高考数学的11个答题模板

合集下载

高考数学答题模板12个(最新)

高考数学答题模板12个(最新)

高考数学答题模板12个选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=A sin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

高考数学答题技巧及方法模板

高考数学答题技巧及方法模板

高考数学答题技巧及方法模板高考数学答题技巧及方法模板对学习内容越熟悉,对解题的基本思路和方法就越熟悉,能背的数字和公式就越多,能把局部和整体有机地结合成一个整体,形成跳跃式思维,能大大加快解题速度。

下面是为大家整理的有关2021年度高考数学答题技巧及方法模板,希望对你们有帮助!高考数学答题模板1选择填空题1、答题方法高考数学选择题速解方法:排除法、假设条件法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;数学填空题速解方法:直接法、特殊化法、数形结合法、等价转化法。

2、易错点归纳数学易混淆难记忆考点分析:概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

2解答题数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题。

1、三角函数考察正弦、余弦公式、三角形基本性质、三种基本三角函数之间的转化与角度的化简。

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

答题方法:巧用数形结合、化归转化等方法解题。

例1:设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2sinabA(1)求B的大小。

(2)求cosA+sinC的取值范围。

2、概率统计考察排列、组合运用分布列罗列、期望计算等知识点。

概率所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。

对于任何事件的概率值一定介于0和1之间。

有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。

具有这两个特点的随机现象叫做“古典概型”。

3、数列考察通项公式和求和公式的运用。

数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。

数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n。

2020年高考数学答题模板

2020年高考数学答题模板

高考数学解答题常考公式及答题模板(文理通用)题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

高考数学解答题答题模板

高考数学解答题答题模板

典例1 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π2.(1)若f (α2)=-34,α∈(0,π2),求cos α的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移π6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间. 审题路线图 (1)f (x )=m·n ――――→数量积运算辅助角公式得f (x )――→对称性周期性求出ω()2f α−−−−和差公式cos α (2)y =f (x )―――→图象变换y =g (x )―――→整体思想g (x )的递增区间评分细则 1.化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分;2.计算cos α时,算对cos(α-π3)给1分;由cos(α-π3)计算sin(α-π3)时没有考虑范围扣1分;3.第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分.跟踪演练1 已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,所以实数k 的取值范围是(-32,32]∪{-1}.典例2 (12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2.(1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 1.第(1)问:没求sin A 而直接求出sin B 的值,不扣分;写出正弦定理,但b 计算错误,得1分.2.第(2)问:写出余弦定理,但c 计算错误,得1分;求出c 的两个值,但没舍去,扣2分;面积公式正确,但计算错误,只给1分;若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 已知a ,b ,c 分别为△ABC 三个内角的对边,且3cos C +sin C =3a b, (1)求B 的大小;(2)若a +c =57,b =7,求AB →·BC →的值. 解 (1)∵3cos C +sin C =3ab, 由正弦定理可得:3cos C +sin C =3sin Asin B, ∴3cos C sin B +sin B sin C =3sin A , 3cos C sin B +sin B sin C =3sin(B +C )3cos C sin B +sin B sin C =3sin B cos C +3cos B sin C , sin B sin C =3sin C cos B , ∵sin C ≠0,∴sin B =3cos B , ∴tan B =3,又0<B <π,∴B =π3.(2)由余弦定理可得:2ac cos B =a 2+c 2-b 2=(a +c )2-2ac -b 2, 整理得:3ac =(a +c )2-b 2, 即:3ac =175-49. ∴ac =42,∴AB →·BC →=-BA →·BC →=-|BA →||BC →|·cos B =-ac ·cos B =-21.典例3 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n … … … … … a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ;(2)设b n =a 4n(a 4n -2)(a 4n -1)+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图 数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征―――――→选定求和方法分组法及裂项法、公式法求和评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.跟踪演练3 已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n ·a n +1,n ∈N *,T n 为数列{b n }的前n 项和. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)a 21=S 1=a 1,∵a 1≠0,∴a 1=1. ∵a 22=S 3=a 1+a 2+a 3,∴(1+d )2=3+3d ,解得d =-1或2.当d =-1时,a 2=0不满足条件,舍去,∴d =2. ∴数列{a n }的通项公式为a n =2n -1. (2)∵b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1. ①当n 为偶数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n +8)(2n +1)n =2n +8n +17恒成立即可.∵2n +8n≥8,等号在n =2时取得,∴λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n -8)(2n +1)n =2n -8n -15恒成立即可.∵2n -8n 是随n 的增大而增大,∴n =1时,2n -8n 取得最小值-6,∴λ<-21.综上①②可得λ的取值范围是(-∞,-21).典例4 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 中点M ―――――→考虑平行关系长度关系 平行四边形AEFM ―→AM ∥EF ――――→线面平行的判定定理EF ∥平面P AD (2)平面P AD ⊥平面ABCD P A ⊥AD ―――→面面垂直的性质P A ⊥平面ABCD ―→P A ⊥DE ――――――――→正方形ABCD 中E 、H 为AB 、BC 中点DE ⊥AH ――――→线面垂直的判定定理DE ⊥平面P AH ――――→面面垂直的判定定理平面P AH ⊥平面DEF评分细则 1.第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面P AD同样给分;2.第(2)问证明P A⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC中点得DE⊥AH不扣分;证明DE⊥平面P AH只要写出DE⊥AH,DE⊥P A,缺少条件不扣分.跟踪演练4(2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点, 所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB . 又OC ⊂平面MOC , 所以平面MOC ⊥平面VAB .(3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33.典例5 (12分)如图,AB 是圆O 的直径,C 是圆O 上异于A ,B 的一个动点,DC 垂直于圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)求证:DE⊥平面ACD;(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.审题路线图(1)(2)CA、CB、CD两两垂直―→建立空间直角坐标系―→写各点坐标―→求平面AED与平面ABE的法向量―→将所求二面角转化为两个向量的夹角评分细则 1.第(1)问中证明DC ⊥BC 和AC ⊥BC 各给1分;证明DE ∥BC 给1分;证明BC ⊥平面ACD 时缺少AC ∩DC =C ,AC ,DC ⊂平面ACD ,不扣分.2.第(2)问中建系给1分;两个法向量求出1个给2分;没有最后结论扣1分;法向量取其他形式同样给分.跟踪演练5 如图,在几何体ABCDQP 中,AD ⊥平面ABPQ ,AB ⊥AQ ,AB ∥CD ∥PQ ,CD =AD =AQ =PQ =12AB ,(1)证明:平面APD ⊥平面BDP ; (2)求二面角A —BP —C 的正弦值.方法一 (1)证明 设AQ =QP =1,则AB =2, 易求AP =BP =2, 由勾股定理可得BP ⊥AP ,而AD ⊥平面ABPQ ,所以BP ⊥DA , 又AP ∩AD =A ,故BP ⊥平面APD .而BP ⊂平面BDP ,所以平面APD ⊥平面BDP .(2)解 设M 、N 分别为AB 、PB 的中点,连接CM ,MN ,CN .易得CM ⊥平面APB ,MN ⊥PB , 故∠CNM 为二面角A —BP —C 的平面角. 