)(x+2).14.(3分)(2016•深圳二模)如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC 于点D,若BD=10cm,BC=8cm,则点D到直线AB的距离是6cm.【解答】解:∵BD=10cm,BC=8cm,∠C=90°,∴DC=6cm,由角平分线定理得点D到直线AB的距离等于DC的长度,故点D到直线AB的距离是6cm;故答案为:6.15.(3分)(2009•本溪)如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC 内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于.【解答】解:∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.16.(3分)(2016•深圳二模)如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OAE的面积为2﹣2.【解答】解:过点E作EF⊥x轴,交x轴于点F,∵OD=2,即C横坐标为2,∴把x=2代入反比例解析式得:y=2,即C(2,2),∴CD=OD=2,即△OCD为等腰直角三角形,∵四边形ABCO为菱形,∴OC∥AB,OA=OC=2,∴∠EAF=45°,设EF=AF=x,则有OF=OA+AF=2+x,∴E(2+x,x),把E坐标代入反比例解析式得:x(2+x)=4,解得:x=﹣+(负值舍去),则△OAE面积S=OA•EF=×2×(﹣+)=22.故答案为:2﹣2三、解答题(本题共7小题,其中第17小题6分,第18小题5分,第19小题8分,第20小题8分,第21小题8分,第22小题8分,第23小题9分,共52分.)17.(6分)(2016•深圳二模)计算:.【解答】解:原式=2﹣3﹣1+1﹣2=﹣3.18.(5分)(2016•深圳二模)解方程:.【解答】解:方程两边同乘(x﹣4),得:3+x+x﹣4=﹣1,整理解得x=0.经检验x=0是原方程的解.19.(8分)(2016•深圳二模)某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机240台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是135°;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是55台.【解答】解:(1)由两种统计图可知一月份的销售量为60台,占前四个月销售量的25%,∴60÷25%=240,∴专卖店1~4月共销售这种品牌的手机240台;(2)如图(3)∵×360°=135°∴“二月”所在的扇形的圆心角的度数是135°;(4)排序后一三两月的销量位于中间位置,∴中位数为:(60+50)÷2=55台.20.(8分)(2014•昆明)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)【解答】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线;(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴CD=OD=2,∴阴影部分的面积=S△COD﹣S扇形DOE=×2×2﹣=2﹣.21.(8分)(2016•深圳二模)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?【解答】解:(1)设A型花和B型花每枝的成本分别是x元和y元,根据题意得:解得:所以A型花和B型花每枝的成本分别是5元和4元.(2)设按甲方案绿化的道路总长度为a米,根据题意得:1500﹣a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a)+4×5(1500﹣a)=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元.22.(8分)(2010•茂名)如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.(1)证明:△OAB∽△EDA;(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.【解答】(1)证明:如图所示,∵OA⊥OB,∴∠1+∠2=90°,又∵四边形ABCD是矩形,∴∠BAD=90°,∴∠2+∠3=90°,∴∠1=∠3,∵OA⊥OB,OE⊥OA,∴∠BOA=∠DEA=90°,∴△OAB∽△EDA.(2)解:在Rt△OAB中,AB==5,由(1)可知∠1=∠3,∠BOA=∠DEA=90°,∴当a=AD=AB=5时,△AOB与△EDA全等.当a=AD=AB=5时,可知矩形ABCD为正方形,∴BC=AB,如图,过点C作CH⊥OE交OE于点H,则CH就是点C到OE的距离,过点B作BF⊥CH交CH于点F,则∠4与∠5互余,∠1与∠5互余,∴∠1=∠4,又∵∠BFC=∠BOA,BC=AB,∴△OAB≌△FCB(AAS),∴CF=OA=4,BO=BF.∴四边形OHFB为正方形,∴HF=OB=3,∴点C到OE的距离CH=CF+HF=4+3=7.23.(9分)(2016•深圳二模)已知,如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动,过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)求出S与t的函数关系式.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得:,故抛物线解析式为y=x2﹣x;(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)如图,点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,重叠部分的面积等于△POQ的面积,S=×(2t)×=t2,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.。
