两个计数原理PPT教学课件

合集下载

两个计数原理课件

两个计数原理课件

排列组合问题练习
总结词
通过排列组合问题的练习,学生可以加深对计数原理的理解,掌握排列和组合的计算方法。
详细描述
排列组合问题是计数原理的重要应用之一,通过这类问题的练习,学生可以学习到如何对问题进行分类和分步, 从而应用计数原理进行计算。
概率计算问题练习
总结词
概率计算问题练习有助于学生掌握概率的基本计算方法,理解概率与计数原理的关系。
分步计数原理广泛应用于计算机科学 、运筹学、生产调度等领域,用于解 决不同分步问题。
在应用分步计数原理时,需要确保各 个步骤之间是相互独立的,即每个步 骤的结果不影响其他步骤的实施。
两个计数原理的异同点
相同点
分类计数原理和分步计数原理都是用于解决计数问题的基本原理,都涉及到将问 题分解为更小的部分,并分别计算每部分的方法数,最后通过加法或乘法得到总 的方法数。
02
分类计数原理应用
分类计数原理广泛应用于组合数学、 概率论、统计学等领域,用于解决不 同分类问题。
03
分类计数原理注意事 项
在应用分类计数原理时,需要确保各 个分类之间是互斥的,即每个事件不 能同时属于多个分类。
分步计数原理
分步计数原理定义
分步计数原理应用
分步计数原理注意事项
分步计数原理也称为乘法原理,是指完成一件 事情,需要分成$n$个步骤,第一步有$n_1$种 不同的方法,第二步有$n_2$种不同的方法, 第$n$步有$n_n$种不同的方法,则完成这件事 情共有$N=n_1times n_2times...times n_n$ 种不同的方法。
条件概率
条件概率是概率论中的一个重要概念,可以使用分步计数原理来解释和计算。在条件概率 中,我们关注某个事件在另一个事件发生的前提下的概率,可以通过分步计数原理来计算 。

《两个计数原理》课件

《两个计数原理》课件

例题演练
- 一家公司有5名员工,其中2名男性和3名女性, 公司要选出一名发言人,那么有多少种不同的选 择方案?
加法原理
活动A 是 否 否
活动B 否 是 否
活动C 否 否 是
某购物中心为了吸引顾客,推出了3个活动,每个顾客只能选其中一个参加,假设有100名顾客来到购 物中心,那么最多有多少人能参加活动?
乘法原理
1
定义
- 什么是乘法原理理?
- 一支乐队有4名演奏者和3支乐器, 演奏者必须担任其中的一项,那么有
多少种不同的演奏方案?
加法原理
定义
加法原理是指在一系列互斥的事件中,每个事件 都有若干种可能的选择,那么所有事件的选择方 案的总数等于每个事件选择方案数的总和。
《两个计数原理》PPT课 件
在数学中,有两个重要的计数原理,分别是乘法原理和加法原理。
乘法原理
定义
乘法原理是指在多个事件中,每个事件都有若干种可能的选择,那么所有事件的选择方案的 总数等于每个事件选择方案数的乘积。
例题演练
如果一位参赛者需要有3个不同的场馆训练,场馆共有4个,那么有多少种不同的训练方案?

最新两个计数原理优秀课件

最新两个计数原理优秀课件
N=3×2×4×3=72
3、乘积 (a1+ a2+ a3)(b1+ b2+ b3)(c1+ c2+ c3+ c4) 展开后共有多少项?
N=3×3×4=36
3、分类计数原理和分步计数原理的联系与区别
联系 分类计数原理和分步计数原理,回答的 都是有关做一件事情的不同方法的种数的问 题。
区别 分类计数原理:针对的是“分类”问题, 其各种方法互相独立,用其中任何一种方 法都可以做完这件事。
练习:
2、若集合A={a1,a2,a3,a4,a5}, B={b1,b2,b3},则从A到B可建立 _____个不同的映射,从B到A 可建立___个不同的映射。
例2、由数字1,2,3,4可以组成多少个 三位数?
变式1:若各位数字不允许重复,则 有多少个三位数? 变式2:由数字0,1,2,3,4,可组成 多少个无重复数字的三位数? 变式3:由数字0,1,2,3,4可以组 成多少个无重复数字的三位偶数? 变式4:在不大于200的正整数中, 各个数位都不含有数字8的自然数 有多少个?
例3、某文艺小组有10人,每人 至少会唱歌和跳舞中的一项,其 中7人会唱歌,5人会跳舞,从中 选出会唱歌与会跳舞的各1人, 有多少种不同的选法?
例4、用5种不同的颜色给图中A、 B、C、D四个区域涂色,规定每 个区域只涂一种颜色,相邻区域 颜色不同,求有多少种不同的涂 色方法?
AA CB
BD DC
分步计数原理:针对的是“分步”问题, 各个步骤的方法相互依存,只有各个步骤 都完成了才算做完这件事。
例1 图书馆的书架上第1层放有4本不 同的《读者》,第 2层放有3本不同的 《小小说月刊》,第3层放有2本不同的 《足球》

