1人教版小学六年级数学总复习数和数的运算
最新人教版六年级下册数学总复习测试卷—数的认识、数的运算(含答案解析)(1)

人教版六年级下册数学总复习测试卷—数的认识、数的运算一、单选题(共5题;共10分)1.的分子加上10,要使分数的大小不变,分母应加上()A. 4B. 15C. 24D. 452.用简便方法计算. 0.125×0.25×32=()A. 1B. 14C. 100D. 3703.一本书,第一天看了全书的,第二天又看了全书的.第二天比第一天少看了全书几分之几?正确的解答是()A. B. C. D.4.把甲班人数的调入乙班后,两班人数相等,原来甲乙两班人数的比是()A. 8:7B. 7:8C. 3:4D. 4:35. 某地一天上午8时的气温是﹣3℃,过6小时气温上升了7℃,又过6小时气温又下降了3℃,这时的气温是()℃.A. 13B. 1C. 7D. 6二、判断题(共5题;共10分)6.温度0℃就是没有温度.()7.任意两个自然数的积,一定大于这两个数的和()8.把单位“1”分成n份,其中的任何一份都可以用表示()9.把一个小数的小数点向右移动一位后,得到的数比原数大10倍.()10.甲数比乙数多,乙数就比甲数少.()三、填空题(共10题;共22分)11.70 6009 9983读作________,用“四舍五入法”省略亿位后面的尾数约是________亿,用“万”作单位保留两位小数是________万.12.把下列一组数按要求排列.________>________>________>________>________13.计算×(-)时,应该先算________法,再算________法。
14.×________ = ÷________ =________%=0.125×________ =1.15.经调查,六(1)班男生中,喜欢足球的人数占男生总人数90%.男生人数中喜欢足球的人数和男生总人数的比是________∶________.16.小华在计算4.4+□×5时,由于先计算加法再算乘法,结果得30,正确的结果应是________.17.在横线里填上“﹤” 、“﹥” 或“﹦” 。
人教版六年级数学下册总复习《四则运算 》整理和复习课件

)
2.下列各题怎样简便就怎样算。
6.42×1.01-6.42 =6.42×(1.01-1) =6.42×0.01 =0.0642
172-83×24 =172×24-38×24 =14-9
=5
32×12.5×2.5 =(8×12.5)×(4×2.5) =100×10 =1000
2020 2022×2021
练习
考点 1 运用加法和乘法的运算定律简算
1.在方框内填上合适的数,在括号里填上运算定律。
25.7+18.6+74.3=18.6+(25.7+74.3)(加结法合交律换律、加法 )
36×29+14=
36
×
2 9
+36
1 ×4
(
乘法分配律
)
2.5×95×0.4=
5 9 ×(
2.5
× 0.4
)( 乘法交换律、乘法结合律
6.简算:100+99-98-97+96+95-94-93+…+4+3 -2-1
100+99-98-97+96+95-94-93+…+4+3-2-1 =(100+99-98-97)+(96+95-94-93)+…+(4+3-2-1) =4×(100÷4) =100
提分点 2 乘法分配律的运用
7.小马虎在计算(25+a)×8时,漏掉了括号,算成了25 +a×8。那么正确结果与错误结果相差多少?
一个因数=积÷另一个因数 除数=被除数÷商
2.数的运算顺序
举手回答:四则混合运算的计算顺序是怎样的? 如果是同一级运算,一般按从左往右的顺序依次进 行计算。 如果既有加减、又有乘除法,先算乘除法、再算加减。
如果有括号,先算括号里面的。
3.运算定律 举手回答:我们学过哪些运算定律?
六年级下册数学复习宝典——人教版