北师大版九年级中考数学模拟考试试题(含答案)(山东地区)

九年级中考数学模拟考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。
2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。
(完整)北师大版中考数学模拟试题及答案,推荐文档

九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<x B 、135<<x C 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD >CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C ′E .求证:四边形CDC ′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及A DEB C C ′ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。
北师大版九年级数学中考模拟试题及答案

学校叉车厂子校 命题人 李新军一. 选择题 (3×10=30分)1.31-的绝对值是( )A . -3B .31C . 3D . 31-2. 根据国务院抗震救灾总指挥部权威发布:截止2020年6月13日12时,全国共接受国内外社会各界捐赠款物总计455.02亿元. 455.02亿元用科学记数法表示为( ) A .4.5502×108元B . 4.5502×109元 C.4.5502×1010元D . 4.5502×1011元3. 下列各式运算正确的是( ) A .21-=2- B .23=6C .632222=⋅D .6232)2(= 4.下列各式计算正确的是( )A . )1(222--=--y x x x xy xB . )32(322---=-+-x xy y y xy xyC . 2)()()(y x y x y y x x -=---D . 3)1(32--=--x x x x5.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于A .1B .2C .1或2D .06.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是A .10B .16C .18图 1C .312y y y <<D .132y y y <<8.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有A .2个B .3个C .4个D .5 个9.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为A .22cmB .2cmC .22cm D .21cm10.如图,两个高度相等且底面直径之比为1∶2的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P 的距离是A .43cmB .6cmC .8cmD .10cm二. 填空题(3×6=18分)11.不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .12.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .14.如图,在∆ABC 中,EF 为∆ABC 的中位线,D为BC 边上一点(不与B 、C 重合),AD 与EF 交于点O,连接BE DACOAOB第9题图 第10题图DE、DF,要使四边形AEDF为平行四边形,需要添加条件.(只添加一个条件)15.如图:矩形纸片ABCD,AB=2,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是.16.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so.研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x、5、3(x>5),则x的值是.三.答题(共9小题,计72分)17.(5分)先化简,再求值:⎪⎭⎫⎝⎛--÷-+xxxxx1211,其中2=x18.(6分)在梯形ABCD中,AB∥CD,∠A=90°, AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.19.(7分)四川汶川大地震牵动了我市三百多万人民的心,全市广大中学生纷纷伸出了援助之手,为抗震救灾踊跃捐款。
北师大版九年级下学期数学中考模拟试卷(含答案)

九年级数学中考模拟试卷(满分150分时间:120分钟)一.单选题。