结合(1)计算可得,CM ⊥MN ,CM =1, MN =22,CN =62, 于是在Rt △CMN 中,sin ∠CNM =63. 所以二面角A —BP —C 的正弦值为63. 方法二 (1)证明 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =2,依题意得A (0,0,0),B (0,2,0),C (0,1,1),D (0,0,1), Q (1,0,0), P (1,1,0),BP →=(1,-1,0),AP →=(1,1,0),AD →=(0,0,1),那么BP →·AP →=0,BP →·AD →=0,因此,BP ⊥AP ,BP ⊥AD .又AP ∩AD =A ,故BP ⊥平面APD , 而BP ⊂平面BDP , 所以平面APD ⊥平面BDP .(2)解 设平面CPB 的一个法向量为n =(x ,y ,z ), 而BC →=(0,-1,1),则BP →·n =0,BC →·n =0, 那么x -y =0,-y +z =0,令x =1可得n =(1,1,1). 又由题设,平面ABP 的一个法向量为m =(0,0,1). 所以,cos 〈m ,n 〉=m·n|m||n |=33, 可得sin 〈m ,n 〉=63. 所以二面角A —BP —C 的正弦值为63.典例6 (12分)2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一块,其综合指标为m ,从长势等级不是一级的人工种植地中任取一块,其综合指标为n ,记随机变量X =m -n ,求X 的分布列及其均值. 审题路线图 (1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求均值评分细则 1.第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;2.第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率时每个式子给1分;分布列正确写出给1分.跟踪训练6(2016·课标全国乙)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P((3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040(元). 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080(元). 可知当n =19时所需费用的均值小于n =20时所需费用的均值,故应选n =19.典例7 (12分)(2015·山东)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.审题路线图 (1)椭圆C上点满足条件―→求出a 222e a b c =+已知离心率 基本量法求得椭圆C 方程(2)①P 在C 上,Q 在E 上――→P 、Q 共线设坐标代入方程―→求出|OQ ||QP |. ②直线y =kx +m 和椭圆E 方程联立――→通法研究判别式Δ并判断根与系数的关系―→ 用m ,k 表示S △OAB ―→求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB关系得S △ABQ 最大值评分细则 1.第(1)问中,求a 2-c 2=b 2关系式直接得b =1,扣1分;2.第(2)问中,求|OQ ||OP |时,给出P ,Q 坐标关系给1分;无“Δ>0”和“Δ≥0”者,每处扣1分;联立方程消元得出关于x 的一元二次方程给1分;根与系数的关系写出后再给1分;求最值时,不指明最值取得的条件扣1分.跟踪演练7 已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点(2,22).(1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c a =32(其中c 2=a 2-b 2,c >0),且2a 2+12b 2=1,故a =2,b =1. 所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0.故可设直线l :y =kx +m (m ≠0),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 消去y ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2,故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列, 所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,即m 2-4k 24(m 2-1)=k 2. 又m ≠0,所以k 2=14,即k =±12.由于直线OP ,OQ 的斜率存在,且Δ>0, 得0<m 2<2,且m 2≠1,设d 为点O 到直线l 的距离,则d =|2m |5,|PQ |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=5(2-m 2), 所以S =12|PQ |d =m 2(2-m 2)<m 2+2-m 22=1(m 2≠1),故△OPQ 面积的取值范围为(0,1).典例8 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;(5)MA →·MB →没有化简至最后结果扣1分,没有最后结论扣1分.跟踪演练8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意得⎩⎨⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎪⎨⎪⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.(2)设直线PQ 的方程为x =my +3, P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,∴(3m 2+4)y 2+18my -21=0. ∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4,由A ,P ,M 三点共线可知y M 163+4=y 1x 1+4,∴y M =28y 13(x 1+4).同理可得y N =28y 23(x 2+4),∴k 1k 2=y M 163-3×y N 163-3=9y M y N 49=16y 1y 2(x 1+4)(x 2+4)∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7) =m 2y 1y 2+7m (y 1+y 2)+49∴k 1k 2=16y 1y 2m 2y 1y 2+7m (y 1+y 2)+49=-127,为定值.典例9 (12分)(2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.审题路线图 求f ′(x )――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.(2)分类讨论,每种情况给2分,结论1分;(3)求出最大值给2分;(4)构造函数g(a)=ln a+a-1给2分;(5)通过分类讨论得出a的范围,给2分.跟踪演练9已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0.(1)求a的取值范围;(2)设g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.解(1)由f(0)=1,f(1)=0,得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]e x,f′(x)=[ax2+(a-1)x-a]e x.依题意对任意x∈(0,1),有f′(x)<0.当a>0时,因为二次函数f(x)=ax2+(a-1)x-a的图象开口向上,而f′(0)=-a<0,所以有f′(1)=(a-1)e<0,即0<a<1;当a=1时,对任意x∈(0,1)有f′(x)=(x2-1)e x<0,f(x)符合条件;当a=0时,对于任意x∈(0,1),f′(x)=-x e x<0,f(x)符合条件;当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值范围为0≤a ≤1. (2)因g (x )=(-2ax +1+a )e x , g ′(x )=(-2ax +1-a )e x .(ⅰ)当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.(ⅱ)当a =1时,对于任意x ∈(0,1)有g ′(x )=-2x e x <0,g (x )在x =0处取得最大值g (0)=2, 在x =1取得最小值g (1)=0.(ⅲ)当0<a <1时,由g ′(x )=0得x =1-a2a>0.①若1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.②若1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值121()2e ,2aaa g a a--=在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.典例10 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m -m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t-t -e +1→研究g (t )单调性→寻求⎩⎪⎨⎪⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则(1)求出导数给1分;(2)讨论时漏掉m=0扣1分;两种情况只讨论正确一种给2分;(3)确定f′(x)符号时只有结论无中间过程扣1分;(4)写出f(x)在x=0处取得最小值给1分;(5)无最后结论扣1分;(6)其他方法构造函数同样给分.跟踪演练10已知函数f(x)=ln x+1x.(1)求函数f(x)的单调区间和极值;(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;(3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1) (n ∈N *,n ≥2).(1)解 f ′(x )=-ln xx2,由f ′(x )=0⇒x =1,列表如下:因此函数f (x )的增区间为(0,1),减区间为(1,+∞), 极大值f (1)=1,无极小值. (2)解 因为x >1,ln(x -1)+k +1≤kx ⇔ln (x -1)+1x -1≤k ⇔f (x -1)≤k ,所以f (x -1)max ≤k ,∴k ≥1,(3)证明 由(1)可得f (x )=ln x +1x ≤f (x )max =f (1)=1⇒ln x x ≤1-1x ,当且仅当x =1时取等号. 令x =n 2 (n ∈N *,n ≥2). 则ln n 2n 2<1-1n 2⇒ln n n 2<12(1-1n2)<12(1-1n (n +1))=12(1-1n +1n +1)(n ≥2), ln 222+ln 332+…+ln n n2 <12(1-12+13)+12(1-13+14)+…+12(1-1n +1n +1) =12(n -1+1n +1-12)=2n 2-n -14(n +1).。