六年级下册数学复习宝典——人教版第一章:整数的运算- 整数的加减法- 整数的乘法- 整数的除法- 整数的运算性质第二章:分数的运算- 分数的加减法- 分数的乘法- 分数的除法- 分数的约分与化简第三章:小数的运算- 小数的加减法- 小数的乘法- 小数的除法- 小数与分数的相互转化第四章:面积和体积- 长方形的面积计算- 三角形的面积计算- 平行四边形的面积计算- 立方体的体积计算第五章:几何图形的性质- 正方形的性质- 长方形的性质- 三角形的性质- 平行四边形的性质第六章:数据统计- 数据的收集和整理- 数据的图表表示- 数据的分析和解读- 数据的比较和排序第七章:方程与方程式- 方程的基本概念- 一元一次方程的解- 一元一次方程的应用- 二元一次方程的解第八章:图形的坐标- 平面直角坐标系- 点的坐标表示- 图形的平移和旋转- 图形的对称性第九章:时间和时钟- 时间的读写和计算- 时钟的读写和计算- 时间的换算- 时钟的运动和指示第十章:数与代数- 数的分类和性质- 数的大小比较- 数的运算规则- 数的应用问题第十一章:数与图- 数与图的关系- 图的分析和解读- 图的绘制和表示- 图形的拼接和变换第十二章:数与量- 数与量的关系- 量的换算和计算- 量的应用问题- 量的估算和判断以上是六年级下册数学复宝典的大纲,涵盖了各个章节的主要内容。
通过复宝典,可以帮助同学们巩固知识,提高数学水平。
祝同学们取得好成绩!。
人教版六年级数学的知识点总结

人教版六年级数学的知识点总结六年级数学主要包含了四个模块的知识点,分别是数与式、图形与运算、测量与数据处理、功能与解决问题。
下面我将对每个模块的知识点进行总结,希望对你有所帮助。
一、数与式1. 整数的加减运算- 同号相加,异号相减- 加减整数的性质,如加零法则、减零法则、加法逆元、减法逆元等- 整数加减法的计算方法,包括精确计算和估算计算2. 简便计算- 乘法的简便计算方法,如分解因数、乘以9的简便方法等- 除法的简便计算方法,如分解法、翻转法等3. 小数的加减运算- 小数的加减法计算,包括有限小数和循环小数的加减法4. 分数的加减运算- 分数的加减法计算,包括同分母的分数相加减、异分母的分数相加减的化为同分母等5. 数表达式的认识和运算- 数表达式的结构和组成- 数表达式的加减乘除运算,包括使用知识点进行计算和解决实际问题6. 解方程- 一步方程和两步方程的解法,包括减法原理和乘法原理等二、图形与运算1. 三角形和四边形- 三角形和四边形的认识,包括名称、性质和例子2. 直线、线段和射线- 直线、线段和射线的认识,包括名称、性质和例子3. 角- 角的认识,包括名称、度量和例子- 特殊角的认识,如直角、钝角、锐角等4. 等边三角形、等腰三角形和直角三角形的性质5. 平行线和垂直线- 平行线和垂直线的认识,包括性质和例子6. 图形的相似和全等- 图形的相似和全等的概念和判定条件- 相似和全等图形的性质和例子7. 图形的旋转和翻转- 图形的旋转和翻转的概念和方式8. 解几何问题- 利用图形的性质解决实际问题,如计算图形的周长和面积等三、测量与数据处理1. 长度、面积和体积的计量- 长度单位的认识和换算,如厘米、毫米和千米的换算- 平方单位的认识和换算,如平方厘米、平方米和平方千米的换算- 体积单位的认识和换算,如立方厘米、立方米和立方千米的换算2. 温度的度量- 温度的单位和换算,如摄氏度和华氏度的换算3. 数据的搜集和整理- 数据的种类和搜集方式,如调查和观察等- 数据的整理和图形的制作,如列表、图表和图形等4. 数据的统计和分析- 数据的统计方法,如对数据进行计数、排序和分类等- 数据的分析和解释,如找出规律和总结结论等四、功能与解决问题1. 计算思维和问题解决能力的培养- 运算思维的培养,如发现规律、推理和解决问题等- 问题解决能力的培养,如利用数学方法解决实际问题和学习生活中的问题等2. 运算结果的估算- 运算结果的估算方法,如找到合适的整数进行估算等3. 空间思维和几何推理能力的培养- 空间思维的培养,如观察和分析空间关系等- 几何推理能力的培养,如利用几何知识进行推理和解决几何问题等以上是人教版六年级数学的主要知识点总结,希望对你有所帮助。
小学数学人教版六年级上册《第9单元总复习课时1数与代数(一)分数乘、除法》课件

(二)分数四则混合运算和简便计算。
分数混合运算的顺序和整数混合运算的顺序相同:在没有括号时,只有 加减法或只有乘除法时,按照从左到右的顺序进行计算;既有加减法,又 有乘除法时,要先乘除,后加减。有括号时,要先算括号里面的,再算括号 外面的。
整数乘法的结合律、交换律和分配律,对于分数乘法同样适用。
(三)解决实际问题
甲车每小时行驶120千米,乙车的速度与甲车速度的5/6相等,甲车 的速度是丙车速度的5/4。乙车和丙车的速度各是多少?
答:乙车和丙车的速度各是100千米/时和96千米/时。
①单位“1”的量×几分之几=部分量(几分之几 相对应的量)
②部分量÷部分量占单位“1”的几分之几=单 位“1”的量
分数乘整数:①意义:求几个相同加数的和的简便运算。②计算方法:用 分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
分数乘分数:①意义:求一个数的几分之几是多少。②计算方法:用分子 相乘的积作分子,分母相乘的积作分母。能约分的可以先约分,再计算。
小数乘分数的计算方法:一般情况下,能约分的可以先约分;不能约分的可以 先将分数化成小数或小数化成分数,再计算。 分数除法:一个数除以一个不等于0的数,等于乘这个数的倒数。 倒数:①意义:乘积是1的两个数互为倒数。②求倒数的方法:真分数和假分 数的倒数是交换分子、分母的位置。整数的倒数是先把整数看做分母是1 的假分数,再交换分子和分母的位置。
答:地球总面积是51000万平方千米。
答:小亮跳了50个。
答:六年级收集了195个易拉罐。
答:四年级收集了130个易拉罐。
答:这架喷气式飞机的速度是900千米/时。
想一想分数乘、除法应怎样计算,再计算下面各题。
回答下列问题。你认为在解决有关分数的实际问题时,最关键的是什 么?
人教版六年级数学总复习资料全 (1)

“数学总复习”复习资料(一)整数和小数1、整数和自然数用来表示物体个数的0,1,2,3…叫做(自然数)。
(“1”)是自然数的单位。
最小的自然数是( 0 )。
像…,-3,-2,-1,0,1,2,3,…这样的数统称为(整数)。
整数的个数是(无限)的。
整数分为正整数、0、负整数,自然数整数的(一部分)。
计数单位: 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
十进制计数法: 每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
位数:表示一个数数位的个数称为位数。
2、小数小数表示的就是十分之几,百分之几,千分之几……的数,一位小数可表示为十分之几的数,两位小数可表示为百分之几的数,三位小数可表示为千分之几的数 ……小数的计数单位是十分之一、百分之一、千分之一……或0.1、0.01、0.001……。
每相邻两个计数单位的进率是10. 熟记:51=0.2 52= 0.4 53= 0.6 54=0.8 41=0.25 43= 0.75 81= 0.125 83=0.375 85=0.625 87=0.875 小数点右边第一位是(十分位),计数单位是(十分之一);第二位是(百分位),计数单位是(百分之一)……小数部分有几个数位,就叫做几位小数。
如3.305是( 三 )位小数 3、整数、小数的读法和写法:读整数时注意先分级再读数。
28302006000 读作: 读小数时注意,小数部分顺次读出每个数位上的数。
27.036 读作: 写数时注意写好后,一定要读一读仔细校对。
五亿零八千 写作: 三百八十点零三六 写作: 为了读写方便,常常把较大的数改写成用“万”或“亿”作单位的数。
如只要求“改写”,结果应是准确数。
768000000 =( )亿 如要求“省略”万(亿)后面的尾数,结果应是近似数。
768000000≈( )亿 4、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变.5、小数点向右移动一位、两位、三位……原来的数就扩大(缩小)10倍、100倍、1000倍…… 小数点向左移动一位、两位、三位……原来的数就缩小到原数的( ) ……6、正数、负数0既不是正数也不是负数,0是正数和负数的分界点。
人教版六年级数学小升初总复习第二章:数的运算2.4、分数的约分和通分含答案

人教版六年级数学小升初总复习第二章:数的运算2.4、分数的约分和通分(含答案)六年级数学小升初总复习第二章:数的运算2.4、分数的约分和通分【知识要点】一、分数的基本性质分数的分子和分母同时都乘以或者除以相同的数(零除外),分数的大小保持不变。
二、分数的约分1、约分:用分子和分母的公因数(1除外)持续去除分子、分母;一般要除到得出最简分数为止,也就是约到不能约分为止。
此时,最简分数的分子与分母是互质数。
注意:公因数只有1的两个数,叫做互质数,简称“互质”;互质数的两个数最大公因数是1。
2、约分的意义:把一个分数化成和它相等,但分子和分母都比原来分数小的分数,就叫做约分。
2、约分的方法:(1)逐步约分法。
用分子和分母的公因数(1除外)去除,一直除到分数的分子和分母只有公因数1为止。
(2)一次约分法。
先找出原分数的分子和分母的最大公因数,然后用这个最大公因数(1除外)去除分子、分母,得出最简分母。
3、分子和分母只有公因数1的分数叫做最简分数(分子和分母是互质数的分数叫做最简分数)。
完全约分后的分数就是最简分数。
三、分数的通分1、通分:根据分数的基本性质,把几个异分母分数化成与原来分数的值相等的同分母分数的过程,叫做通分。
2、通分的方法:先求出原来几个分数的分母的最小公倍数;然后,每个分数的分母都需要变成该“最小公倍数”;同时,分子也跟着分母扩大相同的倍数,从而达到通分的目的。
3、通分的依据:分数的分子、分母同时乘以或除以一个不为零的数,分数的大小保持不变。
4、通分的要点是确定几个异分母分数的“最简公分母”。
其方法如下:(1)采用短除法,求出这些分母的最小公倍数;(2)该“最小公倍数”即是这些异分母分数的最简公分母;(3)根据分数的基本性质,把原来分数化为以该“最简公分母”为分母的分数。
优选同步练习一、单选题1、分子、分母是不同质数的分数,那么()。
A.一定不是最简分数B.一定是最简分数C.不一定是最简分数2、一个最简真分数,分子与分母的和是12,这样的分数一定有()A.2个B.3个C.4个D.5个3、分子与分母相差1的分数一定是()A.真分数B.假分数C.带分数D.最简分数4、a、b是相邻的两个奇数(a、b均不为0),a和b的最大公因数是()A.abB.1C.a+b5、原来两个分数的分母的乘积是通分后的新分母,那么原来的两个分母()。
人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点涵盖了数的认识、数的运算、空间与几何、统计等内容。
一、数的认识1. 分数与小数的转化及基本概念,包括百分数、小数的换算与比较。
2. 分数的基本性质,如通分、约分等。
二、数的运算1. 整数四则运算及运算定律,如加法交换律、结合律等。
2. 分数四则运算,包括分数乘除法及运算顺序。
三、空间与几何1. 图形的基本认识,如点、线、面等。
2. 平面图形的认识,如长方形、正方形、平行四边形等的基本性质和面积计算。
3. 立体图形的认识,如长方体、正方体等的基本性质和体积计算。
四、统计1. 统计表和统计图的基本知识,如条形图、折线图等。
2. 数据的收集与整理,包括平均数、中位数等统计量的计算及其应用。
五、综合应用1. 实际问题中的数学应用,如比例尺的应用等。
2. 数学与生活的联系,如解决生活中常见的数学问题等。
具体来说,本册的数学学习过程中还包括有理数的基础知识、乘方的基础运算和运算顺序等内容的学习和掌握。
在学习过程中要能够通过解决实际问题和计算题目来检验学生对数学知识的理解和运用能力。
通过不断的学习和实践,培养学生的空间想象力、计算能力和数学逻辑思维,从而提升学生的综合素质。
六、实际问题与数学建模在六年级上册的数学学习中,学生将接触到更多实际问题与数学建模的结合。
例如,通过解决生活中的购物问题、行程问题等,学生将学习如何运用数学知识和方法去解决实际问题。
此外,学生还将学习如何利用比例、百分数等数学知识去解决实际问题,并理解数学在现实生活中的广泛应用。
七、几何图形的变换本册还将涉及几何图形的变换,如平移、旋转等。
学生将学习这些基本变换的概念和性质,并通过实践操作和思考,培养空间想象能力和几何思维。
八、解题技巧和思维能力在学习过程中,学生需要掌握一定的解题技巧和思维能力。
如:对数学题目的分析和理解能力、逻辑思维能力和创造性思维能力等。
这些能力将有助于学生更好地理解和掌握数学知识,并能够更好地解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7 、25.3 、0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.33 ……3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111 …… 0.5656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 …… 0.03333 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如: 3.777 …… 简写作0.5302302 …… 简写作。
(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约是35 万。
省略4725097420 亿后面的尾数约是47 亿。
4. 大小比较1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除1. 把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。