(共40分)1.﹣2023的相反数是()A.﹣12023B.12023C.﹣2023D.20232.如图所示,该几何体的左视图是()A. B. C. D.3.一个数是1290,这个数用科学记数法表示为()A.1.29×104B.12.9×102C.1.29×103D.0.129×1044.如图所示,AE∥CD,EF⊥ED,垂足为E,∠1=28°,则∠2的度数为()A.30°B.40°C.62°D.50°(第4题图)(第7题图)(第9题图)5.下列图形中,是中心对称但不是轴对称图形的是()A.B. C. D.6.下列运算正确的是()A.2a2+3a3=5a5B.(-2a)3=-6a3C.(m+n)2=m2+n2D.(3m+2)(2-3m)=4-9m27.△ABC的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C(﹣1,1),将△ABC先沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移2个单位长度,得到△A’B’C’,则点A 的对应点的坐标是()A.(﹣6,6)B.(0,2)C.(0,6)D.(﹣6,2)8.若k>1,则一次函数y=(k-1)x+1-k的图象是()A. B. C. D.9.如图,在菱形ABCD中,分别以C,D为圆心,大于12CD长为半径作弧两弧,分别交于点E、F,连接EF,若直线EF恰好经过点A,与边CD交于点M,连接BM.则下列结论中错误的是()A.∠ABC=60°B.如果AB=2,那么BM=4C.BC=2CMD.S ADM=1S△ABM10.二次函数y=ax2+2ax+3(a≠0),当a-1≤x≤2时二次函数的函数值y恒小于4,则a的取值范围为()A.a<18B.a>-1 C.0<a<18或a<0 D.0<a<18或-1<a<0二.填空题。
北师大版九年级数学中考模拟试卷及答案

北师大版九年级数学中考模拟试卷及答案一、选择题:1.如图中几何体的俯视图是()2.平行四边形一边的短就是10cm,那么这个平行四边形的两条对角线短可以就是()a.4cm,6cmb.6cm,8cmc.8cm,12cmd.20cm,30cm3.例如图,de就是△abc的中位线,若bc的短为3cm,则de的短就是()a.2cmb.1.5cmc.1.2cmd.1cm4.已知图中的两个三角形全等,则∠?的度数是()a.72°b.60°c.58°d.50°5.如图,将边长为8m的正方形abcd折叠,使点d落在bc边的中点e处,折痕为mn,则线段cn的长是()a.3cmb.4cmc.5cmd.6cm6.例如图,梯形abcd中,ab∥cd,ac、bd处设e,若s△dce∶s△dcb=1∶3,则cd∶ab=()a.1s3b.1s2c.2s3d.1s47.例如图,在rt△abc中,ab=ac,ad⊥bc,像距为d,e、f分别就是cd、ad上的点,且ce=af.如果∠aed=62o,那么∠dbf=()a.62ob.38oc.28od.26o8.如图,ab∥cd,且?1?115°,?a?75°,则?e的度数是()a.30°b.50°c.40°d.60°9.如图,菱形abcd中,∠b=60°,ab=5,则ac=().a.3b.4c.5d.610.下列函数:①y??x;②y?2x;③y??12;④y?x.当x?0时,y随x的增大而减小的函数有()x个a.1b.2c.3d.4二、填空题:11.水解因式a?ab?.12.一次函数y??x?1的图像经过点p(m,m-1),则m=.13.若a?1?b?2?0,点m(a,b)在反比例函数y?的图像上,则反比例函数的解析式为__________x14.一个等腰三角形的两边长分别是4cm和5cm,则它的周长为_______________cm.15.如图一副三角板叠放在一起,则图中∠?的度数是.16.例如图,在△abc中,p就是ab上一点,联结cp,当满足条件时△acp∽△abc17.如图,菱形abcd的对角线交于平面直角坐标系的原点,顶点a坐标为(-2,3),现将菱形绕点o顺时针方向转动180°后,a点座标变成____________.18.如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长ac和bd相等,oc=od)量零件的内孔直径ab.若oc∶oa=1∶2,量得cd=10mm,则零件的厚度x?_____mm.19.如图,等腰梯形abcd中,ad∥bc,且ad?1bc,e为ad上一点,ac与be交于点f,若2ae:de?2:1,则△aef的面积?△cbf的面积20.如图,小明同学在东西方向的环海路a处,测得海中灯塔p在北偏东60°方向上,在a处东500米的b处,测出海中灯塔p在北偏东30°方向上,则灯塔p至环海路的距离pc=米(用根号则表示)三、计算题1?1?21.排序(5?3)°?2sin45°?2?1?2?22.求解分式方程:113x2x23.谋不等式组??x?1≥1?x,的整数解.x?8?4x?1.?3x2?4x2?x??x,其中x?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级中考数学模拟试卷(满分150分 时间120分钟)一.选择题(共40分) 1.2023的相反数是( )A.2023B.12023 C.﹣12023 D.﹣20232.如图四个几何体中,主视图、左视图、俯视图都相同的几何体是( )A. B. C. D. 3.神舟十五号载人飞船,搭载3名航天员于2022年11月29日成功发射,它的飞行速度大 约是474000米/分,这个数字用科学记数法表示为( )A.4.74×105B.4.74×106C.47.4×104D.0.474×1064.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=( ) A.60° B.50° C.40° D.30°(第4题图) (第 6题图) (第7题图) 5.下列标志图中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.数a 、b 、c 在数轴上的位置如图所示,其中b 、c 到原点的距离相等,下列式子正确的 是( )A.a+c >0B.a+b >0C.b+c >0D.a -b <07.在如图所示的电路图,当随机闭合开关K 1、K 2、K 3中的任意两个时,能使灯泡发亮的概率为( )A.13 B.12 C.23 D.34 8.计算mm -1+11-m 的结果是( )A.1B.﹣1C.2D.﹣29.