两个计数原理优秀PPT课件

两个计数原理优秀PPT课件

2、为了对某农作物新品选择最佳生产条 件,在分别有3种不同土质,2种不同施肥量,4 种不同种植密度,3种不同时间的因素下进 行种植试验,则不同的实验方案共有多少种?
N=3×2×4×3=72
3、乘积 (a1+ a2+ a3)(b1+ b2+ b3)(c1+ c2+ c3+ c4) 展开后共有多少项?
都完成了才算做完这.件事。
12
例1 图书馆的书架上第1层放有4本不
同的《读者》,第 2层放有3本不同的
《小小说月刊》,第3层放有2本不同的
《足球》
(1)从书架上任取1本书,有多少种不同
的取法?
(2)从书架的第1、 2、 3层各取1本书,
有多少种 不同取法?
(3)从这些书中选2本不同类的书,有
多少种不同的取法?.
18
例1、四封不同的信投入3个不同的
邮箱,共有多少种不同的投法?
练习: 4位同学参加3项不同的竞赛:
(1)每名学生只能参加一项竞赛,有
多少种不同的报名方案?
(2)每项竞赛只许有一位学生参加,
有多少种不同的报名方案?
(3)每位学生只能参加一项竞赛,每
项竞赛只许有1位学生参加,有多少种
不同的报名方案? .
13
例2 给程序模块命名,需要 用3个字符,其中首字符要求 用字母A-G或U-Z,后两个 要求用数字1-9。问最多可以 给多少个程序命名?
.
14
例3 桐乡市电话号码057388××××××,若从 0~9这10个数字中选数,问可以产生多少个不 同的电话号码?
057388
10× 10 × 10 × 10× 10× 10 =106
19

《两个计数原理》课件

《两个计数原理》课件

概率计算问题
概率的基本性质
概率具有非负性、规范性、可加性等基本性质,用于描述随机事件发生的可能性。
概率计算方法
通过列举法、古典概型、几何概型等方法计算概率。
分步计数原理在概率计算问题中的应用
将复杂事件分解为若干个简单事件的组合,利用分步计数原理计算每个简单事件发生的概率,然后根据 概率的加法原则和乘法原则计算出复杂事件发生的概率。
04
两个计数原理的实例分析
排列组合实例
总结词
通过具体实例,理解排列与组合的概念及计算方法。
详细描述
通过实际生活中的例子,如不同颜色球的不同排列方式、不同组合的彩票中奖 概率等,来解释排列与组合的基本概念,以及如何使用计数原理进行计算。
概率计算实例
总结词
通过实例掌握概率计算的基本方 法。
详细描述
选择分步计数原理
当问题涉及多个独立步骤,且需要按照顺序逐步计算每一步 的数量时,应选择分步计数原理。例如,计算排列数时,需 要按照顺序计算从n个不同元素中取出k个元素的所有排列数 。
THANK YOU
感谢聆听
05
总结与思考
两个计数原理的异同点
相同点
两个计数原理都是用来解决计数问题,特别是涉及多个独立事件 的问题。
不同点
分类计数原理是针对完成某一任务的不同方式进行计数,而分步 计数原理则是针对完成某一任务的不同步骤进行计数。
两个计数原理的应用范围
分类计数原理
适用于问题涉及多种独立的方式或方法,需要分别计算每一种方式或方法的数量 ,然后求和得到总数。
分步计数原理的适用范围是:当完成 一个任务时,需要分成几个有序的步 骤,并且各个步骤之间有相互影响。
两个计数原理的对比

