第二章金属材料的性能
(完整版)金属材料与热处理题库及答案

金属材料与热处理习题及答案第一章金属的结构与结晶一、判断题1、非晶体具有各同性的特点。
( √)2、金属结晶时,过冷度越大,结晶后晶粒越粗。
(×)3、一般情况下,金属的晶粒越细,其力学性能越差。
( ×)4、多晶体中,各晶粒的位向是完全相同的。
( ×)5、单晶体具有各向异性的特点。
( √)6、金属的同素异构转变是在恒温下进行的。
( √)7、组成元素相同而结构不同的各金属晶体,就是同素异构体。
( √)8、同素异构转变也遵循晶核形成与晶核长大的规律。
( √)10、非晶体具有各异性的特点。
( ×)11、晶体的原子是呈有序、有规则排列的物质。
( √)12、非晶体的原子是呈无序、无规则堆积的物质。
( √)13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。
( √)14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。
( √)15、金银铜铁锌铝等都属于金属而不是合金。
( √)16、金属材料是金属及其合金的总称。
( √)17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。
( √)18、金是属于面心立方晶格。
( √)19、银是属于面心立方晶格。
( √)20、铜是属于面心立方晶格。
( √)21、单晶体是只有一个晶粒组成的晶体。
( √)22、晶粒间交接的地方称为晶界。
( √)23、晶界越多,金属材料的性能越好。
( √)24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。
( √)25、纯金属的结晶过程是在恒温下进行的。
( √)26、金属的结晶过程由晶核的产生和长大两个基本过程组成。
( √)27、只有一个晶粒组成的晶体成为单晶体。
( √)28、晶体缺陷有点、线、面缺陷。
( √)29、面缺陷分为晶界和亚晶界两种。
( √)30、纯铁是有许多不规则的晶粒组成。
( √)31、晶体有规则的几何图形。
( √)32、非晶体没有规则的几何图形。
工程材料力学性能第二章

❖ 7〕 缺点 外表切应力大,心部小,变形不均匀。
二、扭转实验 扭转试样:圆柱形式〔d0=10mm,L0=50m或100mm〕 试验方法:对试样施加扭矩T,相对扭转角以Φ表示
弹性范围内外表的切应力和切应变
扭转试验可测定以下主要性能指标: (1) 切变模量G
在弹性范围内,Kt的数值决定于缺口的几何形状和 尺寸 与材料性质无关.
❖ 2.厚板: ❖ εz=0, σz≠0 ❖ 根部:两向拉伸力状态, ❖ 内侧:三向拉伸的立体应力平面应变状态, ❖ σz =ν〔σy+σx〕 ❖ σy>σz >σx
3.缺口效应: 1〕根部应力集中 2〕改变缺口的应力状态,由单向应力状态改变为两
思考题: ❖ 1 缺口效应及其产生原因; ❖ 2 缺口强化; ❖ 3 缺口敏感度。
❖
第六节 硬度
前言 •古时,利用固体互相刻划来区分材料的软硬 •硬度仍用来表示材料的软硬程度。 •硬度值大小取决于材料的性质、成分和显微组织,测
量方法和条件不符合统一标准就不能反映真实硬度。 •目前还没有统一而确切的关于硬度的物理定义。 •硬度测定简便,造成的外表损伤小,根本上属于“无
可利用扭转试验研究或检验工件热处理的外表质量和各 种外表强化工艺的效果。
❖ 4)扭转时试样中的最大正应力与最大切应力在数值 上大体相等,而生产上所使用的大局部金属材料的 正断抗力 大于切断抗力 ,扭转试验是测定这些材 料切断抗力最可靠的方法。
❖ 5〕根据扭转试样的宏观断口特征,区分金属材料 最终断裂方式是正断还是切断。
油孔,台阶,螺纹,爆缝等对材料的性能影响有以下 四个方面: ❖ 1 缺口产生应力集中 ❖ 2 引起三向应力状态,使材料脆化 ❖ 3 由应力集中产生应变集中 ❖ 4 使缺口附近的应变速率增高