如图,在△ABC 中,已知∠B=45°,∠C=30°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若DE=3,则AB 的长为( )A.5√2B.5C.3√6D.4√3(第9题图)10.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点为整点.对于题目:抛物线 y=ax (x -4)+m (a ≠0)与x 轴分别交于M 、N 两点(点M 在点N 的左侧),MN=2,线段 MN 与抛物线围成的封闭区域记作G (包括边界),若区域G 内有6个整点,求a 的取值范围.则( )A.3≤a <4B.﹣4<a ≤﹣3C.﹣4<a ≤﹣3或3≤a <4D.﹣4<a <﹣3或3≤a <4 二.填空题(共24分)11.分解因式:x 2-116= .12.正方形地板由9块边长均相等的小正方形组成,一粒米随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是 。
(第12题图) (第15题图) (第16题图) 13.比较大小:﹣2 ﹣√3. 14.若2x -2与3x+2互为相反数,则x 的值为 .15.如图,AB 是⨀O 直径,弦CD 与AB 相交,若∠ACD=60°,则∠BAD 的大小是 . 16.如图,已知△ABC ,AB=AC ,BC=16,AD ⊥BC ,∠ABC 的平分线交AD 于点E ,且DE=4.将 ∠C 沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有: .(填序号) ①BD=8;②点E 到AC 的距离为3;③EM=103;④EM ∥AC ;⑤AE=203。
三.解答题(共10小题)17.(6分)计算:|﹣√3|+(4-π)0-2sin60°-(12)﹣1.18.(6分)解不等式组:{2+x>7-4xx<4+x2,并求出所有整数解的和.19.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,DF⊥AC于点F.求证:AE=DF.20.(8分)某校无人机兴趣小组在某桥附近试飞无人机,如图,为了测算无人机飞行高度,兴趣小组进行了如下操作:无人机从C处垂直上升到D处,在此处测得桥头A,B的俯角分别为∠EDA=60°,∠EDB=30°,且A,B,C在同一水平线上,已知桥AB=100米,求无人机飞行的高度DC.(结果精确到1米,√2≈1.414,√3≈1.732)21.(8分)如图,AD是⨀O的直径,AB为⨀O的弦,OP⊥AD,OP与AB的延长线交于点P,过点B的切线交OP于点C.(1)求证:∠CBP=∠ADB;(2)若OA=6,AB=4,求线段BP的长.22.(10分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制并取整数)进行整理、描述和分析,部分信息如图:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题.(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,则两位学生在各自年级所抽取的50名学生的排名中(填甲或乙)更靠前;(4)该校七年级学生有400人,假设全部参加此次测试,请估算七年级成绩超过平均数76.9分的人数.23.(10分)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.24.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=k(k>0,x>0)的图象上,点D的坐标为(4,3).x(1)求反比例函数的关系式;(k>0,x>0)的图象上时,(2)若将菱形边OD沿x轴正方向平移,当点D落在函数y=kx求线段OD扫过图形的面积.(3)在x轴上是否存在一点P使PA+PB有最小值,若存在,请求出点P坐标;若不存在,请说明理由.25.(12分)如图1,已知△ABC和△ADE均为等腰直角三角形,点D、E分别在线段AB、AC 上,∠C=∠AED=90°.(1)观察猜想:如图2,将△ADE绕点A逆时针旋转,连接BD、CE,BD的延长线交CE于点F.当BD的延长线恰好经过点E时,点E与点F重合,此时,的值为;②∠BFC的度数为度;①BDCE(2)类比探究:如图3,继续旋转△ADE,点F与点E不重合时,上述结论是否仍然成立,请说明理由.(3)拓展延伸:若AE=DE=√2,AC=BC=√10,当CE所在的直线垂直于AD时,请你直接写出线段BD的长.26.如图,抛物线y=﹣x 2+bx+c 与x 轴交于A 、B 两点(B 在A 的右侧),且与直线y=x+2交于A ,C 两点,已知B 点的坐标为(6,0). (1)求抛物线的函数表达式;(2)点E 是线段AC 上一点,且满足CE AE =16;①若点P 为直线AC 上方抛物线上一动点,设点P 的横坐标为t ,当t 为何值时,△PEA 的 积最大;②过点E 向x 轴作垂线,交x 轴于点F ,在抛物线上是否存在一点N ,使得∠NAC=∠FEB .若存在,直接写出点N 的坐标,若不存在,请说明理由.答案解析一.选择题(共40分) 1.2023的相反数是( D )A.2023B.12023 C.﹣12023 D.﹣20232.如图四个几何体中,主视图、左视图、俯视图都相同的几何体是( B )A. B. C. D. 3.神舟十五号载人飞船,搭载3名航天员于2022年11月29日成功发射,它的飞行速度大 约是474000米/分,这个数字用科学记数法表示为( A )A.4.74×105B.4.74×106C.47.4×104D.0.474×1064.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=( B ) A.60° B.50° C.40° D.30°(第4题图) (第 6题图) (第7题图) 5.