高二数学选修23两个计数原理1ppt.ppt

高二数学选修23两个计数原理1ppt.ppt
N m1 m2 mn
种不同的方法。
分步计数原理又称为乘法原理。
例1、某班共有男生28名、女生20名,从该班选出学生代 表参加校学代会。
(1)若学校分配给该班1名代表,有多少种不同的选法?
(2)若学校分配给该班2名代表,且男女生代表各1名, 有多少种不同的选法?
例2、书架的第1层放有4本不同的计算机书,第2层放有3 本不同的文艺书,第3层放有2本不同的体育书,
N m1 m2 mn
种不同的方法。
分类计数原理又称为加法原理。
问题4:从甲地到乙地,要从甲地选乘火 车到丙地,再于次日从丙地乘汽车到乙地。一 天中,火车有3班,汽车有2班。那么两天中, 从甲地到乙地共有多少种不同的走法?
这个问题与前一个问题有什么区别?
分步计数原理 完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步 有m2 种不同的方法,…,做第n步时有mn种不 同的方法。那么完成这件事共有
(1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的
取法?
练习1、要从甲、乙、丙3名工人中选出2名分别上日班和 晚班,有多少种不同的选法?
练习2、在下面两个图中,使电路接通的不同方法各有多 少种?
A
B (1)
A
B
(2)
练习3、为了确保电子信箱的安全,在注册时,通常要设 置电子信箱密码。在某网站设置的信箱中。 (1)密码为4位,每位均为0到9这10个数字中的一个数字, 这样的密码共有多少个?
排列及排列公式
组合及组合公式 两个计数原理
应用
二项式定理
1.1 两个基本计数原理
问题3:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?

两个计数原理优秀课件1

两个计数原理优秀课件1

子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
结束
2)在实际测试中,程序 开始 员总是把每一个子模块看 成一个黑箱,即通过只考 察是否执行了正确的子模 子模块3 子模块2 子模块1 块的方式来测试整个模块。 28条执行路径 45条执行路径 18条执行路径 这样,他可以先分别单独 测试5个模块,以考察每 A 个子模块的工作是否正常。 总共需要的测试次数为: 18+45+28+38+43=172。 子模块5 子模块4 43条执行路径 38条执行路径 再测试各个模块之间的信 息交流是否正常,需要测 试的次数为:3*2=6。 如果每个子模块都正常工 结束 作,并且各个子模块之间 的信息交流也正常,那么 这样,测试整个模块的次数就变为 整个程序模块就正常。 172+6=178(次)
在解题有时既要分类又要分步。
19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。 31、理想是美好的,但没有意志,理想不过是瞬间即逝的彩虹。 32、骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。——荀况 33、伟大的理想只有经过忘我的

两个计数原理ppt课件

两个计数原理ppt课件
语文、物理书各一本,问有多少种不同的取法?
有三个步骤
共有多少种不同的取法
第1步, 第2步, 第3步,
各 取 一 本 书
从上层 15本数 学书任 取一本, 有15种 取法;
从中层 18本语 文书任 取一本, 有18种 取法;
从下层
7 本 物
理书任
取一本, 有7种
取法.
N=15×18×7=1890
9
例4 某农场要在4种不同类型的土地上,试验种植
5
N=15+18+7 =40(种)
例 2 某班同学分成甲、乙、丙、丁四个
小组,
甲组 9 人,乙组 11 人,丙组 10 人,丁组
9 人. 现要解求该根班据选分派类一计人数去原参理加,某项活动,问
不同的选法有一多共少有: N=9种+不11同+的10选+法9=?
39(种).
6
问题2 由 A 地去 C 地,中间必须经过 B 地,且
(2)由这三个班中各选 1 名三好学生,出席三 好学生表彰会,有多少种不同的选法?
解 (1) 依分类计数原理,不同的选法种数是 N=8+6+9=23;
(2) 依分步计数原理,不同的选法种数是 N=8×6×9=432.
13
分类计数原理 分步计数原理 两个原理的区别与联系
14
种不同的走法.
问题解(33):×完2成=这6 (件种事).有多少种不同的方法?
7
(二)分步计数原理
有 n 个步骤
共有多少种不同的方法
完 成
一→
件 事
第 1 步 有
m1
种→
不 同 的 方 法