高考数学统计与概率大题解题模板

高考数学统计与概率大题解题模板

统计与概率大题解题模板 一、随机抽样和用样本估计总体模板一、频率分布直方图1、频率分布直方图的性质:(1)小矩形的面积=组距×频率/组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小; (2)在频率分布直方图中,各小矩形的面积之和等于1; (3)频数/相应的频率=样本容量.2、频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.3、频率分布直方图中的纵坐标为频率组距,而不是频率值.例1-1.某城市100户居民月平均用电量(单位:度),以[160180),、[180200),、[200220),、[220240),、[240260),、[260280),、]280[300,分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220240),、[240260),、[260280),、]280[300,的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220240),的用户中应抽取多少户? 【解析】(1)由(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=得:0.0075x =,∴直方图中x 的值是0.0075;(2)月平均用电量的众数是2202402302+=,∵(0.0020.00950.011)200.450.5++⨯=<,∴月平均用电量的中位数在[220240),内,设中位数为a , 由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=得:224a =, ∴月平均用电量的中位数是224;(3)月平均用电量为[220240),的用户有0.01252010025⨯⨯=户, 月平均用电量为[240260),的用户有0.00752010015⨯⨯=户, 月平均用电量为[260280),的用户有0.0052010010⨯⨯=户, 月平均用电量为]280[300,的用户有0.0025201005⨯⨯=户, 抽取比例11125151055==+++,∴月平均用电量在[220,240)的用户中应抽取12555⨯=户.模板二、茎叶图1、绘制茎叶图的关键是分清茎和叶,如数据是两位数,十位数字为“茎”,个位数字为“叶”;如果是小数时,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要根据数据的特点合理选择茎和叶.2、利用茎叶图进行数据分析时,一般从数据分布的对称性、中位数、稳定性等几个方面来考虑. 例1-2.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下: 甲:95、81、75、91、86、89、71、65、76、88、94、110、107; 乙:83、86、93、99、88、103、98、114、98、79、78、106、101. 画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较. 【解析】甲、乙两人数学成绩的茎叶图如图所示:从这个茎叶图上可以看出,乙同学的得分情况是大致对称的, 中位数是98;甲同学的得分情况,也大致对称,中位数是88, 乙同学的成绩比较稳定,总体情况比甲同学好.模板三、散点图1、两个变量的关系2、散点图:将样本中n 个数据点()i i x y ,(1i =,2,…,n )描在平面直角坐标系中得到的图形.3、正相关与负相关:(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关. 4、最小二乘法:设x 、y 的一组观察值为()i i x y ,(1i =,2,…,n ),且回归直线方程为ˆˆˆybx a =+.当x 取值i x (1i =,2,…,n )时,y 的观察值为i y ,差ˆi i y y -(1i =,2,…,n )刻画了实际观察值i y 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即21()ni i i Q y a bx ==--∑作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法. 5、回归直线方程的系数计算公式例1-3.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(1)y 与x 是否具有线性相关关系?(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 审题路线图:→→→【解析】(1)画散点图如下:由图可知y 与x 具有线性相关关系;(2)列表、计算:1102211055950105591.70.66838500105520ˆ1iii ii x y x ybxx ==⋅-⋅⋅-⨯⨯==≈-⨯-⋅∑∑,91.70.668ˆ55.6ˆ549ay bx =-=-⨯=,即所求的回归直线方程为:0.66859ˆ 4.6y x =+.构建答题模板:第一步:列表i x 、i y 、i i x y ;第二步:计算x ,y ,21ni i x =∑,1ni i i x y =∑;第三步:代入公式计算ˆb 、ˆa 的值; 第四步:写出回归直线方程;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.模板四、古典概型例1-4.袋中有五张卡片,其中红色卡片三张,标号为1、2、3;蓝色卡片两张,标号为1、2. (1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标点之和小于4的概率.审题路线图:确定概率模型→列出所有取卡片的结果(基本事件)→构成事件的基本事件→求概率. 规范解答:【解析】(1)标号为1、2、3的三张红色卡片分别记为A 、B 、C , 标号为1、2的两张蓝色卡片分别记为D 、E , 从五张卡片中任取两张的所有可能的结果为:AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种,由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的, 从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:AD 、AE 、BD ,共3种,∴这两张卡片颜色不同且它们的标号之和小于4的概率为310;(2)记F 是标号为0的绿色卡片,从六张卡中任取两张的所有可能的结果为:AB 、AC 、AD 、AE 、AF 、BC 、BD 、BE 、BF 、CD 、CE 、CF 、DE 、DF 、EF 共15种,用于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的, 从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:AD 、AE 、BD 、AF 、BF 、CF 、DF 、EF ,共8种, ∴这两张卡片颜色不同且它们的标号之和小于4的概率为815. 构建答题模板:第一步:列出所有基本事件,计算基本事件总数;第二步:将所求事件分解为若干个互斥的事件或转化为其对立事件(也许不用分解,但分解必要注意互斥);第三步:分别计算每个互斥事件的概率;第四步:利用概率的加法公式求出问题事件的概率;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.二、概率与统计之超几何分布与二项分布离散型随机变量的分布列、数学期望与方差1、关于离散型随机变量分布列的计算方法如下: (1)写出ξ的所有可能取值;(2)用随机事件概率的计算方法,求出ξ取各个值的概率; (3)利用(1)、(2)的结果写出ξ的分布列. 