第二章 金属材料的塑性变形与性能

9
根据载荷作用性质不同:
a)拉深载荷 --拉力 b)压缩载荷 —压力 c)弯曲载荷 --弯力 d)剪切载荷--剪切力 e)扭转载荷--扭转力
10
2.内力 (1)定义 工件或材料在受到外部载荷作用时,为使其不变形,在 材料内部产生的一种与外力相对抗的力。 (2)大小 内力大小与外力相等。 (3)注意 内力和外力不同于作用力和反作用力。
2
§1.金属材料的损坏与塑性变形
1.常见损坏形式
a)变形
零件在外力作用下形状和尺寸所发生的变化。 (包括:弹性变形和塑性的现象。
c)磨损
因摩擦使得零件形状、尺寸和表面质量发生变化的现象。
3
2.常见塑性变形形式 1)轧制 (板材、线材、棒材、型材、管材)
28
2)应用范围 主要用于:测定铸铁、有色金属及退火、正火、 调质处理后的各种软钢或硬度较低的 材料。 3)优、缺点 优点:压痕直径较大,能比较正确反映材料的平均 性能;适合对毛坯及半成品测定。 缺点:操作时间比较长,不适宜测定硬度高的材料; 压痕较大不适合对成品及薄壁零件的测定。
29
2.洛氏硬度(HR)——生产上应用较广泛 1)定义 采用金刚石压头直接测量压痕深度来表示材料的硬度值。 2)表示方法
11
3.应力 (1)定义 单位面积上所受到的力。 (2)计算公式 σ= F/ S( MPa/mm2 ) 式中: σ——应力; F ——外力; S ——横截面面积。
12
二、金属的变形 金属在外力作用下的变形三阶段: 弹性变形 弹-塑性变形 断裂。 1.特点 弹性变形: 金属弹性变形后其组织和性能不发生变化。 塑性变形: 金属经塑性变形后其组织和性能将发生变化。 2.变形原理 金属在外力作用下,发生塑性变形是由于晶体内部 缺陷—位错运动的结果,宏观表现为外形和尺寸变化。
金属材料的结构与性能

第一章材料的性能第一节材料的机械性能一、强度、塑性及其测定1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。
材料的强度越大,材料所能承受的外力就越大。
常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。
2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。
塑性指标用伸长率δ和断面收缩率ф表示。
二、硬度及其测定硬度是衡量材料软硬程度的指标。
目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。
此时硬度可定义为材料抵抗表面局部塑性变形的能力。
因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。
硬度试验简单易行,有可直接在零件上试验而不破坏零件。
此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。
三、疲劳机械零件在交变载荷作用下发生的断裂的现象称为疲劳。
疲劳强度是指被测材料抵抗交变载荷的能力。
四、冲击韧性及其测定材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。
为评定材料的性能,需在规定条件下进行一次冲击试验。
其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。
五、断裂韧性材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。
它是材料本身的特性。
六、磨损由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。
引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。
按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。
