数字电路实验报告集成触发器及应用

合集下载

触发器及其应用实验报告

触发器及其应用实验报告

触发器及其应用实验报告一、实验目的通过本次实验,我们的目标是:1.了解触发器的基本原理。

2.学习触发器的分类及其应用场景。

3.通过实验了解触发器的使用方法。

二、实验器材1.示波器。

2.信号发生器。

3.逻辑门芯片。

4.电源。

5.电线、面包板等。

三、实验原理触发器是由逻辑门电路组成的电子器件,具有存储和控制的功能,它能够接收一个或多个输入信号,通过逻辑门电路进行处理,并输出结果。

因为具有存储和控制的功能,所以可以被广泛应用于数字电路中。

触发器分为锁存触发器和触发器两种。

锁存触发器存在一个叫做钟脉冲的输入信号,这个输入信号决定了锁存触发器是否工作。

当输入一个高电平的钟脉冲时,锁存触发器将会把它的输入信号“锁定”,并输出相应的结果;当钟脉冲为低电平时,锁存触发器会维持自己的状态不变。

触发器一般也有两个输入信号,分别是时钟和数据。

当时钟为高电平的时候,数据会被写入到触发器中,并且继续保存下来;当时钟为低电平的时候,触发器会维持自己的状态不变。

四、实验步骤1、搭建RS锁存器电路图将R、S两个输入端接到逻辑门芯片上,并将输出端接上示波器,调整示波器参数,实时观察输出波形。

在示波器上显示R、S各种输入波形,了解电路的工作原理和特性。

4、测试D触发器电路五、实验结果通过本次实验,我们成功地实现了RS锁存器和D触发器的搭建和测试。

我们通过不同的输入信号波形测试了电路的各种工作特性,如RS锁存器的存储和控制特性以及D触发器的时序控制特性等。

六、实验分析触发器是数字电路中的关键元件之一,它可以实现数字信号的存储和控制。

本次实验通过搭建RS锁存器和D触发器电路,并通过逻辑门芯片实现,得出了两种触发器的不同工作原理和特性。

同时,我们还通过不同的输入波形测试了它们的各种工作状态,进一步了解和掌握触发器的应用技巧和调试方法。

这对于我们深入理解和掌握数字电路原理以及实际应用具有重要意义。

同时,我们还通过实际操作锻炼了自己的实验技能,深入理解了数字电路的原理和应用。

数字电路实验报告触发器

数字电路实验报告触发器

一、实验目的1. 理解触发器的概念、原理和功能。

2. 掌握触发器的分类、结构和逻辑功能。

3. 通过实验,验证触发器的逻辑功能,加深对触发器原理的理解。

二、实验原理触发器是一种具有记忆功能的电路,可以存储1个二进制位的信息。

它有两个稳定的状态:SET(置位)和RESET(复位)。

触发器的基本结构是RS触发器,由两个与非门组成,其逻辑功能可用真值表表示。

触发器按触发方式可分为同步触发器和异步触发器;按逻辑功能可分为RS触发器、D触发器、JK触发器和T触发器等。

三、实验仪器与材料1. 74LS74双D触发器芯片2. 74LS02四2输入与非门芯片3. 74LS00四2输入或非门芯片4. 74LS20四2输入或门芯片5. 74LS32四2输入与门芯片6. 74LS86四2输入异或门芯片7. 74LS125八缓冲器芯片8. 74LS126八缓冲器芯片9. 电源10. 示波器11. 信号发生器12. 逻辑笔四、实验内容1. RS触发器实验(1)搭建RS触发器电路:将74LS74芯片的Q1端与Q2端连接,Q1端接与非门74LS02的输入端,Q2端接与非门74LS02的输入端。