2、常见的特殊离散型随机变量的分布列:(1)两点分布,分布列为(0p -、1q -),其中01p <<,且1p q +=;(2)二项分布,分布列为(00p 、11p 、22p 、…、k kp 、…、n np ),其中k k n kk n p C p q -=,0k =、1、2、…、n ,且01p <<,1p q +=,k k n k k n p C p q -=可记为(,,)b k n p .3、对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均;(2)()E ξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而()E ξ是不变的,它描述ξ取值的平均状态;(3)()1122n n E x p x p x p ξ=++⋅⋅⋅++⋅⋅⋅直接给出了E ξ的求法,即随机变量取值与相应概率值分别相乘后相加.4、对离散型随机变量的方差应注意:(1)()D ξ表示随机变量ξ对()E ξ的平均偏离程度,()D ξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之()D ξ越小,ξ的取值越集中,在()E ξ来描述ξ的分散程度.(2)()D ξ与()E ξ一样也是一个实数,由ξ的分布列唯一确定.模板一、超几何分布——离散型随机变量的分布列、期望与方差(1)超几何分布的特征:①在小范围内不放回的随机抽取;②每次抽取相互影响;③每次抽取的可能性一直变化;(2)超几何分布的题型:在含有M 件次品的N 件产品中任取n 件(n M N ≤≤),其中恰有X 件次品;(3)超几何分布的分布列、期望与方差:①分布列:()k n k M N MnNC C P X k C --⋅==,012k n =⋅⋅⋅,,,,,k ∈N ;②期望:0()[()]nk nME X k P X k N ===⋅=∑; ③{}22()()()[()]()(1)nk nM N M N n D X k E x P X k N N =--==-⋅=-∑. 例2-1.已知一个袋中装有3个白球和3个红球,这些球除颜色外完全相同.(1)每次从袋中取一个球,取出后不放回,直到取到一个红球为止,求取球次数ξ的分布列和数学期望()E ξ;(2)每次从袋中取一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数η的分布列、数学期望和方差()D η.审题路线图:取到红球为止→取球次数的所有可能1、2、3、4→求对应次数的概率→列分布列→求()E ξ.取出后放回,这是条件→每次取到红球的概率相同→三次独立重复试验→利用公式. 规范解答:【解析】(1)ξ的可能取值为1、2、3、4,31(1)62P ξ===,333(2)6510P ξ==⨯=, 3233(3)65420P ξ==⨯⨯=,32131(4)654320P ξ==⨯⨯⨯=,故ξ的分布列为:17()123421020204E ξ=⨯+⨯+⨯+⨯=;(2)取出后放回,取球3次,可看作3次独立重复试验,∴1~(2)2B η,,η的可能取值为0、1、2、3,0033111(0)()()228P C η==⋅⋅=,1123113(1)()()228P C η==⋅⋅=,2213113(2)()()228P C η==⋅⋅=,3303111(4)()()228P C η==⋅⋅=,故ξ的分布列为:∴()322E η=⨯=,113()3224D η=⨯⨯=. 构建答题模板:第一步:确定离散型随机变量的所有可能性; 第二步:求出每个可能性的概率; 第三步:画出随机变量的分布列; 第四步:求期望和方差;第五步:反复回顾,查看是否有重复或遗漏情况,明确规范书写答题.如本题可重点查看随机变量的所有可能值是否正确;根据分布列性质检查概率是否正确.模板二、二项分布及其应用(1)二项分布的特征:①在小范围内有放回的随机抽取或在大范围内任意随机抽取;②每次抽取相互独立;③每次抽取的可能性保持不变;(2)二项分布的题型:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ;(3)二项分布的分布列、期望与方差:①分布列:~(,)X B n p ,n 为试验次数,p 为试验成功率,()(1)k kn k n P X k C p p -==-,0,1,2,,k n =⋅⋅⋅,k ∈N ;②期望:()E X np =; ③()(1)D X np p =-.例2-2.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求3≤X 的概率; (2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【解析】(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则事件A 的对立事件为“5X =”, ∵224(5)3515P X ==⨯=,∴11()1(5)15P A P X =-==, 即这两人的累计得分3≤X 的概率为1115; (2)设小明小红都选择方案甲抽奖中奖次数为1X ,都选择方案乙抽奖中奖次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1()2E X ⨯, 选择方案乙抽奖累计得分的数学期望为2()3E X ⨯,由已知可得12~(2)3X B ,,22~(2)5X B ,,∴124()233E X =⨯=,224()255E X =⨯=,从而18()23E X ⨯=,212()35E X ⨯=,∴12()2()3E X E X ⨯>⨯,∴他们都选择方案甲进行抽奖时,累计得分的数学期望较大.模板三、统计概率的综合应用例2-3.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为,(495500],,…,(510515],,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设X 为重量超过505克的产品数量,求X 的分布列及期望.(3)在上述抽取的40件产品中任取5件产品,求恰有2件产品的重量超过505克的概率. 【解析】(1)重量超过505克的产品数量是40(0.0550.015)12⨯⨯+⨯=件; (2)X 的所有可能取值为0、1、2,021********(0)130C C P X C ⋅===,11122824056(1)130C C P X C ⋅===,20122824011(2)130C C P X C ⋅===, X 的分布列为:X 的期望561139()01213013013065E X =⨯+⨯+⨯=; (3)设在上述抽取的40件产品中任取5件产品,恰有2件产品的重量超过505克为事件A ,则322812540231()703C C P A C ⋅==. 变式1:第三问改为:从流水线上任取5件产品,设Y 为重量超过505克的产品数量,求Y 的分布列、期望、方差.【解析】从流水线上任取5件产品服从二项分布:Y 可取:0、1、2、3、4、5;超过505克的产品发生的概率为0.3p =,则~(50.3)Y B ,, 005055(0)(1)0.70.16807P Y C p p -==-==, 115111455(1)(1)0.30.70.36015P Y C p p C -==-=⨯=,225222355(2)(1)0.30.70.3087P Y C p p C -==-=⨯=,335333255(3)(1)0.30.70.1323P Y C p p C -==-=⨯=,44544455(4)(1)0.30.70.02835P Y C p p C -==-=⨯=,555555(5)(1)0.30.00243P Y C p p -==-==,则Y 的分布列为:Y 的期望()50.3 1.5E Y =⨯=,方差()50.30.7 1.05D Y =⨯⨯=.变式2:某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条抽流水线上各抽取40件产品作为样本算出他们的重量(单位:克).