第二节材料的物理化学性能1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。
不同用途的机械零件对物理性能的要求也各不相同。
2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能力。
第三节材料的工艺性能一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。
金属材料与热处理习题册答案

金属材料与热处理习题册答案金属材料与热处理习题册答案绪论填空题1成分组织热处理性能2.光泽延展性导电性导热性合金3.成分热处理性能性能思考题答:机械工人所使用的工具、刀、夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理的相关知识。
对我们工作中正确合理地使用这些工具;根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺性能的方法等都具有非常重要的指导意义。
第一章金属的结构与结晶填空题1.非晶体晶体晶体2.体心立方面心立方密排六方体心立方面心立方密排六方3.晶体缺陷间隙空位置代刃位错晶界亚晶界4.无序液态有序固态5.过冷度6.冷却速度冷却速度低7.形核长大8.强度硬度塑性9.固一种晶格另一种晶格10.静冲击交变11.弹性塑性塑性12.材料内部与外力相对抗13.内力不同14.外部形状内部的结构判断题1.√2.×3.×4.×5.×6.√7.√8.√9.√10.√11.×12.√13.√14.×15.√选择题1.A 2.C B A 3.B名词解释1.答:晶格是假想的反映原子排列规律的空间格架;晶胞是能够完整地反映晶体晶格特征的最小几何单元。
2.答:只由一个晶粒组成的晶体称为单晶体;由很多的小晶体组成的晶体称为多晶体。
3.答:弹性变形是指外力消除后,能够恢复的变形;塑性变形是指外力消除后,无法恢复的永久性的变形。
4.答:材料在受到外部载荷作用时,为保持其不变形,在材料内部产生的一种与外力相对抗的力,称为内力;单位面积上所受的内力就称为应力思考与练习1.冷却曲线上有一段水平线,是说明在这一时间段中温度是恒定的。
结晶实际上是原子由一个高能量级向一个较低的能量级转化的过程,所以在结晶时会放出一定的结晶潜热,结晶潜热使正在结晶的金属处于一种动态的热平衡,所以纯金属结晶是在恒温下进行的。
2.生产中常用的细化晶粒的方法有:增加过冷度、采用变质处理和采用变质处理等。
金材-第二章

二、锻压性能
用锻压成形方法得优良锻件的难易程度。常 用塑性 变形抗力 塑性和变形抗力 塑性 变形抗力两个指标来综合衡量。
三、焊接性能
金属材料对焊接加工的适应性,也就是在一定焊接工 艺条件下,获得优质焊接接头的难易程度。 对碳钢和低合金钢而言,焊接性能主要与其化学成分 化学成分 有关(其中碳的影响最大)。
金属的塑性变形,在外形变化的同时,晶粒 的形状也会发生变化。通常晶粒会沿变形方向压 扁或拉长。
塑性变形后的金属组织
§2-2 金属的力学性能
一、强度 二、塑性 三、硬度 四、冲击韧性 *五、疲劳强度
任何机械零件或工具,在使 用过程中,往往要受到各种形式 外力的作用,这就要求金属材料 必须具有一种承受机械载荷而不 超过许可变形或不破坏的能力, 这种能力就是材料的力学性能 力学性能。 力学性能
FeL ReL = S0
ReL ——试样的下屈服强度,N/mm2; FeL ——试样屈服时的最小载荷,N; S0 ——试样原始横截面面积,mm2。
规定产生0.2%残余伸长时的应力为条件屈服强度 p0.2, 条件屈服强度R 条件屈服强度 替代ReL,称为条件(名义)屈服强度 条件( 条件 名义)屈服强度。
载荷的作用形式
2.内力
内力——工件或材料在受到外部载荷作用时,为保持 内力 其不变形,在材料内部产生的一种与外力相对抗的力,称 为。
3.应力 3