2


m2
种 不
→ …→
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 从书架的第1,2,3层各取1本书,可以分3个步骤
完成:
第1步:从第1层取1பைடு நூலகம்语文书,有5种取法;
第2步:从第2层取1本数学书,有3种取法;
第3步:从第3层取1本英语书,有6种取法.
根据分步乘法计数原理,共有
N2=020m/101/1·6 m2·m3=5×3×6=90种取法.
10
应用
分步乘法计数原理回答的也是做一件事的 不同方法的种数问题,针对的是“分步” 问题,各个步骤中的方法相互依存,只有 各个步骤都完成了,才算做完这件事.
2020/10/16
6
观察
从甲地到乙地,要先从甲地乘火车到丙地, 次日再从丙地乘汽车到乙地.一天中,火车 有3班,汽车有2班.那么,两天中,从甲地 到乙地共有多少种走法?
2020/10/16
7
探究
因此,从甲地到乙地共有 3×2=6
种不同的方法.如图113❶所示.
提示:图113是解决 计数问题常用的“树状 图”.
2020/10/16
8
结论
如果完成一件事需要n个步骤,做第1步有m1种 方法,做第2步有m2种方法,……,做第n步有mn 种方法,并且只有这n个步骤都完成后这件事才能
完成,那么,完成这件事共有
种方法.
N=m1·m2·…·mn
以上的计数原理叫作分步乘法计数原理.
2020/10/16
9
应用
例2.书架的第1层放有5本不同的语文书,第2层放有3 本不同的数学书,第3层放有6本不同的英语书.从书架 的第1,2,3层各取1本书,有多少种取法?
3.在100件产品中,有96件合格品,4件次品,从中抽
取一件来检验,共有多少种抽取方法?
2020/10/16
5
练习
4.商店里有5种不同款式的上衣,4种不同款式的裤 子,某人要买一件上衣或一条裤子,共有多少种选法?
5.某幼师班有8名男生,41名女生,要从中选出一 名学生作为班级合唱比赛的指挥,共有多少种选法?
2020/10/16
13
应用
用两个计数原理解决计数问题时,最重要的是在开始计 算之前进行仔细分析——是需要分类还是需要分步.
分类要做到“不重不漏”.分类后再分别对每一类计数, 最后用分类加法计数原理求和,得到总数.
分步要做到“步骤完整”.完成了所有步骤,恰好完成 任务.当然,步与步之间要相互独立.分步后再计算每 一步的方法数,最后根据分步乘法计数原理,把完成每 一步的方法数相乘,得到总数.
第2类:从第2层取1本数学书,有3种方法;
第3类:从第3层取1本英语书,有6种方法.
根据分类加法计数原理,共有
N=m1+m2+m3=5+3+6=14种不同的取法. 分类加法计数原理回答的是做一件事的不同方法的种数
问题,针对的是“分类”问题,其中各种方法互相独立,
用2其020/中10/1任6 何一种方法都可以完成这件事.
4
练习
1.一项工作可以用2种方法完成,有8人只会用第1种 方法完成,另有7人只会用第2种方法完成,从中选1人来 完成这项工作,共有多少种选法?
2.某中职学校二年级共有3个机械班.机械(1)班、机 械(2)班、机械(3)班分别有10人、16人、11人会下围 棋.想从这3个班级中选一名学生去参加市里的围棋比赛, 共有多少种选法?
2020/10/16
15
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
种方法.
N=m1+m2+…+mn
以上的计数原理叫作分类加法计数原理.
2020/10/16
3
应用
例1.书架的第1层放有5本不同的语文书,第2层放有 3本不同的数学书,第3层放有6本不同的英语书.从书 架中任取1本书,有多少种取法?
解 从书架中任取1本书,有3类方案:
第1类:从第1层取1本语文书,有5种方法;
想一想:你能说出分 类加法计数原理与分步乘 法计数原理的区别吗?
2020/10/16
11
应用
提示:分步要做到
例3.一张银行卡的密码往往由六位“数步骤字完组整成”,.每位 数字都可取0到9共10个数字中的任一个,则共可设多少 种银行卡密码?❷
解 用图114来表示银行卡的密码.
每位数的数字有10种取法,根据分步乘法计数原理, 共可以设 N=10×10×10×10×10×10=106种银行卡密码.
2020/10/16
14
练习
1.某中职学校食堂午餐备有10种不同的荤菜和6种不同 的素菜.
(1)从中任取一种菜,有多少种选法? (2)从中任取一种荤菜和一种素菜,有多少种选法?
2.某中职学校二年级机械(1)班和机械(2)班分别有10人、 16人会下围棋.这两个班之间举行围棋比赛,要求机械(1) 班的每名棋手与机械(2)班的每名棋手都比赛一场,共要比 赛多少场?
2020/10/16
12
应用
提示:分类要做到
例4.甲厂生产的手机有4种不同的“外不壳重形不状漏”,.5种不同 的颜色,乙厂生产的手机有6种不同的外壳形状,8种不 同的颜色,这两厂生产的手机仅从外壳的形状和颜色看, 共有多少种品种?❸
解 手机的品种可分两类: 第1类:甲厂手机的种类,分两步考虑.形状有4 种,颜色有5种,共4×5=20(种); 第2类:乙厂手机的种类,分两步考虑.形状有6 种,颜色有8种,共6×8=48(种); 所以,共有20+48=68(种)不同的品种.
13.1两个计数原理
2020/10/16
1
观察
从甲地到乙地,可以乘火车,也可以乘汽 车.一天中,火车有3班,汽车有2班.那么, 一天中,乘坐这些交通工具中的一种从甲地 到乙地,共有多少种方法?
2020/10/16
2
结论
由上述问题归纳出如下原理:
如果完成一件事有n类方案,在第1类方案中
有m1种方法,在第2类方案中有m2种方 法,……,在第n类方案中有mn种方法,那么, 完成这件事共有
相关文档
最新文档