下列标志图中,既是轴对称图形,又是中心对称图形的是( B )A. B. C. D. 6.数a 、b 、c 在数轴上的位置如图所示,其中b 、c 到原点的距离相等,下列式子正确的 是( A )A.a+c >0B.a+b >0C.b+c >0D.a -b <07.在如图所示的电路图,当随机闭合开关K 1、K 2、K 3中的任意两个时,能使灯泡发亮的概率为( C )A.13 B.12 C.23 D.34 8.计算mm -1+11-m 的结果是( A )A.1B.﹣1C.2D.﹣29.如图,在△ABC 中,已知∠B=45°,∠C=30°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若DE=3,则AB 的长为( C )A.5√2B.5C.3√6D.4√3(第9题图)10.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点为整点.对于题目:抛物线 y=ax (x -4)+m (a ≠0)与x 轴分别交于M 、N 两点(点M 在点N 的左侧),MN=2,线段 MN 与抛物线围成的封闭区域记作G (包括边界),若区域G 内有6个整点,求a 的取值范围.则( C )A.3≤a <4B.﹣4<a ≤﹣3C.﹣4<a ≤﹣3或3≤a <4D.﹣4<a <﹣3或3≤a <4 二.填空题(共24分)11.分解因式:x 2-116= (x+14)(x -14) .12.正方形地板由9块边长均相等的小正方形组成,一粒米随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是 29 。
(第12题图) (第15题图) (第16题图) 13.比较大小:﹣2 < ﹣√3. 14.若2x -2与3x+2互为相反数,则x 的值为 x=25 .15.如图,AB 是⨀O 直径,弦CD 与AB 相交,若∠ACD=60°,则∠BAD 的大小是 30° . 16.如图,已知△ABC ,AB=AC ,BC=16,AD ⊥BC ,∠ABC 的平分线交AD 于点E ,且DE=4.将 ∠C 沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有: ①④⑤ .(填序号) ①BD=8;②点E 到AC 的距离为3;③EM=103;④EM ∥AC ;⑤AE=203。
三.解答题(共10小题)17.(6分)计算:|﹣√3|+(4-π)0-2sin60°-(12)﹣1. 解:原式=√3+1-2×√32-2 =﹣118.(6分)解不等式组:{2+x >7-4x x <4+x 2,并求出所有整数解的和. 解:由2+x >7-4x ,得:x >1,由x <4+x2,得:x <4,则不等式组的解集为1<x <4,所有整数解的和为2+3=5.19.(6分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,DF ⊥AC 于点F .求证:AE=DF .证明:∵四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,∴OA=OC=OB=OD ,∵AE ⊥BD ,DF ⊥AC ,∴∠AEO=∠DFO=90°,又∵∠AOE=∠DOF∴△AOE ≌△DOF (AAS),∴AE=DF .20.(8分)某校无人机兴趣小组在某桥附近试飞无人机,如图,为了测算无人机飞行高度,兴趣小组进行了如下操作:无人机从C 处垂直上升到D 处,在此处测得桥头A ,B 的俯角分别为∠EDA =60°,∠EDB =30°,且A ,B ,C 在同一水平线上,已知桥AB =100米,求 无人机飞行的高度DC .(结果精确到1米,√2≈1.414,√3≈1.732)解:∵∠EDA =∠DAC =60°,∠EDB =∠DBA =30°,∴∠BDA =∠EDA ﹣∠EDB =30°,∴∠DBA =∠BDA =30°,∴AD =AB =100 米,∵∠DCA =90°,∴sin ∠DAC=CD AD =sin60°=√32∴DC=√32AD=√32×100=50√3≈87(米),答:无人机飞行的高度DC 约为87米.21.(8分)如图,AD 是⨀O 的直径,AB 为⨀O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P , 过点B 的切线交OP 于点C .(1)求证:∠CBP=∠ADB ;(2)若OA=6,AB=4,求线段BP 的长.解:(1)证明:连接OB ,∵AD 是⨀O 的直径,∴∠ABD=90,∴∠A+∠ADB=90°,∵CB 是⨀O 的切线,∴OB ⊥BC ,∴∠OBA+∠CBP=90°,∵OA=OB ,∴∠OBA=∠OAB ,∴∠CBP=∠ADB ;(2)解:∵∠ABD=90°,OP ⊥AD ,∴∠ABD=∠AOP=90°,∴∠D=90°-∠A ,∠P= 90°-∠A ,∴∠D=∠P ,∵∠ABD=∠AOP=90°,∴△ABD ∽△AOP ,∴AD AP =AB AO ,即124+BP =46解得,BP=14.22.(10分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制并取整数)进行整理、描述和分析,部分信息如图:a .七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题.(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,则两位学生在各自年级所抽取的50名学生的排名中(填甲或乙)更靠前;(4)该校七年级学生有400人,假设全部参加此次测试,请估算七年级成绩超过平均数76.9分的人数.(1)23(2)77.5(3)甲(4)400×5+15+850=224人答:224人。