应力——假设作用在零件横截面上的内力大小均匀分 应力 布,单位横截面积上的内力。
F R= S
R:应力,Pa; F:外力,N; S:横截面面积,m2。
二、金属的变形
2.热处理性能
淬透性 淬硬性 过热敏感性 变形开裂倾向 回火脆性倾向 氧化脱碳倾向
《金属材料与热处理》教案
基本概念:一、晶体与非晶体晶体:表示的是原子呈有序和有规则排列的物质。
(各向异性)非晶体:表示是原子呈无序的杂乱无章的排列形式的物质。
(各向同性)晶体和非晶体的对比项目晶体非晶体定义原子呈有序、有规则排列的物质原子呈无序、无规则堆积的物质性能特点具有规则的几何形状有一定的熔点,性能呈各向异性没有规则的几何形状有固定的熔点,性能呈各向同性典型物质石英、云母、明矾、食盐、硫酸铜、糖、味精玻璃、蜂蜡、松香、沥青、橡胶二、晶体的结构的概念(基本概念:)1、晶格:表示原子在晶体中排列的有规律的空间格架。
2、晶胞:能够完整地反映晶格特征的最小几何单元。
3、晶面:金属晶体中通过原子中心的平面。
4、晶向:通过原子中心的直线,可代表晶格空间的一定方向。
三、金属晶格的类型1、体心立方晶格(9个原子)2、面心立方晶格(14个原子)3、密排六方晶格(17个原子)四、单晶体与多晶体晶粒——组成金属的小晶体。
晶界——由晶粒间不规则排列的原子构成。
晶体内部原子排列模型晶格和晶胞示意图a)晶格b)晶胞单晶体——晶体内部原子的排列位向是完全一致的晶体。
多晶体——由许多晶粒组成的晶体。
单晶体表现出各向异性,多晶体显示出各向同性,也称“伪无向性”。
五、金属的晶体结构的缺陷晶体缺陷——由于各种原因,实际晶体中原子的规律排列受到干扰和破坏,使晶体中的某些原子偏离正常位置,造成原子排列的不完全性。
1. 点缺陷——空位、间隙原子和置代原子无论是空位、间隙原子还是置代原子,在其周围都会使晶格产生变形,这种现象称为晶格畸变。
上述三种晶体缺陷造成的晶格畸变区仅限于缺陷原子周围的较小区域,故统称 为点缺陷。
2.线缺陷——位错位错的特点之一是很容易在晶体中移动,金属材料的塑性变形就是通过位错的运动来实现的。
在晶体中,位错的晶格畸变发生在沿半原子面端面的狭长区域,故称为线缺陷。
单晶体示意图多晶体示意图 刃型位错示意图 a ) 立体图 b ) 平面图3.面缺陷——晶界和亚晶界晶界——晶粒与晶粒之间的分界面。
第二章金属材料力学性能基本知识及钢材的脆化
金属材料力学性能基本知识及钢材的脆化金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。
通常所指的金属材料性能包括以下两个方面:1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。
使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。
2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。
工艺性能对制造成本、生成效率、产品质量有重要影响。
1.1材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。
材料在外力作用下所表现的一些性能称为材料的力学性能。
锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。
1.1.1 强度金属的强度是指金属抵抗永久变形和断裂的能力。
材料强度指标可以通过拉伸试验测出。
把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。
根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。
在拉伸曲线上可以得到该材料强度性能的一些数据。
图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。
所以曲线称为P—AL曲线或一一s曲线。