将74LS02的输出端分别连接到74LS20的输入端和74LS32的输入端。

(2)观察RS触发器逻辑功能:通过逻辑笔观察Q1端和Q2端的输出状态,记录下不同输入端S和R的值。

(3)分析RS触发器逻辑功能:根据真值表分析RS触发器的逻辑功能,得出结论。

2. D触发器实验(1)搭建D触发器电路:将74LS74芯片的Q1端接与非门74LS02的输入端,Q2端接与非门74LS02的输入端。

将74LS02的输出端分别连接到74LS20的输入端和74LS32的输入端。

(2)观察D触发器逻辑功能:通过逻辑笔观察Q1端和Q2端的输出状态,记录下不同输入端D的值。

(3)分析D触发器逻辑功能:根据真值表分析D触发器的逻辑功能,得出结论。

3. JK触发器实验(1)搭建JK触发器电路:将74LS74芯片的Q1端接与非门74LS02的输入端,Q2端接与非门74LS02的输入端。

数电实验报告触发器及其应用(共10篇)

数电实验报告触发器及其应用(共10篇)

数电实验报告触发器及其应用(共10篇)1、实验目的:掌握触发器的原理和使用方法,学会利用触发器进行计数、存储等应用。

2、实验原理:触发器是一种多稳态数字电路,具有存储、计数、分频、时序控制等功能。

常见的触发器有RS触发器、D触发器、T触发器、JK触发器等。

RS触发器是由两个交叉互连的反相器组成的,它具有两个输入端R(复位)和S(置位),一个输出端Q。

当输入R=1,S=0时,Q=0;当输入R=0,S=1时,Q=1;当R=S=1时,无法确定Q的状态,称为禁态。

JK触发器是将RS触发器的两个输入端合并在一起而成,即J=S,K=R,当J=1,K=0时,Q=1;当J=0,K=1时,Q=0;当J=K=1时,Q反转。

JK触发器具有启动、停止、颠倒相位等功能。

D触发器是由单个输入端D、输出端Q和时钟脉冲输入端组成的,当时钟信号上升沿出现时,D触发器的状态发生改变,如果D=1,Q=1;如果D=0,Q=0。

T触发器只有一个输入端T和一个输出端Q,在每个时钟脉冲到来时,T触发器执行T→Q操作,即若T=1,则Q取反;若T=0,则Q保持不变。

触发器可以组成计数器、分频器、存储器、状态机等各种数字电路,被广泛用于计算机、控制系统等领域。

3、实验器材:数码万用表、示波器、逻辑分析仪、CD4013B触发器芯片、几个电阻、电容、开关、信号发生器等。

4、实验内容:4.1 RS触发器测试利用CD4013B芯片来测试RS触发器的功能,在实验中将RS触发器的输入端分别接入CD4013B芯片的端子,用示波器观察输出端的波形变化,并记录下输入输出关系表格,来验证RS触发器的工作原理。

具体实验步骤如下:将CD4013B芯片的端子按如下接线方式连接:RST1,2脚接入+5V电源,C1个100nF的电容与单位时间5 ns的外部时钟信号交替输入接口CLK,以模拟器件为master时,向器件提供单个时钟脉冲。

测试时选择适宜的数据输入,R1和S2另一端程+5V,S1和R2另一端连接接地GND,用万用表测量各端电压,电容缓存的电压。

触发器的应用实验报告

触发器的应用实验报告

触发器的应用实验报告触发器的应用实验报告引言触发器是数字电路中常用的一种元件,它能够存储和控制电路中的信号。

触发器的应用十分广泛,从计算机内存到时序电路,都离不开触发器的支持。

本实验旨在通过实际操作,深入了解触发器的原理和应用。

实验目的1. 理解触发器的基本工作原理;2. 掌握触发器的常见类型及其应用;3. 通过实验验证触发器在时序电路中的重要性。

实验器材1. 数字逻辑实验箱;2. 74LS74触发器芯片;3. 电压源;4. 示波器;5. 连接线。

实验步骤1. 搭建基本的RS触发器电路。

将74LS74芯片插入实验箱,并按照芯片引脚的连接要求,将电源和示波器连接到相应的引脚上。

通过连接线,将RS触发器的输入端与输出端相连,形成反馈电路。

2. 测试RS触发器的工作原理。

调整电压源的输出电压,观察触发器的输出变化。

通过改变输入信号的状态,观察触发器的输出是否发生翻转。

记录实验结果。

3. 搭建D触发器电路。

将74LS74芯片重新插入实验箱,并按照芯片引脚的连接要求,将电源和示波器连接到相应的引脚上。

通过连接线,将D触发器的输入端与输出端相连,形成反馈电路。

4. 测试D触发器的工作原理。

调整电压源的输出电压,观察触发器的输出变化。

通过改变输入信号的状态,观察触发器的输出是否与输入信号同步。

记录实验结果。

实验结果与分析通过实验,我们观察到了RS触发器和D触发器的工作原理。

RS触发器的输出状态受到输入信号的控制,当输入信号为高电平时,输出为低电平;当输入信号为低电平时,输出为高电平。

而D触发器则将输入信号同步到输出信号上,实现了数据的存储和传输。

触发器的应用触发器在数字电路中有着广泛的应用。

以下是一些常见的应用场景:1. 时序电路触发器可以用于构建各种时序电路,如计数器、频率分频器等。

通过触发器的状态变化,可以实现对时钟信号的精确控制,从而实现特定的计时功能。

2. 存储器触发器可以用于构建存储器单元,如寄存器、RAM等。

触发器实验报告

触发器实验报告

触发器实验报告一、实验目的本次实验的主要目的是深入了解和掌握触发器的工作原理、功能特点以及其在数字电路中的应用。

通过实际操作和观察,提高对触发器逻辑功能的理解和运用能力,为进一步学习数字电路的相关知识打下坚实的基础。

二、实验设备与器材1、数字电路实验箱2、双踪示波器3、集成电路芯片:74LS74(D 触发器)、74LS112(JK 触发器)4、若干导线三、实验原理(一)D 触发器D 触发器是一种在时钟脉冲上升沿或下降沿触发的触发器,其逻辑功能为:当 D 端输入为 1 时,在时钟脉冲的作用下,输出 Q 变为 1;当 D 端输入为 0 时,在时钟脉冲的作用下,输出 Q 变为 0。

其逻辑表达式为:Q(n+1) = D。

(二)JK 触发器JK 触发器也是一种在时钟脉冲上升沿或下降沿触发的触发器,具有置 0、置 1、保持和翻转四种功能。

当 J=1、K=0 时,在时钟脉冲作用下,输出 Q 置 1;当 J=0、K=1 时,在时钟脉冲作用下,输出 Q 置 0;当 J=K=0 时,输出保持不变;当 J=K=1 时,输出翻转。

其逻辑表达式为:Q(n+1) = JQ' + K'Q。

四、实验内容与步骤(一)D 触发器实验1、按照实验电路图,在数字电路实验箱上正确连接 74LS74 芯片和其他相关元件。

2、将 D 端分别接高电平(1)和低电平(0),用示波器观察时钟脉冲和输出 Q 的波形,记录实验结果。

3、改变时钟脉冲的频率,观察输出 Q 的变化,分析时钟频率对触发器工作的影响。

(二)JK 触发器实验1、依照实验电路图,在实验箱上连接 74LS112 芯片及相关元件。

2、分别设置 J、K 的不同输入组合,如 J=0、K=0;J=1、K=0;J=0、K=1;J=1、K=1,用示波器观察时钟脉冲和输出 Q 的波形,并做好记录。

3、调整时钟脉冲的占空比,观察输出 Q 的变化,探讨占空比对触发器工作的影响。

五、实验数据与结果分析(一)D 触发器1、当 D 端接高电平时,在时钟脉冲上升沿,输出 Q 变为高电平;当 D 端接低电平时,在时钟脉冲上升沿,输出 Q 变为低电平。

数字电子技术实验五触发器及其应用(学生实验报告)

数字电子技术实验五触发器及其应用(学生实验报告)

数字电⼦技术实验五触发器及其应⽤(学⽣实验报告)实验三触发器及其应⽤1.实验⽬的(1) 掌握基本RS、JK、D和T触发器的逻辑功能(2) 掌握集成触发器的逻辑功能及使⽤⽅法(3) 熟悉触发器之间相互转换的⽅法2.实验设备与器件(1) +5V直流电源(2) 双踪⽰波器(3) 连续脉冲源(4) 单次脉冲源(5) 逻辑电平开关(6) 逻辑电平显⽰器(7) 74LS112(或CC4027);74LS00(或CC4011);74LS74(或CC4013)3.实验原理触发器具有 2 个稳定状态,⽤以表⽰逻辑状态“1”和“0”,在⼀定的外界信号作⽤下,可以从⼀个稳定状态翻转到另⼀个稳定状态,它是⼀个具有记忆功能的⼆进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。

(1) 基本RS触发器图4-5-1为由两个与⾮门交叉耦合构成的基本RS触发器,它是⽆时钟控制低电平直接触发的触发器。

基本RS触发器具有置0 、置1 和保持三种功能。

通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发⽣,表4-5-1为基本RS触发器的功能表。

基本RS触发器。

也可以⽤两个“或⾮门”组成,此时为⾼电平电平触发有效。

图4-5-1 基本RS触发器(2) JK触发器在输⼊信号为双端的情况下,JK触发器是功能完善、使⽤灵活和通⽤性较强的⼀种触发器。

本实验采⽤74LS112双JK触发器,是下降边沿触发的边沿触发器。

引脚功能及逻辑符号如图4-5-2所⽰。

JK触发器的状态⽅程为Q n+1=J Q n+K Q nJ和K是数据输⼊端,是触发器状态更新的依据,若J、K有两个或两个以上输⼊端时,组成“与”的关系。

Q与Q为两个互补输出端。

通常把 Q=0、Q=1的状态定为触发器0 状态;⽽把Q=1,Q=0定为 1 状态。

图4-5-2 74LS112双JK触发器引脚排列及逻辑符号下降沿触发JK触发器的功能如表4-5-2注:×— 任意态↓— ⾼到低电平跳变↑— 低到⾼电平跳变Q n (Q n )— 现态 Q n+1(Q n+1)— 次态φ— 不定态JK 触发器常被⽤作缓冲存储器,移位寄存器和计数器。

触发器实验报告

触发器实验报告

触发器实验报告一、实验目的本次触发器实验的主要目的是深入理解触发器的工作原理和功能,通过实际操作和观察,掌握触发器在数字电路中的应用,以及其对信号的存储和转换作用。

二、实验原理1、触发器的定义与分类触发器是一种具有记忆功能的基本逻辑单元,能够存储一位二进制信息。

常见的触发器类型包括基本 RS 触发器、JK 触发器、D 触发器等。

2、基本 RS 触发器由两个与非门交叉连接而成,具有置 0 和置 1 功能,但存在输入约束条件。

3、 JK 触发器在时钟脉冲的作用下,根据输入的 J、K 信号进行状态翻转。

4、 D 触发器在时钟脉冲上升沿或下降沿时,将输入的 D 信号存储到触发器中。

三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS00(四 2 输入与非门)、74LS74(双 D 触发器)、74LS112(双 JK 触发器)3、示波器4、导线若干四、实验内容及步骤1、基本 RS 触发器实验(1)按照电路图在实验箱上连接好 74LS00 芯片,组成基本 RS 触发器。

(2)通过改变输入 R、S 的电平,观察输出 Q 和 Q'的状态变化,并记录在表格中。

2、 JK 触发器实验(1)将 74LS112 芯片插入实验箱,按照电路图连接好 JK 触发器。

(2)设置不同的 J、K 输入组合和时钟脉冲,观察并记录 Q 和 Q'的输出状态。

3、 D 触发器实验(1)使用 74LS74 芯片搭建 D 触发器电路。

(2)改变 D 输入和时钟信号,记录 Q 和 Q'的输出。

五、实验数据记录与分析1、基本 RS 触发器数据记录| R | S | Q | Q' ||||||| 0 | 0 |保持|保持|| 0 | 1 | 1 | 0 || 1 | 0 | 0 | 1 || 1 | 1 |不定|不定|分析:当 R=0、S=1 时,触发器被置 1;当 R=1、S=0 时,触发器被置 0;当 R=S=0 时,触发器保持原状态;当 R=S=1 时,输出状态不定,不符合正常工作条件。

实验4触发器及其应用

实验4触发器及其应用

实验四 触发器及其应用一、实验目的1、 掌握基本RS 、JK 、D 、T 触发器的逻辑功能;2、 熟悉集成触发器的逻辑功能及使用方法;3、 学会不同逻辑功能触发器之间的转换方法。

二、实验仪器及设备1、 EEL-II 型电工电子实验台2、 数字电路实验箱3、 万用表4、 直流稳压电源5、 参考元件 三、实验内容1、 基本RS 触发器逻辑功能测试,元件用74LS00QDDQQ(a)(b)图5.1基本RS 触发器结构图2、 D 触发器逻辑功能测试,元件用74LS74(双上升沿触发D 触发器) (1) 直接复位端R D 和直接置位端S D 的功能测试 (2) D 触发器的逻辑功能测试直接复位、置位端R D 、S D 接模拟电位开关,CP 接单脉冲发生器,并改变D 的状态,将测试结果填入表5.2中。

3、 JK 触发器功能测试,选用74LS112直接复位、置位端R D 、S D 接模拟电位开关,CP 接单脉冲发生器,并改变J 、K 的状态,将测试结果填入表5.3中。

4、用D触发器构成T’触发器Q 将D触发器的D端与Q端相连,构成T’触发器。

其逻辑功能为:Q n+1=n表示每来一个CP脉冲翻转一次。

有计数功能。

(1)在CP加入单脉冲观察翻转次数和CP输入正脉冲个数间的关系。

(2)CP端加连续脉冲,用示波器观察Q与Q波形,记录填表5.4,并画出波形图。

如图5.4所示。

CPQQ图5.3波形图5、用JK触发器接T和T’触发器(1)设计电路(2)测试功能并观察CP和Q的同步波形,体会触发器的分频作用。

四、实验报告1、整理实验数据,结果填入各表格,画出要求的有关电路图;2、依实验结果总结触发器的逻辑功能。

五、思考题1、何谓基本RS触发器的记忆功能?2、D触发器翻转条件及特点是什么?3、*D触发器实现可靠计数的基本思想是什么?六、器件介绍1、D触发器74LS74图5.2上升沿触发D 触发器74LS74符号2、 JK 触发器74LS11274LS112是双主从下降沿触发JK 触发器,其逻辑符号和管脚引线排列如图5.5所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名:xxxxxxxxxxxxxxx学号:xxxxxxxxxx .学院:计算机与电子信息学院专业:计算机类.班级:xxxxxxxxxxxxxxxxxx时间:2019年10月18 日.指导教师:xxxxxxxx .实验名称:集成触发器及应用.一、实验目的1、掌握RS、JK、D触发器的基本逻辑功能测试方法;2、掌握时序电路的设计;二、实验原理触发器是构成时序电路的基本逻辑单元。

它具有两个稳定状态,即“0”状态和“1”状态。

只有在触发信号作用下,才能从原来的稳定状态转变为新的稳定状态。

因此触发器是一种具有记忆功能的电路,可作为二进制存储单元使用。

触发器种类很多,按其功能可分为基本RS触发器、JK触发器、D触发器和T触发器等;按电路的触发方式又可分为电位触发器型、主从型、维阻型、边沿触发器型等。

基本RS触发器是各种触发器中最基本的组成部分,它能存贮一位二进制信息,但有一定约束条件。

例如用与非门组成的RS触发器的R'、S'不能同时为“0”,否则当R’、S’端的“0”电平同时撤销后,触发器的状态不定。

因此只R'=S'=0的情况不允许出现,也就是RS=0约束条件。

基本RS触发器的用途之一是作无抖动开关。

例如在图4-1所示的电路中,当开关S 接通时,由于机械开关在扳动的过程中,存在接触抖动,使得F点电压从+5V直接跃降到0V一瞬间(几十毫秒),会发生多次电压抖动,相当产生连续多个脉冲信号。

如果利用这种电路产生的信号去驱动数字电路,则可能导致电路发生误动作。

图4-1这在某些场合是绝对不允许的,为了消除机械开关的抖动,可在开关S与输入端A之间接入一个RS触发器(见图4-2所示),就能使F端产生很清晰的阶跃信号。

那么这种带RS触发器的开关通常称为无抖动开关(或称为逻辑开关)。

而把有抖动的开关称为数据开关。

图4-2TTL集成触发器主要有三种类型:锁存器、D触发器和JK触发器。

锁存器是电位型触发器。

由于它存在“空翻”,不能用于计数器和移位寄存器,只能用于信息寄存器。

维阻D触发器,克服了“空翻”现象,所以称作维阻型触发器。

主从型触发器,虽然克服了“空翻”,但存在一次变化问题,即在CP=1期间,J、K 端若有干扰信号,触发器可能产生误动作,这就降低了它的抗干扰能力,因而使用范围受到一定的限制。

边沿触发型JK触发器抗干扰性能较好,故应用广泛。

图4-3是集成JK、D触发器的逻辑符号。

图中RD为复位输入端,SD为置位输入端,端旁的小圆圈表示低电平驱动。

当SD和RD端有加“0”信号驱动时,触发器的状态不受CP及控制输入端所处状态的影响。

CP为时钟输入端,在SD=RD=1时,只有在CP 脉冲的作用时才使触发器状态更新。

CP端有小圆圈,表示该触发器在CP产脉冲的负沿时翻转。

CP端没有小圆圈,表示该触发器在CP脉冲的正沿时翻转。

在部分国外的触发器符号中,CP端的小圆圈上加有尖角标志,表示该触发器是负沿触发器的边沿触发器,如图4-3(C)所示。

J、D、K为触发器的控制信号输入端,它们是触发器更新状态的数据。

若J、K、D有两个或两个以上的输入端时,就将这些端子画成与门的形式,如图4.3(a)、(b)中所示。

Q和Q’为两个互补输出端,通常把Q=1,Q’=0的状态,定为触发器的1状态,而把Q=0,Q’=1的状态定为触发器的0状态。

图4-3为了正确使用触发器,首先要掌握触发器的逻辑功能。

RS触发器的特性方程是Q*=S+R 'Q(RS=0为约束条件);D触发器的特性方程是Q*=D;JK触发器的特性方程是Q*=JQ '+K 'Q。

逻辑功能掌握了,还要注意触发器对CP脉冲与输入信号之间互相配合的要求。

一般来说,边沿触发器要求控制输入端信号超前CP脉冲触发边沿一段时间建立,并在触发边沿到达后继续保持一段时间。

各种边沿触发器对建立和保持时间上有所差别。

主从触发器则要求控制输入信号在CP=1期间不应发生变化,否则将可能导致触发器错误输出。

因此,在设计电路时,应加以注意。

触发器的应用范围很广,它可以构成各种各样的计数器、移位寄存器等。

至于计数器的设计方法,在课本中电路部分均有章可查,这里不再重复。

三、实验设备及器件1、数字逻辑试验箱一个;2、示波器一台、万用表一个;3、元器件:74LS74、74LS112、74LS00芯片各一个。

四、实验内容1、实验内容1:D触发器(74LS74)的功能测试:(1)按表4-1要求改变S’和R’,观察Q和Q’的状态。

(2)按表4-2的要求,测试并记录触发器的逻辑功能(表中0->1为上升沿;1->0为下降沿。

CP脉冲应由单脉冲源来提供)2、实验内容2:JK触发器(74LS112)的功能测试:(1)按表4-3要求测试并记录触发器的逻辑功能测试3、实验内容3:使用JK触发器设计一个三进制的同步减法计数器。

要求写出设计的过程,画出逻辑图,测试并记录电路的状态转换真值表。

观察并记录时钟脉冲和各级触发器输出的工作波形(由于输出波形的不对称性,应特别注意测试方法,正确观察它们的时间关系。

如果示波器观察不明显,可用发光二极管灯L来显示)五、实验过程1、实验内容1.1:(1)实验设计思路:将SD'与RD'作为两个输入端,Q与Q'为输出端(接灯泡),而此时CP与D的状态对整个实验结果并无影响,不断改变SD'与RD'的0、1状态(根据表中所给数据进行改变),然后再观察Q与Q'的亮暗并记录(2)元器件管脚图:图4-4 74LS74管脚图(3)器件管脚连线图、实际连线照片及说明:图4-5 实物连接图说明:根据逻辑电路图依次连接可得到如上实物连接图(4)实验步骤及实验数据:实验步骤:1.根据逻辑电路图连接各点,选取1接⎺RD,4接⎺SD作为输入,将CP接3,将D接2,将5接Q,Q*接6,将7接GND,14接VCC2.按照表格所给数据,不断调节⎺SD、⎺RD的状态3.观察两个输出灯泡的亮暗并记录如下表格实验数据:(5)实验总结。

根据上表依次输入电平及变化即可得出:S’D=1,R’D=0,Q置零,S’D =0,R’D=1,Q置1,S’D=R’D=1,Q保持不变实验内容1.2(1)实验设计思路:在实验1.1的基础上,将D触发器(74LS74)的2连接开关,3连接单脉冲,,按所给的表要求改变D、CP(QD为上升沿,QD#为下降沿)和Q的初始状态(通过1.1实验的方法),观察小灯泡的状态(2)元器件管脚图:图4-6 74LS74管脚图(3)器件管脚连线图、实际连线照片及说明:图4-7 逻辑电路图(下降沿)图4-8 逻辑电路图(上升沿)图4-9 实际连线照片(4)实验步骤及实验数据:实验步骤:1.电路下降沿按图4-8连接,上升沿按图4-9连接2.打开电源后按照所给表的数值进行调整3.S'D和R'D都置为1,逐个进行测量,观察并记录L11小灯泡的亮暗状态并记录实验数据:表4-5 D触发器测试结果(6)实验总结:D 触发器当 D=0 时,Q 置 0,当 D=1 时,Q 置 1。

2、实验内容2:(1)实验设计思路:将JK触发器(74LS112)的1连脉冲(CP),2,3两个输入端连接开关,2为K,3为J,另外两个输入端4、15也连开关,4为S'D,15为R'D,5、6两个输出点连接小灯泡,5为Q,6为Q',按所给表的要求改变J、K、CP(上升沿或下降沿),通过改变S'D和R'D来改变Q的初始状态,观察小灯泡的状态(1)元器件管脚图及功能说明:(2)逻辑电路图及设计说明:设计说明:S'D连接4,R'D连接15,Q连接5,Q’连接6,J连3,K连2,脉冲为CP连1,图4-12为下降沿(1->0),图4-13为上升沿(0->1),通过观察小灯泡的亮暗,得出输出情况(3)实际连线照片及说明:说明:1连脉冲(QD或QD#)2连K6,3连K7,4连K9,5连L8,6连L7,15连K8,7连GND,14连VCC(5)实验步骤及实验数据:实验步骤:电路下降沿按图4-11打开电源,按表4-3所列输入状态(J、K由开关控制,CP为上升沿时,连接QD,CP为下降沿时,连接QD#,Q的初始状态根据实验1-1的方法进行调整,调整完毕后,S'D和R'D都置为1),逐个进行测量,观察并记录L8的状态,亮则为1,暗则为0,并将结果记录在表中实验数据:(6)实验总结。

经过总结发现,当CP为下降沿时:JK触发器当J=K=0时,Q保持不变;当J=0,K=1时,Q置0;当J=1,K=0时,Q转置(Q=0,则Q*=1,Q=1,则Q*=0)。

当CP为上升沿时,Q保持不变3、实验内容3:(1)实验设计思路:因为这是一个三进制的同步减法器,所以要减三次就是一个循环,我们假设初态11是循环的开头,减1后,次态变成10,10减1后,次态变为01,01减1后,因为这是减了3次了,所以01减1的次态要变回11,因此我们不能让00出现在次态中,当00为初态时的次态是任意的,如下表所示再观察次态与初态的关系,根据JK触发器的性质,利用两个JK触发器,将次态通过或门将信号输入到JK触发器的JK输入端中,利用数字显示器和示波器,观察两JK触发器的输出状态(2)元器件管脚图及功能说明:(3)逻辑电路连线图:(4)实验步骤及实验数据:实验步骤:1.画出逻辑图002.状态转化图3.功能驱动表根据JK 触发器的性质可知,当JK 触发器的初态与次态相同时,J=K=0,当JK 触发器的初态与次态不同时,J=K=1,1J=1K=Q n’ 1+Q n’ 0,2J=2K=Q n 1+Q n’ 0根据所给的表在仿真操作软件中设计出三进制的同步减法计数器,分别观察记录数字显示器的状态实验数据:(6)实验总结:先通过设计计数器的初态与次态,再根据JK 触发器的性质,通过计算将信号经过转换(两个或门)输入到JK 触发器的输入端,即可得出三进制的同步减法器.。

相关文档
最新文档