2016年景润杯数学竞赛试题

合集下载

2016全国初中数学联赛决赛试卷

2016全国初中数学联赛决赛试卷

2016全国初中数学联赛决赛试卷(3月20日上午8:45---11:45)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且仅有一个是正确的。

将你选择的答案的代号填在题后的括号内。

每小题选对得7分,不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。

1、化简|2-x |+(2-x )2-1442+-x x 所得的结果是( ) A 、2-x B 、5-4x C 、3 D 、-32、若实数x,y,z 满足:x+2y+3z=0,2016x+2015y+2014z=2017,则x+y+z 的值是( )A 、-1B 、0C 、1D 、20163、已知点E 是正方形ABCD 中BC 边的中点,过点B ,D 分别作AE 的垂线,垂足分别为F ,G ,则∠FBG=( )A 、30°B 、45°C 、60°D 、75°4、若k 为实数,使得关于x 的方程kx 2-(2k+3)x+3=0有有理数根,就称k 为“好数”,则“好数”k 的个数是( )A 、0B 、1C 、2D 、35、在Rt △ABC 中,AC=6,E 在AC 边上一点,满足CE=2AE ,D 为斜边AB 的中点,F 是线段BC 上一动点,满足∠EDF=90°,则BF-FC 的最大值是( )A 、22B 、23C 、32D 、336、已知n(n ≥3)个实数a 1,a 2,……a n ,满足a 1=1,a n =1,|a i+1-a 1|≤2(1≤i ≤n-1)若a 1+a 2+……+a n =2016,则正整数n 最小值是( )A.61B. 62C.63D.64二.填空题(本大题满分28分,每小题7分)本题共有4小题,要求直接将答案写在横线上。

7、已知点O 是锐角△ABC 的外心,∠BAC=60°,延长CO 交AB 于点D ,延长BO 交AC 于点E ,则CE BD 的值是 。

2016年全国初中数学联赛试题+答案

2016年全国初中数学联赛试题+答案

2016年全国初中数学联赛试题+答案2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知123t =-,a 是t 的小数部分,b 是t -的小数部分,则112b a-=( ).A 12 .B 32.C 1 .D32.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A9种.B10种.C11种.D12种3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=-2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为().A6858.B6860.C9260.D92623(B).已知二次函数21(0)y ax bx a=++≠的图象的顶点在第二象限,且过点(1,0).当a b-为整数时,ab=().A0.B 14.C34-.D2-4.已知O e的半径OD垂直于弦AB,交AB于点C,连接AO并延长交O e于点E,若8,AB=2CD=,则BCE∆的面积为().A12.B15.C16.D185.如图,在四边形ABCD中,090BAC BDC∠=∠=,5AB AC==1CD=,对角线的交点为M,则DM=( ).A 32.B53.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数3y x=(x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM恰好把BAC ∠三等分,3AD =,则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠=.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p、q满足:340,111,--=+<则pq的q p p q最大值为 .4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M,则M的最大值为 .第二试(3月20日上午9:50 —11:20)一、(本题满分20分)已知,a b为正整数,求22=---能取到的最小M a ab b324正整数值.二、(本题满分25分)(A).如图,点C在以AB为直径的O e上,CD AB⊥于点D,点E在BD上,,=四边形DEFM是正方形,AMAE AC的延长线与O e交于点N.证明:FN DE=.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.ab c ++=求222222()()()aab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xyyz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题及详解 第一试(3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x的小数部分.已知123t =-,a 是t 的小数部分,b 是t-的小数部分,则112b a-=( ).A 12 .B 32.C 1 .D3【答案】A . 【解析】123,132,23t ==+<<-Q 3234,∴<+< 即34,t <<33 1.a t ∴=-= 又23,231,t -=--<<-4233,∴-<-<-(4)23,b t ∴=---=1123311,22222(23)31b a ∴-==-=--故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种.B 10种 .C 11种.D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858.B 6860 .C 9260 .D 9262 【答案】B . 【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B .3(B ).已知二次函数21(0)y axbx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ).A 0 .B 14.C 34-.D 2-【答案】B .【解析】依题意知0,0,10,2b a a b a <-<++= 故0,b < 且1b a =--,(1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC =(第4题答案图) Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,∴∠=o114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD中,090BAC BDC ∠=∠=,5AB AC ==,1CD =,对角线的交点为M ,则DM =( ).A 32.B 53.C 22 .D 12(第5题答案图)【答案】D .【解析】过点A作AH BD⊥于点,H 则AMH∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAH CM∴=设,AM x = 则5,5CM x AH x=∴=-在Rt ABM ∆中,2225,BM AB AM x =+=+ 则255AB AMx AH BMx ⋅==+25,55x xxx =-+显然0x ≠,化简整理得2255100xx -+=解得5,2x =(25x =不符合题意,舍去),故5,2CM =在Rt CDM ∆中,2212DM CM CD =-=,故选D .6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 3【答案】C . 【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C .二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数3y x=(x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】3,22⎛⎫ ⎪ ⎪⎝⎭.【解析】如图,过点C 作CD AB ⊥于点D .在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD∆中,33sin 2CD BC B =⋅=(第1题答案图)9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,,,C m A n m n ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,依题意知0,n m >>故33,CD n m AD =-=,于是3323332n m mn ⎧-=⎪⎪-=⎩ 解得33m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫⎪ ⎪⎝⎭.1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM恰好把BAC ∠三等分,3AD =则AM = .【答案】2. 【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB∠≠∠.(1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠=060,DAC ∴∠= 从而090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠=⋅=o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =.2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠=.【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=, BCQ ∥AD,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=,(第2题答案图)OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=,,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o2,2180,βααβ=+=o解得36,72αβ==oo,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3tx t+∴=x Q是三位数,10001003tx t +∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007. 【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值. 又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q的可能取值为23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去. 当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .【答案】10. 【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =; (2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾.综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.1 1 1 4 51 12 4 52 2 2 4 53 3 245 3 3 3 4 5第二试(3月20日上午9:50— 11:20)一、(本题满分20分) 已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =.(下面考虑:22324M aab b =---的值能否为1?)(反证法)假设1M =,则223241aab b ---=,即22325a ab b -=+,2(3)25a ab b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a ab m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a ab -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2. 二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC ABAD AC∴=2AC AD AB ∴=⋅由四边形DEFM 是正方形及CD AB ⊥于点D 可知: 点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN ABAD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅,AE AC =Q 2AE AM AN∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE∴==.(注:上述最后一段得证明用了“同一法”) (B ).已知:5,a b c ++= 22215,a b c ++= 33347.ab c ++=求222222()()()aab b b bc c c ca a ++++++的值.【解析】由已知得22221()()5ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a bc a b ab bc ca c c ++=+++-++=--=-同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++-125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32)()()()t b t c t a b c t ab bc ca t abc--=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(3) 求111xyyz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++. 【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=,去分母得222222(1)(1)(1((1)(1)(1)4z xy x y z y z x xyz--+--+--=,22222222222()()()3()0,y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y zxyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++ 222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++. 【注:222222()()()2x y y z z x x y xyy z yz z x zx xyz+++=++++++222222()()()2x y z y z x z x y xyz=++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz++++=++++++222222()()()3x y z y z x z x y xyz=++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q点C关于直线AD的对称点为点E,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠,ABD AED ∴∠=∠,,,A E B D∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等)BAD BCF∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AFAD AB∴=()225 5.AD AF AB ∴⋅=== (注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)。

2016年下学期八年级数学竞赛试题及答案

2016年下学期八年级数学竞赛试题及答案

9. 7-4'、3的算术平方根为()2016年下学期八年级数学竞赛试题时量:120分钟 满分:120分A . 35°B . 40°C . 455 .正数x 的两个平方根分别为A . - 5B . 5C . 13 6 .若Vx 2 = X ,贝y x 的值有A . 0个B . 1个C . 2个7.若关于x 的不等式 mx - n > 0的解集是 :::-,则关于x 的不等式(n - m ) x >( m +n )4的解集是(5A . xB .31 2xy2 33a b c 5xy2 _2x .在式10 xy ,a兀 46x 7 8xA .5B . 4C . 3D . 2x 2 J已知 x - 1)二 :1,则 x 的值为( )A . ± 1B . - 1 和2C . 1和2D . 0和 -1如图, MON 二90,点 A , B 分别在射线 OM , ON 上运动, 10小题,每小题3分, •选择题(共 满分30分)1. 2. BAO 的平分线交于点 C ,则/ C 的度数是(分式的个数是(3 . 的反向延长线与/ BE 平分/ NBA , BE)F ,若/ BAC=110° 则/ EAF 为( )D . 50°3 - a 和2a +7,则44 - x 的立方根为D . 108.某品牌电脑的成本为 折销售,最低可打(A . 7折B . 7.5 折2400 元, )折出售.C . 8 折D . 8.5折标价为2980元,如果商店要以利润不低于5%的售价打A . 2 3B . 2 — 3c . 3-2D . 、3 210•已知a = 35 , b = 3 - J5,则代数式•. a 2 - ab • b 2的值是( )A . 24B ._2 6 C . 2 6 D . 2 5•填空题(共8小题,每小题4分,满分32 分)12.已知ab = 1,则丄+丄匚la+1 b + 1 丿14. ______________________________________________ 如图, △ ABC 中,/ BAC =90 ° AD 丄BC ,Z ABC 的平分线 BE 交AD 于点F , AG 平 分/ DAC,给出下列结论:① / BAD= / C;② / AEF=/ AFE :③ / EBC= / C;④ AG 丄 EF , ⑤AN=NG ,⑥AE=FG .其中错误的结论是.x 2 v = 4k一15.已知彳 __________________________________________ ,且-1< x - yv0,贝U k 的取值范围为.I2x + y = 2k +1f x a _0一16. 若不等式组彳 _______________________ 有解,则a 的取值范围是.11 -2x > x - 217. _____________________________________________ 若 y = J x -3 十 J 3 - x + 2,则 x y = _____________________________________________________ . 18.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是_________________________.(结果保留根号) 三.解答题(共6小题,满分58分)『3 x x — 22佃.(9分)先化简再求值:i x2,其中x 满足x +x - 2=0.V x+1 丿 X 2+2X +111.若 5x 22x - 5x 6—,则 A= _____________________ x - 2 x - 3,B= ___________13.如图,在厶ABC 中,AD 平分/ BAC , AB=AC - BD ,则/ B :/ C 的值是 __________________ 第13题图第14题图第18题图20. (9分)已知5 • '、5与5 - 5的小数部分分别是a和匕,求(a+b)(a - b)的值.21. (10分)如图,已知AD // BC,/ PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD+BC=AB.22、(10分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元, 那么该商店有哪几种购买方案?23. (10分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了 8兀.商家销售这种衬衫时每件定价都是 100兀,最后剩下10件按8折销售,很快售完•在这两笔生意中,商家共盈利多少元?24. (10 分)已知,Rt △ ABC 中,/ ACB=90 ° / CAB=30 ° 分别以 AB 、AC 为边,向三 角形外作等边△ ABD 和等边△ ACE .(1) 如图1,连接线段 BE 、CD .求证:BE=CD ;(2)如图2,连接DE 交AB 于点F .求证:F 为DE 中点.2016年下学期八年级数学竞赛试题参考答案.选择题(共10小题,每小题3分,满分30 分) 题号 1 2 3 4 5 6 7 8 9 10 答案BBBBACBDBC.填空题(共8小题,每小题3分,满分24 分) 题号 11 12 13 141516 17 18 答案-12; 1712③a >— 19朋-2三.解答题(共6小题,满分58 分)2 2•/ X 2+X - 2=0 ,••• X 2+X=2,则原式=2 .20. (9 分)解:••— 2V "< 3,二7V 5+ "< 8, 2< 5- "< 3,• a=5+ V 5 - 7=《三—2, b=5 - * ;= - 2=3 -甘三19.(9分)解:原式二」^"」=x (x +1)=x +x ,•••原式二(二-2+3 - _)(二-2 - 3 + _) =1 X( 2打-5) =2 ~ - 5.21. (10分)证明:在AB上截取AF=AD ,血二AF•/ AE 平分/ PAB,「./ DAE= / FAE,在△ DAE 和厶FAE中,:・ZDAE二Z FAE ,牠二AE •••△ DAE ◎△ FAE (SAS), AFE= / ADE ,•/ AD // BC,•/ ADE +/ C=180 ° v/ AFE +/EFB=180 °EFB= / C,•/ BE 平分/ ABC , •/ EBF= / EBC ,(Z EFB=Z C在厶BEF 和厶BEC 中BEF ◎△ BEC (AAS),I BE二BE• BC=BF ,• AD +BC=AF +BF=AB .22. (10分)解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得::丄 DAB + / BAC= / EAC +/ r AC=AB“ ZDAC=ZBAE ,I AD 二AB • △ DAC BAE (SAS ) , • DC=BE ;由/ EAC=60 °, / CAB=30。

2016年福建省高中数学竞赛

2016年福建省高中数学竞赛

1 2016年福建省高中数学竞赛暨2016年全国高中数学联赛(福建省赛区)预赛试卷参考答案(考试时间:2016年5月22日上午9:00-11:30,满分160分)一、填空题(共10小题,每小题6分,满分60分。

请直接将答案写在题中的横线上)1.若函数()3cos()sin()63f x x x p pw w =+--(0w >)的最小正周期为p ,则()f x 在区间02p éùêúëû,上的最大值为。

【答案】23【解答】∵()3c o s ()s i n ()3c o s ()s i n ()63662f x x x x x ppp p pw ww w =+--=+-+-3cos()cos()4cos()666x x x p p pw w w =+++=+,且()f x 的最小正周期为p 。

∴2w =,()4cos(2)6f x x p=+。

又02x p éùÎêúëû,时,72666x p p p£+£,∴266x p p+=,即0x =时,()f x 在区间02p éùêúëû,上取最大值23。

2.已知集合{}2320A x x x =-+£,13B xa x ìü=<íý-îþ,若A B Í,则实数a 的取值范围为。

【答案】1()2-+¥,【解答】{}12A x x =££。

由13a x <-,得3103ax a x -++<-。

∴0a =时,{}3B x x =<。

满足A B Í。

0a >时,由3103ax a x -++<-,得1(3)03x a x -+>-,133B x x x a ìü=<>+íýîþ或。

2016年江苏高等数学竞赛题目汇总

2016年江苏高等数学竞赛题目汇总
2016 高等数学竞赛命题汇总
命题要求:1. 要有创新题. 2.不出填空题,题型为计算题,判断题与证明题. 分数分布为: 小题 (6+6+6+6=24) 共含 12 条不同题 大题 (本一二 10+10+10+12+12+10+12=76. 本三四专 8+10+12+10+12+12+12=76) 共含 24 条不同题 命题特色:1.体现素质教育:要求灵活运用极限、导数或偏导数、积分等三基概念. 2.把握竞赛特征:如 5 份题中的判断题与求切平面,全微分的题等都是创新题. 3.注重数学应用:如求切平面方程、切线方程,求立体体积等. 4.重视逻辑推理:如 5 个有关微分中值定理的证明题.
4
f x 2 g x 4 x 2 g x x 2 g x
于是
f 2 0,
2 3
f 2 2 g 2 2 1 2 32
3 4
(2 分) (3.专)
1.(6 分) 设 f x x 2 x 3 x 4 , 试求 f 2 , f 2.
3 4 2
解 令 g x x 1 x 3 x 4 , 则 f x x 2 g x , (1 分)应用求导公式可得
f x 2 x 2 g x x 2 g x
2 2
(1 分) (2 分)
0 0 0
1
1
1
|
1 0
1 0
e x 2 x dx e3 (2 分)
解法 3
记Pe
xy

2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A 12.B 3.C 1 .D 3 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ).A 0 .B 14 .C 34- .D 2-4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为 ( ).A 12 .B 15 .C 16 .D 185.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++=求222222()()()a ab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题详解 第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ).A 12.B .C 1 .D 【答案】A .【解析】22,t ==+<<Q 324,∴<+< 即34,t <<3 1.a t ∴=-=又221,t -=---<-423,∴-<-<-(4)2b t ∴=---=11211,2222b a ∴-==-=故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩ 依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 【答案】B .【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B . 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ) .A 0 .B 14 .C 34- .D 2- 【答案】B .【解析】依题意知0,0,10,2ba ab a<-<++= 故0,b < 且1b a =--, (1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB ⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC = (第4题答案图)OC Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,B ∴∠=o 114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 2 .D 12(第5题答案图)【答案】D . 【解析】过点A 作AH BD ⊥于点,H 则AMH ∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAHCM ∴=设,AM x = 则,CM x AH =∴=在Rt ABM ∆中,BM == 则AB AMAH BM⋅===显然0x ≠,化简整理得22100x -+=解得2x =(x =,故2CM =在Rt CDM ∆中,12DM ==,故选D . 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1【答案】C .【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x y =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C . 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】322⎛⎫⎪ ⎪⎝⎭. 【解析】如图,过点C 作CD AB ⊥于点D . 在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD ∆中,33sin 2CD BC B =⋅=(第1题答案图) 9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,C m A n ⎛⎛ ⎝⎭⎝⎭, 依题意知0,n m >>故33,CD n m AD =-=3323332n m mn ⎧-=⎪⎪-=⎩ 解得323m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫ ⎪ ⎪⎝⎭. 1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,3AD =则AM = .【答案】2.【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠= 060,DAC ∴∠= 从而0090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠==o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =. 2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=,BC Q ∥AD ,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=, (第2题答案图) OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=, Q ,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o Q2,2180,βααβ∴=+=o解得36,72αβ==o o ,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o 故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3t x t +∴=x Q 是三位数,10001003tx t+∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时 167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007.【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值.又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q 的可能取值为 23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去.当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 . 【答案】10.【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =;(2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故 2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故 351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾. 综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =. (下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+, 2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC AB AD AC∴=2AC AD AB ∴=⋅ 由四边形DEFM 是正方形及CD AB ⊥于点D 可知:点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN AB AD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅ ,AE AC =Q 2AE AM AN ∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE ∴==.(注:上述最后一段得证明用了“同一法”)(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++= 求222222()()()a ab b b bc c c ca a ++++++的值. 【解析】由已知得22221()()52ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦ 由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a b c a b ab bc ca c c ++=+++-++=--=- 同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++- 125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32()()()()()t a t b t c t a b c t ab bc ca t abc ---=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且 222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= . (3) 求111xy yz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦ ()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y z xyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++ 222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.(第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q 点C 关于直线AD 的对称点为点E ,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠ ,ABD AED ∴∠=∠,,,A E B D ∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等) BAD BCF ∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AF AD AB ∴=225 5.AD AF AB ∴⋅===(注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)------------------------------------------------------------------------ 怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。

(2021年整理)2016年全国初中数学联赛(初三组)初赛试卷含答案

(2021年整理)2016年全国初中数学联赛(初三组)初赛试卷含答案

(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案的全部内容。

(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案> 这篇文档的全部内容。

F第2题图EDBAC第2题图2016年全国初中数学联赛(初三组)初赛试卷(考试时间:2016年3月4日下午3:00—5:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。

一、选择题(本题满分42分,每小题7分)1、已知实数a 、b 满足31|2||3|=+-+-+-a a b a ,则b a +等于( )A 、1-B 、2C 、3D 、52、如图,点D 、E 分别在ABC ∆的边AB 、AC 上,BE 、CD 相交于点F ,设四边形EADF 、BDF ∆、BCF ∆、CEF ∆的面积分别为1S 、2S 、3S 、4S ,则31S S 与42S S 的大小关系为( )A 、4231S S S SB 、4231S S S S =C 、4231S S S SD 、不能确定3、对于任意实数a ,b ,c ,d ,有序实数对(a ,b )与(c ,d )之间的运算“*"定义为: ()*b a ,()=d c ,()bc ad bd ac +-,。

三元区“景润杯”数学竞赛七年级组

三元区“景润杯”数学竞赛七年级组

三元区“景润杯”数学竞赛七年级组
【原创实用版】
目录
1.介绍三元区“景润杯”数学竞赛七年级组的背景和意义
2.竞赛的组织形式和参赛选手情况
3.竞赛的难度和赛制
4.竞赛的结果和影响
正文
三元区“景润杯”数学竞赛七年级组是一项面向初中七年级学生的数学竞赛,旨在激发学生学习数学的兴趣,提高学生的数学素养和解题能力,选拔和培养数学优秀人才。

该竞赛由三元区教育局主办,三元区数学学会协办,邀请了全区七年级学生参加。

竞赛采用个人赛制,每个学校派出若干名选手参赛,选手需要在规定时间内完成一份数学试题,试题分为选择题、填空题和解答题三种类型,涵盖了初中数学的各个领域,难度逐渐加大。

竞赛的赛制分为初赛和决赛两个阶段,初赛在各学校进行,选拔出优胜者参加决赛。

决赛分为个人赛和团体赛两个部分,个人赛成绩前 10 名的选手将获得“景润杯”奖杯和荣誉证书,团体赛成绩前 3 名的学校将获得“优秀组织奖”。

近日,三元区“景润杯”数学竞赛七年级组决赛圆满结束。

经过激烈的角逐,来自全区各学校的优秀选手展现出了高超的数学解题能力。

最终,来自三元区第一中学的选手张三以出色的表现获得了个人赛第一名,他的学校也获得了团体赛第一名。

这次竞赛不仅激发了学生学习数学的热情,也选拔出了一批优秀的数学人才,对于提高全区数学教育质量具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年景润杯数学竞赛试题(专业组)
伪装者
2017年6月9日
注:不知为何上传到文库后在文库显示会乱码,不过下载下来看就不会了。

高等代数
1.(10分)设φ为数域F 上n 维线性空间V 的线性变换,满足φ2=φ.求证:V =Kerφ⊕Imφ.其中,Kerφ={α∈V |φ(α)=0},Imφ={φ(α)|α∈V }.
2.(10分)设C 上n 阶方阵A 的特征值全部为1.求证:对于任意自然数m ,A 与A m 相似.
3.(10分)设f (x )=a 2016x 2016+a 2015x 2015+···+a 1x +a 0为整系数多项式.假设5整除a 0,a 1,...,a 29,但5不整除a 30,52不整除a 0.证明:f (x )在有理数域上一定有次数大于等于30的不可约因式.
4.(10分)设A,B 均为n 阶实对称矩阵,且它们的特征值的绝对值均≥1.设λ为方阵AB 的实特征值,证明:λ的绝对值≥1.
数学分析
1.(15分)假设S n =1+1
+1
+···+1.求证:(a)对于n >1,成立n (n +1)1n <n +S n ;
1
(b)对于n >2,成立(n −1)n −1/(n −1)<n −S n .
2.(15分)求证:∫10cos x √1−x 2d x >∫10sin x √1−x 2d x .
3.(10分)假设R (u,v )为二元有理函数,满足R (−sin x,cos x )=−R (sin x,cos x ).证明:可以使用变换t =cos x 将不定积分I =∫R (sin x,cos x )d x 转化为I =∫R ∗(t )d t .其中R ∗(t )为一元有理函数.
4.(10分)设函数f (x )在区间(−∞,+∞)上二阶可导,满足lim x →+∞
f (x )=1,以及|f ′′
(x )|≤2,∀x ∈[0,+∞).求证:lim x →+∞f ′
(x )=0.5.(10分)设函数f (x )在区间(−∞,+∞)上有任意阶导数,满足n →∞
f (n )(0)=1,且对任意的正整数n ,以及任意的x ∈(−∞,+∞),有
f (n )(x )+f (n −1)(x ) ≤|x |n 3/2
.求上极限函数lim n →∞
f (n )(x ).2。

相关文档
最新文档