图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:1.弹性阶段即曲线的o-e段,在此段若加载不超过e点的应力值,卸载后试件的变形可全部消失,故e点的应力值为材料只产生弹性变形时应力的最高限,称为弹性极限,曲线的o~e’段为直线,在此段内应力与应变成正比,即材料符合虎克定律,该段称为线弹性阶段。
金属材料的性能测试与分析
金属材料的性能测试与分析第一章:引言金属材料在现代工业中占据着重要的地位,其应用领域包括航空、汽车、建筑、电子等诸多领域。
为了保证这些应用中的安全性和可靠性,需要对金属材料的性能进行测试和分析。
本文将从金属材料常见的性能指标入手,介绍金属材料的性能测试及分析方法。
第二章:金属材料的常见性能指标金属材料的性能包括力学性能、物理性能、化学性能等方面。
常见的力学性能指标包括拉伸强度、屈服强度、延伸率、弹性模量等。
物理性能指标包括密度、导热性、导电性等。
化学性能指标包括耐腐蚀性、燃烧性等。
第三章:金属材料的力学性能测试与分析力学性能是金属材料最基本的性能之一,也是应用最广泛的性能指标。
金属材料的力学性能测试包括拉伸试验、压缩试验、弯曲试验、冲击试验等。
其中,拉伸试验是最常用的一种力学性能测试方法。
通过拉伸试验可以测量金属材料在一定的拉伸条件下的力学性能,如屈服强度、延伸率、断面收缩率等指标。
根据拉伸试验的数据,可以绘制应力-应变曲线和破断面积-应力曲线等图形,从而进一步分析金属材料的力学性能。
第四章:金属材料的物理性能测试与分析金属材料的物理性能测试主要包括密度、导热性、导电性等指标。
密度测试可以通过简单的称重、求体积等方法进行。
导热性测试主要包括热传导系数和导热性能。
常用的测试方法包括热板法、热流量计法等。
导电性测试主要通过电阻率进行。
在测试过程中,需要注意样品的制备和测试环境的控制,以确保测试结果的准确性。
第五章:金属材料的化学性能测试与分析金属材料的化学性能包括耐腐蚀性、燃烧性等指标。
耐腐蚀性测试可以通过浸泡试验、电化学测试等方法进行。
在测试过程中,需要选择适当的腐蚀介质和时间,以模拟实际应用环境。
燃烧性测试主要包括可燃性、自燃性、火焰传播速度等指标。
常用的测试方法包括氧指数法、垂直燃烧试验等。
第六章:结论金属材料的性能测试与分析是确保其应用安全性和可靠性的关键步骤。
本文介绍了金属材料常见的性能指标和测试方法,并从力学性能、物理性能和化学性能三个方面详细介绍了测试与分析方法。
第二章 金属材料的性能-《金属材料与热处理》中职通用第七版
(2)洛氏硬度的表示方法 符号HR前面的数字表示硬度值,后面的字母表示不
同 洛氏硬度标尺。 (3)洛氏硬度试验法的优缺点
洛氏硬度试验操作简单、迅速,可直接从表盘上读 出硬度值;压痕直径很小,可以测量成品及较薄工件;测试 的硬度值范围较大,可测从很软到很硬的金属材料,所 以在生产中广为应用,其中HRC的应用尤为广泛。但由 于压痕小,当材料组织不均匀时,测量值的代表性差, 一般需在不同的部位测试几次,取读数的平均值代表材 料的硬度。
§2-5 力学性能试验
的情况下,采用横截面单位面积上的内力应力来加以判 定。材料受拉伸或压缩载荷作用时,其应力按下式计算:
二、金属的变形
1. 晶粒位向的影响 多晶体中各个晶粒的位向不同,在外力作用下,当处
于有利于滑移位置的晶粒要进行滑移时,必然受到周围位 向不同的其他晶粒的约束,使滑移的阻力增加,从而提高 了塑性变形的抗力。同时,多晶体各晶粒在塑性变形时受 到周围位向不同的晶粒与晶界的影响,使多晶体的塑性变 形呈逐步扩展和不均匀的形式,产生内应力。 2. 晶界的作用
现将本节介绍的常用的力学性能指标及其含义总结于表。
§2-3 金属材料的物理性能与化学性能
一、物理性能
1.密度 密度是指在一定温度下单位体积物质的质量。
2.熔点 熔点是材料从固态转变为液态的温度,金属等晶体材料
一般具有固定的熔点,而高分子材料等非晶体材料一般没有 固定的熔点。 3.导电性