重量落在(495510],的产品为合格品,否则为不合格.表一为甲流水线样本频率分布表,图一为乙流水线样本的频率分布直方图.(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从乙流水线上任取5件产品,恰有3件产品为合格品的概率;(3)由以上统计数据完成下面22⨯列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.附:下面的临界值表供参考:(参考公式:22()()()()()n ad bcKa b a c c d b d-=++++,其中n a b c d=+++).在平面直角坐标系中做出频率分布直方图,甲流水线样本的频率分布直方图如下:(2)由图1知,乙样本中合格品为:(0.060.090.03)54036++⨯⨯=,故合格品的频率为360.940=, ∴可估计从乙流水线上任取一件产品该产品为合格品的概率0.9P =,设ξ为从乙流水线上任取5件产品中的合格品数,则~(50.9)B ξ,, ∴3325(3)0.90.10.0729P C ξ===,即从乙流水线上任取5件产品,恰有3件产品为合格品的概率为0.0729; (3)22⨯列联表如下:∵22()80(120360) 3.117 2.706()()()()66144040n ad bc K a b a c c d b d -⨯-==≈>++++⨯⨯⨯, ∴有90%的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.课后作业1. 某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;(2)根据以上数据完成下列22⨯列联表:(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析.【答案】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主;(2)表格见解析;(3)有,分析见解析.【解析】【分析】(1)根据茎叶图,分析题中数据即可得出结果.(2)根据茎叶图,补充完善列联表,计算观测值即可求解.【详解】(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主;(2)补全22⨯列联表:(3)230(42168)10 6.63512182010K ⨯⨯-⨯==>⨯⨯⨯,有99%的把握认为其亲属的饮食习惯与年龄有关.2. 某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25. (1)求列联表中的数据x 、y 、A 、B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关? 【答案】(1)40x =,10y =,60A =,40B =;(2)条形统计图答案见解析,暴雨影响到民众对加大修建城市地下排水设施的投入的态度;(3)有99.9%把握.【解析】【分析】(1)先求出y的值,再求,,B x A的值;(2)先求出暴雨前后的支持率和不支持率,画出条形统计图,再通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度.(3)利用独立性检验求解即可.【详解】(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A,由已知得302()1005yP A+==,∴10y=,40B=,40x=,60A=;(2)由(1)知北京暴雨后支持为404505=,不支持率为41155-=,北京暴雨前支持率为202505=,不支持率为23155-=,条形统计图如图:由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度;(3)22100(30402010)5016.7810.828505040603K⨯⨯-⨯==≈>⨯⨯⨯,故至少有99.9%把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.【点睛】方法点睛:独立性检验的解题步骤:(1)2*2列联表;(2)提出假设:设p与q没有关系;(3)根据列联表中的数据2K计算的值;(4)根据计算得到的随机变量2K的观测值作出判断.3. 电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的22⨯列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:22()()()()()n ad bcKa b a c c d b d-=++++【答案】(1)列联表答案见解析,没有95%的把握认为“体育迷”与性别有关;(2)7 10 .【解析】 【分析】(1)根据频率分布直方图,计算体育迷的人数,再结合条件依次填入22⨯列联表,并计算2K ,并和临界值3.841比较后进行判断;(2)首先由频率分布直方图计算“超级体育迷”的人数,在通过编号列举的方法,利用古典概型的计算公式计算概率.【详解】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成22⨯列联表如下:将22⨯列联表中的数据代入公式计算,得22100(30104515)100 3.030 3.8417525455533K ⨯⨯-⨯==≈<⨯⨯⨯,∴没有95%的把握认为“体育迷”与性别有关;(2)由频率分布直方图可知“超级体育迷”为5人,设123,,a a a 是3名男超级体育迷,12,b b 是2名女超级体育迷,从而一切可能结果所组成基本事件为:12()a a ,、13()a a ,、23()a a ,、11()a b ,、12()a b ,、 21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b ,,则由10个基本事件组成,而且这些基本事件的出现是等可能的, 用A 表示“任选2人中,至少有1人是女性”这一事件,则A 由11()a b ,、12()a b ,、21()a b ,、22()a b ,、31()a b ,、32()a b ,、12()b b , 这7个基本事件组成,因而7()10P A =.4. 2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,大学生小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[02000),、[2000,4000)、[4000,6000)、[6000,8000)、[800010000],五组作出频率分布直方图,如图:(1)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表格,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望()E ξ和方差()D ξ.【答案】(1)答案见解析,有;(2)分布列见解析,()0.9E ξ=,()0.63D ξ=. 【解析】【分析】(1)由频率分布直方图可求出抽取的100户中,经济损失不超过4000元的户数,经济损失超过4000元的户数, 从而可补全列联表,进而可求出2K ,得出结论;(2)由题意知ξ的取值可能有0、1、2、3,符合二项分布,则3~(3)10B ξ,,从而利用二项分布的概率公式求出各自对应的概率,进而可得ξ的分布列,期望()E ξ和方差()D ξ. 