传导电流的能力称为导电性,用电阻率来衡量。 4.导热性
金属材料的一般加工过程
一、铸造性能
铸造性能是铸造成形过程中获得外形准确、内 部无明显缺陷铸件的能力。
铸造成形过程
1. 流动性 熔融金属的流动力称为流动性。
2. 收缩性 铸造合金由液态凝固和冷却至室温的过程中,体积
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具的耐用度以及加工后的表面粗糙度来衡量。
表面加工硬化——切削塑性金属材料时,工件在加工 表面层的硬度明显提高而塑性下降的现象。
五、热处理性能
淬透性 淬硬性 过热敏感性 变形开裂倾向 回火脆性倾向
氧化脱碳倾向
§2-4 力学性能实验
实验1 拉伸实验
液压式万能试验机 拉伸实验
实验2 硬度测试
弹性变形阶段 屈服阶段
强化阶段
缩颈阶段
力-拉伸曲线
3.强度指标 (1)屈服强度——当金属材料出现屈服现象时, 在实验期间发生塑性变形而力不增加的应力点。屈服 强度分为上屈服强度ReH和下屈服强度ReL。
ReL ——试样的下屈服强度,N/mm2; FeL ——试样屈服时的最小载荷,N; So ——试样原始横截面面积,mm2。 规定产生0.2残余伸长时的应力为条件屈服强度Rp0.2, 替代ReL,称为条件(名义)屈服强度。
三、硬度
四、冲击韧性 *五、疲劳强度
这种能力就是材料的力学性能。
一、强度
强度——金属在静载荷作用下抵抗塑性变形或 断裂的能力。其大小用应力表示。 抗拉强度——拉伸实验测定 抗压强度
抗剪强度
抗扭强度
抗弯强度
1.拉伸试样
d——试样直径 Lo——标距长度
低碳钢拉伸实验
2.力-伸长曲线
§2-3 金属的工艺性能
金属材料的一般加工过程
铸件 冶炼→铸造 铸锭 热轧→ 热锻 板料、棒材、 型材、管材 机加工 机加工
焊接
机加工 冷轧、冷拔、冷冲
零 件
金属材料的工艺性能——金属材料对不同加工工艺
方法的适应能力。它包括铸造性能、锻造性能、切削加工 性能和焊接性能、热处理性能等。
一、铸造性能
四、冲击韧性
冲击韧性——金属材料抵抗冲击载荷作用而不
破坏的能力。材料的冲击韧性用夏比摆锤冲击弯曲
试验来测定。
冲击实验
冲击试样 用试样所吸收的能量K的大小来作为衡量材料韧性好坏的 指标,称为冲击吸收能量。用U形和V形缺口试样测得的冲 击吸收能量分别用KU和KV表示。
*五、疲劳强度
由于所承受的载荷为交变载荷,零件承受的应力虽 低于材料的屈服强度,但经过长时间的工作后,仍会产 生裂纹或突然发生断裂。金属这样的断裂现象称为疲劳 断裂。金属材料抵抗交变载荷作用而不产生破坏的能力 称为疲劳强度。疲劳极限用符号R-1表示。
F 2F HBW 0.102 S πD( D D2 d 2 )
表示方法:
布氏硬度用硬度值、硬度符号、压头直径、实验力及 实验力保持时间表示。当保持时间为10~15s时可不标。
例:
170HBW10/1000/30: 直径10mm的压头,在9807N(1000kg)的试验力作用下, 保持30 s时测得的布氏硬度值为170。 600HBW1/30/20: 直径为1mm压头,在294.2N(30kg)的实验力作用下, 保持20 s时测得的布氏硬度值为600。
常用的三种洛氏硬度标尺的试验条件和适用范围
硬度 标尺 HRC HRB HRA 压头类型 120°金刚石圆锥体 φ 1.5875mm 硬质合金球 120°金刚石圆锥体 总测试力 (N) 1471.0 980.7 588.4 硬度值有效范围 20~67HRC 25~100HRB 60~85HRA 应用举例 一般淬火钢 软钢、退火钢、铜合金等 硬质合金、表面淬火钢等
应用范围:
主要用于测定铸铁、有色金属及退火、正火、调质处 理后的各种软钢等硬度较低的材料。
h 0.002
2.洛氏硬度
洛氏硬度原理
h HR=100 — 0.002
洛氏硬度试验原理
洛氏硬度计表盘
表示方法:
符号HR前面的数字表示硬度值。HR后面的字母表示 不同的洛氏硬度标尺。