【详解】(1)由频率分布直方图可知,在抽取的100户中,经济损失不超过4000元的有1002000(0.000150.00020)70⨯⨯+=户,则经济损失超过4000元的有30户, 则表格数据如下:22100(60102010) 4.76280207030K ⨯⨯-⨯=≈⨯⨯⨯,∵4.762 3.841>,2( 3.841)0.05P K ≥=,∴有95%以上把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关; (2)由频率分布直方图可知抽到自身经济损失超过4000元居民的频率为0.3,将频率视为概率,由题意知ξ的取值可能有0、1、2、3,符合二项分布,则3~(3)10B ξ,,003337343(0)()()10101000P C ξ==⋅⋅=,112337441(1)()()10101000P C ξ==⋅⋅=,221337189(2)()()10101000P C ξ==⋅⋅=,33033727(3)()()10101000P C ξ==⋅⋅=,从而ξ的分布列为:3()30.910E np ξ==⨯=,37()(1)30.631010D np p ξ=-=⨯⨯=. 5. 私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:(1)完成被调查人员的频率分布直方图.(2)若从年龄在[15,25)([25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率.(3)在(2)在条件下,再记选中的4人中不赞成...“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.【答案】(1)见解析(2(2275(3)见解析 【解析】【详解】试题分析:(1)根据频率等于频数除以总数,再求频率与组距之比得纵坐标,画出对应频率分布直方图.(2)先根据2人分布分类,再对应利用组合求概率,最后根据概率加法求概率,(3)先确定随机变量,再根据组合求对应概率,列表可得分布列,最后根据数学期望公式求期望. 试题解析:(1((2(由表知年龄在[)15,25内的有5人,不赞成的有1人,年龄在[)25,35 内的有10人,不赞成的有4人,恰有2人不赞成的概率为:()11122464442222510510C C C C C 4246666222C C C C 1025104522575P ξ==⋅+⋅=⋅+⋅==((3( ξ的所有可能取值为:0(1(2(3(()226422510C C 45150C C 22575P ξ==⋅==(()21112646442222510510C C C C C 415624102341C C C C 1045104522575P ξ⋅==⋅+⋅=⋅+⋅==( ()124422510C C 461243C C 104522575P ξ==⋅=⋅==( 所以ξ的分布列是:所以ξ的数学期望5E ξ=( 6. 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).【答案】(1)(2)X的分布列为EX==4元【解析】【详解】(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则与相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为EX==4元7. 以下茎叶图记录了甲、乙两组个四名同学的植树棵树、乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果8X=,求乙组同学植树棵树的平均数和方差;(2)如果9X=,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.【答案】(1)平均数为354,方差为1116;(2)分布列答案见解析,数学期望:19.【解析】【分析】(1)利用平均数和方差公式求出即可;(2)根据题意可得Y 的可能取值为17,18,19,20,21,分别求出Y 取不同值的概率,即可得出分布列,求出期望.【详解】(1)当8X =时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, ∴平均数为889103544x +++==,方差为2222213535353511[(8)(8)(9)(10)]4444416s =-+-+-+-=;(2)当9X =时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11, 乙组同学的植树棵数是:9,8,9,10,分别从甲、乙两组中随机选取一名同学,共有4416⨯=种可能的结果, 这两名同学植树总棵数Y 的可能取值为17,18,19,20,21,事件“17Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”, ∴该事件有2种可能的结果,21(17)168P Y ===, 事件“18Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树9棵”, ∴该事件有4种可能的结果,41(18)164P Y ===, 事件“19Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树10棵, 或甲组选出的同学植树11棵,乙组选出的同学植树8棵”, ∴该事件有224+=种可能的结果,41(19)164P Y ===, 事件“20Y =”等价于“甲组选出的同学植树11棵,乙组选出的同学植树9棵”, ∴该事件有4种可能的结果,41(20)164P Y ===, 事件“21Y =”等价于“甲组选出的同学植树11棵,乙组选出的同学植树10棵”, ∴该事件有2种可能的结果,21(21)168P Y ===,∴随机变量Y 的分布列为:∴11()17181920211984448E Y =⨯+⨯+⨯+⨯+⨯=.8. 语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135的则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望.(附公式:若2~(,)X N μσ,则()0.68P X μσμσ-<≤+=,(22)0.96P X μσμσ-<≤+=).【答案】(1)语文有10人,数学有12人;(2)分布列见解析,98.【解析】【分析】(1)利用正态分布的对称性求出语文成绩特别优秀的概率,从而可估计出语文成绩特别优秀人数,由频率分布直方图可求出数学成绩特别优秀的频率,用频率来衡量概率,从而可求出数学成绩特别优秀的人数;(2)结合(1)可知数学语文单科优秀的有10人,则X 的所有可能取值为0、1、2、3,然后求出各自对应的概率即可列出分布列,求得数学期望【详解】(1)∵语文成绩服从正态分布2(10017.5)N ,,∴语文成绩特别优秀概率为11(135)(10.96)0.022P P X =≥=-⨯=, ∴数学成绩特别优秀的概率为230.0016200.0244P =⨯⨯=, ∴语文特别优秀的同学有5000.0210⨯=人,数学特别优秀的同学有5000.02412⨯=人; (2)语文数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0、1、2、3,3103163(0)14C P X C ===,2110631627(1)56C C P X C ⋅===, 1210631615(2)56C C P X C ⋅===,363161(3)28C P X C ===, ∴X 的分布列为:19()0123145656288E X =⨯+⨯+⨯+⨯=. 9. 张明要参加某单位组织的招聘面试.面试要求应聘者有7次选题答题的机会(选一题答一题),若答对4题即终止答题,直接进入下一轮,否则被淘汰.已知张明答对每一道题的概率都为12. (1)求张明进入下一轮的概率;(2)设张明在本次面试中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望. 【答案】(1)12;(2)分布列答案见解析,数学期望:9316. 【解析】 【分析】(1)分情况讨论张明进入下一轮的概率;(2)由条件可知4,5,6,7ξ=,理解随机变量对应的事件,写出概率分布列,计算数学期望.。

高考数学解答题常考公式及答题模板(文理)(wenli )

高考数学解答题常考公式及答题模板(文理)(wenli )

高考数学解答题常考公式及答题模板题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::= 2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、三角形的内角和等于ο180,即π=++C B A 5、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A CB A sin )sin(sin )sin(sin )sin(和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(6、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan =7、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin( ②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( ba ++2⎫⎛+b a +22b a +奇:2π的奇数倍 偶:2π的偶数倍注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。

高中数学解答题答题模板(11个)

高中数学解答题答题模板(11个)

Asin(ωx+φ)+h 的形式或 y=Acos(ωx+φ)+h 的形式. π 如:f(x)=2sin2x+3 +1.
第二步:根据 f(x)的表达式求其周期、最值.
第三步:由 sin x、cos x 的单调性,将“ωx+φ”看作一个整体,转 化为解不等式问题.
第四步:明确规范表述结论.
π (2)∵-1≤sin2x+3≤1, π ∴-1≤2sin2x+3+1≤3.
π π π ∴当 2x+3=2+2kπ,k↔Z,即 x=12+kπ,k↔Z 时,f(x)取得最大值 3; π π 5π 当 2x+ =- +2kπ,k↔Z,即 x=- +kπ,k↔Z 时,f(x)取得最小值-1. 3 2 12
高中数学解答题答题模板 (11个)
【模板特征概述】 数学解答题是高考数学试卷中的一类重要题型, 通常是高考的把关题 和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单 纯的知识综合型转化为知识、 方法和能力的综合型解答题. 在高考考场上, 能否做好解答题, 是高考成败的关键, 因此, 在高考备考中学会怎样解题, 是一项重要的内容. 本节以著名数学家波利亚的 《怎样解题》 为理论依据, 结合具体的题目类型,来谈一谈解答数学解答题的一般思维过程、解题程 序和答题格式,即所谓的“答题模板”. “答题模板”就是首先把高考试题纳入某一类型, 把数学解题的思维过 程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整 为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最 佳方案,实现答题效率的最优化.
模板 1 【例 1】
三角函数的周期性、单调性及最值问题
已知函数 f(x)=2cos x· π sinx+3 - 3sin2x+sin xcos x+1. (1)求函数 f(x)的最小正周期; (2)求函数 f(x)的最大值及最小值; (3)写出函数 f(x)的单调递增区间. 审题路线图 规范解答 不同角化同角→降幂扩角→化 f(x)=Asin(ωx+φ) +h→结合性质求解.

2020年高考数学答题步骤模板

2020年高考数学答题步骤模板

6、诱导公式:奇变偶不变,符号看象限
sin( A B) sin C
cos( A B) cos C
利用以上关系和诱导公式可得公式: sin( A C) sin B 和 cos( A C) cos B
sin(B C) sin A
cos(B C) cos A
奇: 的奇数倍 2
高考数学解答题常考公式及答题模板
(文理通用)
题型一:解三角形
1、正弦定理: a b c 2R ( R 是 ABC 外接圆的半径) sin A sin B sin C
a 2R sin A 变式①: b 2R sin B
c 2R sin C
sin
A
a 2R
变式②:
sin
B
b 2R
sin C
Sn
a1 2, a2 a4 8
an a1 (n 1)d
a2 a4 (a1 d ) (a1 3d ) 2a1 4d 8
a1 2d 4 d 1
an a1 (n 1)d n 1
a3 am
a1 3d 4 a1 (m 1)d
m
1
a1, a3 , am
9、基本不等式:① ab a b (a,b R ) 2
② ab a b 2 (a,b R ) 2
③ ab a2 b2 (a, b R) 2
注意:基本不等式一般在求取值范围或最值问题中用到,比如求 ABC 面积的最大值时。
说明:颜色加深的是重点记忆的公式哦!
第 1 页 共 33 页
②若已知
an 1 an
q 和 a1
a ,则用等比数列通项公式 an
a1q n1
(2) an 与 Sn 的关系: an
S1 Sn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人平面B).
向 『 七1

n)一院-(02,0)
c.,
(n1.
心=
• 11 ·n2 = - - 4 =仇I|m|3 X 2
2 3巴
几何
【例7】 已知定点C仁1,0)及椭圆 x勺-3y2=5,过点C的动直线与
交千A,B两点 (l)若线段AB中点的横坐标是 一;,求直线儿江“”缸
(1)在x轴上是否存在点jW使豆订 "h为常数?若存在,求出研
:亭忒=(0, - 2,2)1, 芯=(2 10,1), 沉=(、 0,2,0)
寸面 CMN 的法向益为 nl = ,(-t L I' 守

{ 。 [ LJ 七, + [ 边 _
}· 2 书 .J
.l
n (l 害 l,l..
1一

-2
- 2).-
邓上平
”,, ',
D. 圈` A,战上
.D
:嘈,DC..L平
件)一构成事件的基本事件一求概率
范解答
� (I)标号为1 ,,心的三张红色卡片分别记为A,i B, C.,标号为1;
的两张蓝色卡片分别记为D, E,. 从五张卡片中任取两张的所有可能
q, 的结果为(A, B), (A, O3! ”., D)1, (A, m,] (B,
1(B D),(u,
卧(C, D), (C,卧(D书 E), 共10种由于每一张卡片被取到t.
第2讲

1个
板,助你

【模板特征概述】 数学解答题是高考数学试卷中的 一类重要题型,通常是高考的把
轴题,, 具有较好的区分层次和选拔功能目前的高考解答题
型转化为知识、,方法和能力的综合型解答题,[在高考考场上,
题是高考成败的关键因此在高考备考中学会怎样解心
要的内容本节以著名数学家波利亚的《怎样解题》为理论依 结合具体的题目类型, 来谈一谈解答数学解答题的 一般思铲.. 序和答题格式, 即所谓的 “ 答腹模板 ” 遍
l I II

s in
—。 f 2_xS.

in· ?,,••旷 cs
-cos x-2
m习 建答题模板 第一步:根据向量运 向量式转化为三角式;
第二步:: 化简三角函数式, 一般化为y = Asin(Qx+'fJ)+h的形式
三角方程或求三角函数的单调区间` 最值· 第四步: 明确规范地写出 A正
第五步:反思回顾.
kEZ时


寸l
2 2/rx, k
- 5 石=

叫重虹 冗
寸} .?
kE
爪心取得
3 小倌 -
-雪
.一). 由-兀-2 +2朊<,正+
一兀
3
<-兀2 +2际,
kEZ
得- — 如
12
+k兀- <;飞'<- 1兀2 +位,'
k
ZIi
:哪函数f(x)的 l-, 飞
[- 竺 -
12 +如I 亨
12 .

-] 1m 区间为
(x"兀) (x”, yJ,
+l) (才
+ x,. = - .1r +I·
坐标是 由线段 R 中点的
�o.; © @
l
_ 2-

X1 +x2


一 齐3丁 忙 I =
--1
五 于心 k =士二
_J
0 寸一合 已
-\'3_ 所以直线AB的方程为 X
+ =0或x+� + 1 = 0!I

(2)假设在x轴上存在点 F(m,0) , 使正.j面为常
=sin 五 +一 心OO 云,十
=2sin(气]+ l.
(l) …,
2 II
. - l V/ 面 晶
当矗

· 暑
fl..x)的最小正周期为
— 2兀 2
=兀
w [ )3- l
s i ln

1兀 屯七

1
< {
I `
2的 2 x
-+3巴
冗 一勹
+

3_
]�; 琶
'2 k 嘈, l
.e
百 比
_ 卢_ ::兀■":::'+JiU.,··,
,成锐二 角的余弦值
审题路线图 (l)l仗 定存在一点Q使PQ/1
的 一边BM上的点-在另 一边 上一
应 Q.A
=
BP
.西
=
NB 1
1而飞
(2)建立坐标系 构造法向 求夫角
(1)
M
c
当BQ = 亏AB时 OP/I平面AMD.
证明: 暑:MD1 上平面AB'CD 弓I
9 泣 管 簪 P1仁 lf-塑 .Mn;,=-2压,., QA生-21圈
【例9】
机变 =沮一个广
至与方丁
3个白球和3个红球这些球除颜色外
完全相同 (1)每次从袋中取一个球, 取出后不放回, 宜到取到一个红球为
止, 求取球次数叶的分布列和数学期望E(0; (2)每次从袋中取一个球, 取出后放回接着再取一个球, 这样取
3次, 求取出红球次数n的数学期望E(n)ll,
审题路线图 取到红球为止一取球次数的所有可能1,2,3,4一求
小且S"的最大值为8.
(1)确定常数k,并求知
f了 (2)求数列
"“t 的前n项和』”哩
审题路线r S,i= —i1 矿 十kn为关于n的二次函数
s .千 ” =K时, " 取最大f
i Sk=-之2扩十妒=千 2 =8
i 解关千k的方程得:k = 4 i 定S"= —:1:矿+4n
_几 【例5】在如图所示的空间几何体中,平面ACDJ_平面AB1c·, AB==
' ..-l
(i)当直线AB与x轴不
r- 飞 奇云 (l)知 X]
=飞
斗 X 心 = 百亡了.

(凸 - .k(x n1) 所以正茄-伈 - m)(x:2. -
+.Y• •··

=(�·.1 - m)
m)+
)( =(炉+l)OC1X'只(矿 - m x1 +迈 )+K +m 占
, (6m- l)K-
�@代入,整理得辽讨石=
-
·3r+ l
"-
(2m-j ' ; 夕Ir+ l)- 2m·-�I 勹'
=
及+ l
+m
=m�
+2m

二l

6m ,+1
3(3K +
,l
建答题模板 第一步::假设结论存在
第二步: 以存在为条
第三步: 明确规范表述结论若能推出合理结 肯定正确;若推出矛盾 9 即否
四步:反思回顾查看关键点 (1)问容易
(2)化几x)向量表示式为三角表达式一化简凡x)=Asin(m.I x+Q) +
h-/(x)max""""*-"「c>八X),且
规范解答
“ r.I 11 一: + b = ( c 岱
✓(C .".la+ bl =
1 ,_ O2
=寸2-2 汉 n 釭-

2
s i. r1 1
- s .1 n
X
-卢j-
、 ,_`:2-x
咖俾= 腔
奢嘈l
B上干
人在八叩屯QPII 又QP屯面心U-Di,,Al)f1C面AMD 沪 :叠(JP/I
(2)
ABCD1, :1iilVDI II rB
以D 系

D 、 D. 八 直线分别为…
」、llD(O,o1,0) , B(2,2,10), c(, 0,2,0), 土M(0,o2.)书 N(2,2.,l).
第四步: 明确规范表述结论
第五步:, 反思回顾. 查看关键点
与平面向
,. ,.-1平
例2】
已知向延a =tco

2,
扭鸟2 1?
b=( - sI暹 D 二2. 咒
一五。
X)
2二
其 I...
心 ii' 六
(1)却+b|=$', 求x 的伯哪
(2,)函数瓜)=吵妇+矿,若c�/(x}恒成立,求 妃
审题路线图 (1)|“+b| =寸5-U,2 +2a ..b + b2 = 3,.......,三角方程一求工
错点为易忽略 xE[i
心 五女易错点和答 规范,. 条件
、的易
-
;线r
l
=1�-11
b- 1 中

.
i
1



-I . “'.
}的公上
构建答题模板 第一步:令n = 1, 由 S'a =,如n)求出叶
s 『二二步: 令n>2, 构造a,n= S”-sn-l, 用a""代换 s',: - 门_,l(或用Si -
喷先把高考试题纳入某一类型,把数学解题的思 划分为一个个小题,按照一 定的解题程序和答题格式分步解答, 即
谝' -调解题程序化,答题格
时间内拟定解决问颖佐旦
方案,, 实现答题效率的品优化
【例1】 已知函数/(x)=2cosx,I
叫�+�)-'1Jsi心+si" 立OSX'+--.
(1)求函数 f(文)的最小正周期,
相关文档
最新文档