例:45HRC表示用C标尺测定的洛氏硬度值为45。
金属变形实验
弹-塑性变形
滑移与位错
断裂
金属塑性变形的影响因素:
1.晶粒位向的影响
2.晶界的作用
3.晶粒大小的影响
三、金属材料的冷塑性变形与加工硬化
形变强化(加工硬化)——冷塑性变形除了 使晶粒的外形发生变化外,还会使晶粒内部的位
错密度增加,晶格畸变加剧,从而使金属随着变
形量的增加,使其强度、硬度提高,而塑性、韧 性下降。
洛氏硬度测试步骤
布氏硬度测试步骤
载荷的作用形式
2.内力 内力——工件或材料在受到外部载荷作用时,为保持 其不变形,在材料内部产生的一种与外力相对抗的力,称 为。
3.应力 应力——假设作用在零件横截面上的内力大小均匀分 布,单位横截面积上的内力。
F R S
R:应力,Pa; F:外力,N; S:横截面面积,m2。
二、金属的变形
弹性变形
金属的塑性变形,在外形变化的同时,晶粒 的形状也会发生变化。通常晶粒会沿变形方向压 扁或拉长。
塑性变形后的金属组织
§2-2 金属的力学性能
一、强度 二、塑性
任何机械零件或工具,在使 用过程中,往往要受到各种形式
Hale Waihona Puke 外力的作用,这就要求金属材料
必须具有一种承受机械载荷而不 超过许可变形或不破坏的能力,
二、锻压性能
三、焊接性能
四、切削加工性能
五、热处理性能
一、铸造性能
铸造成形过程中获得外形准确、内部健全铸件的能力, 主要取决于金属的流动性、收缩性和偏析倾向等。
1.流动性 熔融金属的流动能力。
2.收缩性
铸造合金由液态凝固和冷却至室温的过程中, 体积和尺寸减小的现象。 3.偏析倾向 金属凝固后,内部化学成分和组织不均匀现
第二章
§2-1 §2-2 §2-3 §2-4
金属材料的性能
金属材料的损坏与塑性变形 金属的力学性能 金属的工艺性能 力学性能实验
§2-1 金属材料的损坏与塑性变形
一、与变形相关的几个概念 二、金属的变形
三、金属材料的冷塑性变形与加工硬化
一、与变形相关的几个概念
1.载荷
载荷——金属材料在加工及使用过程中所受的外力。 根据载荷作用性质的不同分: (1)静载荷———大小不变或变化过程缓慢的载荷。 (2)冲击载荷——在短时间内以较高速度作用于零件 上的载荷。 (3)交变载荷——大小、方向或大小和方向随时间发 生周期性变化的载荷。
2.抗拉强度Rm
抗拉强度——材料在断裂前所能承受的最大的应力。
Rm ——抗拉强度,MPa; Fm ——试样在屈服阶段后所能抵抗的最大力(无明 显屈服的材料,为试验期间的最大力), N; So ——试样原始横截面面积,mm2 。
二、塑性
塑性——材料受力后在断裂前产生塑性变形的能力。 1.断后伸长率A
象。
二、锻压性能
用锻压成形方法得优良锻件的难易程度。常 用塑性和变形抗力两个指标来综合衡量。
三、焊接性能
金属材料对焊接加工的适应性,也就是在一定焊接工 艺条件下,获得优质焊接接头的难易程度。 对碳钢和低合金钢而言,焊接性能主要与其化学成分 有关(其中碳的影响最大)。
四、切削加工性能
切削加工性能——切削金属材料的难易程度。一般用 工件切削时的切削速度、切削抗力的大小、断屑能力、刀
试样拉断后,标距的伸长量与原始标距之比的百分率。
Lu Lo So S u Z A 100% Lo S
2.断面收缩率Z
试样拉断后,缩颈处面积变化量与原始横截面面积比值的 百分率。
So S u Z 100% So
【例】有一直径 d =10mm,Lo=100mm 的低碳钢试样,
拉身实验时测得FeL=21kN,Fm=29kN,du=5.65mm,
Lu=138mm。求此试样的ReL、Rm、A11.3、Z。
解题过程
三、硬度
硬度——材料抵抗局部变形,特别是塑性变 形、压痕或划痕的能力。硬度是通过在专用的硬 度试验机上实验测得的。
布氏硬度试验机
洛氏硬度试验机
维氏硬度试验机
1.布氏硬度
布氏硬度原理
布氏硬度值——用球面压痕单位面积上所承受的
平均压力来表示,单位为MPa,但一般均不标出,用符 号HBW表示: