金属材料拉伸试验按国家标准执行
GB 6397-1986__金属拉伸试验试样

3 . 4比 例试样系按公式2 。 =K丫 瓦计算而 得的试样, 式中系数K通常为56 5或 1 3 , 前 者称为短试样, 后者称为长试样。对短、 长比 例试样的标距 1 。 应分别等于s d 。 或5 . 5丫 6 于 蕊
二、 建 筑 用钢 材
1 1 1
及1 0 d 。 或1 1 . 3 丫 瓦。 一般应采用短比 例试样。 长比 例试样仅系过渡性质, 但如内
试样标距部分内最大 与最小直径的允许差值
0 . 0 1
0. 0 2
直径 d o 的允许偏差
士0. 0 5 土0. 1 士0. 2
5 -<1 0
多1 0
0 . 0 5
试样分为带头和不带头的两种, 仲裁试验时应采用前者, 后者一 般用于不宜或不经机加 工而整拉的棒材。 3 . 6 . 2 板材试样 对厚、 薄板材, 一般采用矩形试样, 其宽度根据产品厚度( 通常为0 . 1 0 - 2 5 m m ) , 采用
二、 建 筑用钢材
格
1 0 9
分格的 残余伸长, 所以第3 次施力使引伸计达到的读数为: 7 + ( 1 0 一 7 . 3 ) + 1 = 2 7 . 4 分格 试验直至试样的残余伸长达到或稍为超过 1 0 分格为止。试验结果见下表。 规定残余伸长应力 。 , 2 计算如下: 由下表查出残余伸长读数最接近 1 0 分格的力值读数为: 6 1 0 0 0 N 。用内插法可求得更 精确的F } , 2 值为:
_ F。} 一 试 样 平 行 部 分 原 始 横 截 面 积
带头试样从头部到平行部分过渡圆弧半径
r l 址 n Z
n卫 几1
3 试样形状及尺寸的一般规定 3 . 1 拉伸试样分为比例和定标距两种, 一般为经机加工试样和不经机加工的全截面试样, 其横截面通常为圆 形、 矩形、 异形以 及不经机加工的全截面形状。 对全截面试样原始横截面 积F O 可根据规定, 以名义或实侧尺寸进行计算。
GBT228.1-2010-金属材料室温拉伸试验方法细节

1)称重法测定试样原始横截面积
• 试样应平直,两端面垂直于试样轴线。测量试样长度Lt,准 确到±0.5%;
• 称试样质量m,准确到±0.5%;
• 测出或查出材料密度ρ ,准确到三位有效数字。按下式计
算原始截面积:
S0
m
Lt
1000
• 注:称重方法仅适用于具有恒定横截面的试样。
应变
二.拉伸试样
一)试样的形状和尺寸
• 试样的形状与尺寸取决于要金属产品的形状与尺寸。 • 需要加工制样:压制坯、铸锭、无恒定截面的产品 • 不需加工制样:有恒定横截面的型材、棒材、线材
铸造试样(铸铁和铸造非铁合金) • 横截面的形状:圆形、矩形、多边形、环形,其他形状
经过机加工的试样
经过拉伸试验的试样
拉伸曲线
拉伸试验时测量的量是伸长和力,由这两个变量构成的关系
曲线(F-△L曲线)称为拉伸图,即拉伸曲线。
力—伸长曲线 F—ΔL曲线
应力—应变曲线 R—e曲线
拉伸曲线各变形阶段
应力
c bd a
0
e f
• 比例变形阶段(oa); • 弹性变形阶段(ob); • 微塑性应变阶段(bc); • 屈服塑性变形阶段(cd); • 应变硬化阶段(de); • 局部缩颈变形断裂阶段(ef)。
5
两端平齐 GB50204
低碳钢热轧圆盘条的取样要求
序号 1
检验项目 重量偏差
取样数 量
5个/批
取样方法 两端平齐
试验方法 GB50204
2
力学
1个/批 GB 2975 GB/T 228
3
弯曲
2个/批
不同根盘条 GB/T2975
GBT 228.1-2010《金属材料 拉伸试验第1部分:室温试验方法》

GB/T 228.1-2010
符号变化
GB/T 228-2010 GB/T 228-2002
定义
a0,T
a
矩形横截面试样原始厚度或管壁 厚度
矩形横截面试样平行长度的原始
b0
b
宽度或管的纵向剖条宽度或扁丝
原始宽度
圆形横截面试样平行长度的原始
d0
d
直径或圆丝原始直径或管的原始
内径
D0
D
管原始外直径
AWN
上屈服强度(ReH)和下屈服强度(ReL)的测定
测定下屈服强度时,要排除”初始瞬时效应影响”。所谓初 始 瞬时效应是指从上屈服强度向下屈服强度过渡时发生的瞬时效 应,与试验机加力系统的柔度、试验速率、试样屈服特性和测 力系统惯性守恒等多种因素相关。对于瞬时效应作评定是困难 的。定性地把从上屈服强度向下屈服过渡期间的第一个下降谷 区作为“初始瞬时效应”的影响区。为了避开该区影响,把第 1个 下降谷值应力排除不计后,取其之后的最小应力为下屈服强 度,只出现一个谷值情况,该谷值应力为下屈服强度。
上测得:定义为力首次下降前的最大力值对应的应力。 下屈服强度ReL可以从力-延伸曲线图测定,定义为不计
初始瞬时效应时屈服阶段中的最小力值对应的应力。
GB/T 228.1-2010
上屈服强度(ReH)和下屈服强度(ReL)的测定
方法1:图解方法 应采用不劣于1级准确度的引伸计,引伸计标距不小
于标距的一半: 应采用1级或优于1级准确度的试验机; 试验时,可以记录力-延伸曲线或力-位移曲线方式。
应选
用下面两个范围之一:
范围1:eLe =0.00007s-1,相对误差±20%
范围2:eLe =0.00025s-1,相对误差±20%(如果没有其他规定,
金属材料拉伸试验按国家标准执行

拉伸试验的目的
评估材料的强度和塑性
通过拉伸试验,可以了解材料在受力过程中发生的变形行为,从而 评估其强度和塑性。
确定材料的关键力学性能参数
拉伸试验可以获得材料的弹性模量、屈服强度、抗拉强度等关键参 数,这些参数对于材料的应用和设计具有重要意义。
试验机选择
根据试验要求选择合适的试验机,确保其精度和量程满足要求。
试验环境
确保试验环境温度、湿度等参数符合标准规定,以减小环境对试验结果的影响。
操作规范
严格按照操作规程进行试验,避免操作失误对试验结果造成影响。
拉伸试验的误差来源
试样制备误差
试样尺寸、形状、表面处理等不符合标准要 求,导致试验结果失真。
比较不同材料的性能
拉伸试验是一种相对比较的试验方法,可以用于比较不同材料的性 能,从而为材料的选择和应用提供依据。
拉伸试验的原理
拉伸试验通常在万能材料试验机上进行,通过在试样两端施加拉伸载荷,使试样发生变形直至断裂。
在拉伸过程中,试验机记录试样的应力-应变曲线,通过该曲线可以获得材料的弹性模量、屈服强度、 抗拉强度等关键参数。
根据需要,计算并记录弹性模量、屈 服点、抗拉强度、延伸率等拉伸特性 指标。
05
03
预加载
对试样施加一定的预载荷,以消除夹 具与试样之间的间隙,并使试样处于 紧张状态。
Байду номын сангаас04
拉伸试验
以恒定的速率对试样施加拉伸力,记 录试样的变形和应力变化。
03
拉伸试验的设备与工具
拉伸试验机的类型
机械式拉伸试验机
01
屈服点是指金属材料在受到拉伸 力作用时,开始发生屈服现象的 应力极限。
拉伸试验报告 北京科技大学

拉伸试验预习报告一、试验目的:1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验要求:按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成试验测量工作。
三、引言◆拉伸试验是评定金属材料性能的常用测量方法,可以检测强度与塑性性能。
◆拉伸试验测定的拉伸曲线还是观察金属材料塑性变形过程的良好手段。
在均匀塑性变形阶段,Hollommon公式可以较好地描述金属塑性变形规律。
该经验公式中,反映材料性能的两个参数是应变硬化系数k和应变硬化指数n。
◆低碳钢是具有良好塑性的金属,经过不同的热处理获得不同微观组织结构,因而具有不同的强度与塑性。
通过拉伸试验观察淬火、正火和退火三种不同的热处理后,低碳钢的性能与塑性参数n,k的变化。
按我国目前执行的国家GB/T 228—2002标准——《金属材料室温拉伸试验方法》的规定,在室温10℃~35℃的范围内进行试验。
将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。
应当指出,试验机自动绘图装置绘出的拉伸变形ΔL主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。
由于试样开始受力时,头部在夹头内的滑动较大,故绘出的拉伸图最初一段是曲线。
(a)低碳钢拉伸曲线图(b)铸铁拉伸曲线图图1 由试验机绘图装置绘出的拉伸曲线图低碳钢(典型的塑性材料)当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过F P 后拉伸曲线将由直变曲。
保持直线关系的最大拉力就是材料比例极限的力值F P 。
在F P 的上方附近有一点是F c ,若拉力小于F c 而卸载时,卸载后试样立刻恢复原状,若拉力大于F c 后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而F c 是代表材料弹性极限的力值。
国家标准执行金属材料拉伸实验

国家标准执行金属材料拉伸实验一、钢材试验标准:1、GB/T 228-87 金属材料室温,拉伸试验方法。
2、GB/T 228-2002金属材料室温,拉伸试验方法。
3、新旧标准性能名称对照4、新旧标准断后伸长率表示方法对照:结果数值修约间隔变化二、试样的横截面形状和尺寸:相关产品标准或协议根据产品的形状和尺寸,可按标准中附录A~D 所规定试样的形状和尺寸。
特殊产品可以规定其它不同的试样,试样横截面的形状一般可为圆形、矩形、弧形和环形,特殊情况可以为其它形状。
标准中的附录A~D 按照产品的形状规定了主要的试样类型。
三、试样原始标距( Lo):1、试样标距分为比例标距和非比例标距两种,因而有比例试样和非比例试样之分。
2、凡试样标距与试样原始横截面积有以下关系的,称为比例标距,试样称为比例试样下:式中k ———比例系数 5.65So ———原始横截面积3、非比例标距(也称定标距),与试样原始横截面积不存在式(1) 的关系。
4、如果采用比例试样,应采用比例系数5、k=5. 65 的值,因为此值为国际通用,除非采用此比例系数时不满足最小标距15mm 的要求。
6、在必须采用其他比例系数的情况下,7、k = 11. 3 的值为优先采用。
8、产品标准或协议可以规定采用非比例标距。
9、不同的标距对试样的断后伸长率的测定影响明显。
三、对试验机和引伸计的要求1、试验机应符合GB/ T16825 - 1997 规定的准确度级,并按照该标准要求检验。
2、测定各强度性能均应采用1 级或优于1 级准确度的试验机。
3、引伸计是测延伸用的仪器。
应把引伸计看成是一个测量系统(包括位移传感器、记录器和显示器) 。
4、引伸计应符合GB/ T12160 - 2002 规定的准确度级,并按照该标准要求定期进行检验。
四、原始横截面积的测量和计算值1、测量部位和方法(1) 对于圆形横截面的试样,在其标距的两端及中间三处横截面上相互垂直的两个方向测量直径,取其平均直径计算面积,取三处测得的最小值为试样的原始横截面积2、原始横截面积的计算值因为原始横截面积数值是中间数据,不是试验结果数据,所以,如果必须要计算出原始横截面积的值时,其值至少保留4 位有效数字。
拉伸试验标准尺寸

金属材料室温拉伸试验方法_拉伸试验标准尺寸《金属材料室温拉伸试验方法》GBT228-2002实施要点[作者:轶名加入时间:2007-02-25来源:网络]1引言国家标准GB/T228-2002《金属材料室温拉伸试验方法》已于2002年颁布实施。
这一新国家标准是合并修订国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》三个标准为一个标准,它等效采用了国际标准ISO6892:1998《金属材料室温拉伸试验》,也是GB/T228第三次修订。
GB/T228-2002包括的技术内容和要求与原三个标准有较大的不同,尤其在性能名称和符号、抗拉强度定义、试验速率、性能结果数值的修约方面变动较大。
而且,新标准中增加了引用标准和关于试验方法准确度方面阐述的内容。
为了更好地贯彻实施GB/T228-2002,将该标准的要点和实施中需注意之点说明如下。
2GB/T228-2002标准的适用范围标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定,试样或产品的横截面尺寸≮0.1mm。
对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要双方协议。
其原因在于:①横截面小的产品,按照标准中建议的量具分辨力要求不能满足附录A和附录C规定横截面测定准确度在±1%和±2%以内的要求。
②试样标距采用常规的划细线、打小冲点等方法进行标记不可行。
③常用的引伸计不适用于此类型产品试样的试验。
试样的夹持方法需要特殊夹头等。
3室温的温度范围标准中规定室温的温度范围为10-35℃,超出这一范围不属于室温。
对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。
上述10-35℃的温度范围实质是指容许的试样温度范围,只要试样的温度是在这规定的室温范围内便符合标准要求。
GBT 228.1-2002金属材料 室温拉伸试验方法

试验测定的性能结果数值应按照相关产品标准 的要求进行修约。如未规定具体要求,应按照 表5的要求进行修约。修约的方法按照GB/T 8170。
22 试验报告
试验报告应至少包括以下信息: a) 本部分国家标准编号; b) 注明试验条件信息; c) 试样标识; d) 试样名称、牌号(如已知); e) 试样类型; f) 的取样方向和位置(如已知); g) 试验控制模式和试验速率或试验速率范围 (见10.6),如果与10.3和10.4推荐的方法不同; h) 试验结果。
应变ε
:拉伸时试样长度方向特定标距下的伸长量 =
ΔL/ L0
ΔL与原标距L0的比值,定义为工程应变,即:
ε
10.4应力速率控制的试验速率(方法B) 10.4.1总则 试验速率取决于材料特性并应符合下列要求。如 果没有其他规定,在应力达到规定屈服强度的一 半之前,可以用任意的试验速率。超过这点以后 的试验速率应满足下述规定。
Δ18抗拉强度Rm的测定 (原GB/T228-2002)
按照定义4.9.1和采用图解方法或指针方法测定抗 拉强度。 对于呈现明显屈服(不连续屈服)现象的金属材 料,从记录的力-延伸或力-位移曲线图,或从测 力度盘,读取过了屈服阶段之后的最大力;对于 呈现无明显屈服(连续屈服)现象的金属材料,从 记录的力-延伸或力-位移曲线图,或从测力度盘, 读取试验过程中的最大力。最大力除以试样原始 横截面积(So)得到抗拉强度。 可以使用自动装置(例如微处理机等)或 自动测试系 统测定抗拉强度,可以不绘制拉伸曲线图。
11 上屈服强度的测定 上屈服强度ReH可以从力-延伸曲线图或 峰值力显示器上测得,定义为力首次下降前的 最大力值对应的应力(见图2)。 12 下屈服强度的测定 下屈服强度ReL可以从力-延伸曲线图上测 得,定义为不计初始瞬间效应时屈服阶段中的 最小力所对应的应力(见图2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对试验机和引伸计的要求
试验机应符合GB/ T16825 - 1997 规定的准 确度级,并按照该标准要求检验。 测定各强度性能均应采用1 级或优于1 级准 确度的试验机。 引伸计是测延伸用的仪器。应把引伸计看 成是一个测量系统(包括位移传感器、记录 器和显示器) 。引伸计应符合GB/ T12160 2002 规定的准确度级,并按照该标准要求定 期进行检验。
断后最小横截面积的测定应准确到±2
%以内。建议按标准中表3 的要求选用量 具。在缩颈最小处两个相互垂直方向上 测量直径,取其平均值计算横截面积,必要 时,将断裂部分在断裂处对接在一起后进 行测量。
可以采用式(6)
直接计算断面收缩率Z
2
du Z 1 100% d
2
矩形横截面试样断面收缩率的测定
按定义测定,但测定试样断后最小横截面积的 方法,是基于一种假设模型并作近似处理,即假 定矩形横截面四个边为抛物线型,它的等效横 截面积粗略近似为
S0 au bu
S0 au bu
式中au 和bu 分别为断裂后缩颈 处最小厚度和最大宽度。
断裂总伸长率At 的测定
如果试样断在标距中间1/ 3
Lo范 围内,则直接测量两标点间的长度;
如果断在标距内,但超出中间1/
3Lo 范围,可以采用移位方法(见标准中附 录F)测定断后标距。
如果断在标距外,而且断后伸长
率未达到规定最小值,则结果无 效,需用同样的试样重新试验。
(2) 图解方法(包括自动方法) 用引伸计系统 记录力-延伸曲线,或采集力-延伸数据,直至试 样断裂。读取或判读断裂点的总延伸,扣除弹 性延伸部分后得到的非比例延伸作为断后伸 长。扣除的方法是,过断裂点作平行于曲线的 弹性直线段的平行线交于延伸轴,交点即确定 了非比例延伸,见标准中的图1。 引伸计的标距应等于试样的原始标距,可以不 在试样上标出原始标距(但建议标出) 。 建议,当断后伸长率< 5 %时,使用不劣于1 级 引伸计; ≥5 %时,使用不劣于2 级引伸计。
或采集相应的数据。在记录得到的曲线 图上按定义判定最大力。 对于连续屈服类型,试验过程中的最大力 判为最大力Fm ; 对于不连续屈服类型,过了屈服阶段之后 的最大力判为最大力Fm ,由最大力计算 抗拉强度Rm 。
连续屈服类型
不连续屈服类型
断后伸长率A 的测定
(1)
人工方法 试验前在试样平行长度 上标记出原始标距(误差≤±1 %) 和标 距内等分格标记(一般标记10 个等分 格) 。试验拉断后,将试样的断裂处对接 在一起,使其轴线处于同一直线上,通过 施加适当的压力以使对接严密。用分 辨力不劣于0. 1mm 的量具测量断后标 距,准确到±0. 25mm 以内。 建议:断后标距的测量应读到所用量具 的分辨力,数据不进行修约,然后计算断 后伸长率。
试样原始标距( Lo) 试样标距分为比例标距和非比例标距两种, 因而有比例试样和非比例试样之分。 凡试样标距与试样原始横截面积有以下关 系的,称为比例标距,试样称为比例试样下: (1)
L0 k S0
式中 k ———比例系数 5.65 So ———原始横截面积
非比例标距(也称定标距)
判为下屈服力。如呈现多个而且后 者高于前者的屈服平台,判第一个平 台力为下屈服力。
④正确的判定结果应是下屈服力必
定低于上屈服力。
规定非比例延伸强度Rp 的测定
(1) 常规平行线方法 此方法仅适用于具 有弹性直线段的材料测定Rp ,使用的试验 机和引伸计均应不劣于1 级准确度,引伸计 标距≮1/ 2 L o ,试验时弹性应力速率按标 准中的表4 要求,在进入塑性范围和直至Fp 应变速率不超过0. 002 5/ s。试验时,记录 力-延伸曲线或采集力-延伸数据,直至超过 Rp对应的力Fp 。在记录得到的曲线图上 图解确定规定非比例延伸力Fp ,进而计算 Rp 。
抗拉强度Rm 的测定
(1)
图解方法(包括自动方法) 图解 方法要求试验机不劣于1 级准确度, 引伸计为不劣于2 级准确度,引伸计 标距不小于试样标距的一半,试验时 的应变速率不超过0. 008/ s (相当于 两夹头分离速率0. 48 L c/ min) 。
试验时,记录力-延伸曲线或力-位移曲线
(3)
对于环形横截面试样(圆管段试 样) ,在其一端相互垂直的方向测量外 直径和四处的壁厚,以平均外径和平均 壁厚计算的横截面积为试样的原始横 截面积 。
5 原始横截面积的计算值 因为原始横截面积数值是中间数据,不是 试验结果数据,所以,如果必须要计算出原 始横截面积的值时,其值至少保留4 位有 效数字。计算时,常数π应至少取4 位有效 数字。
试验结束
整理试验设备 整理试验纪录
登录界面
进入测试窗口
程序选择
程序载入
输入样品文件名
用学号 输出结果
到桌面
输入学号和姓名
安装试样
根据试样长度调整试验机的上、下
夹头的位置,达到适当的位置后, 试件先安装在试验机的下夹头内, 试样安装必须正确,防止偏斜和夹 持部分过短的现象。试验机调零后, 再把试件上夹头夹紧。Biblioteka 加载弹性阶段3
测量部位和方法
(1)
对于圆形横截面的试样,在其标 距的两端及中间三处横截面上相 互垂直的两个方向测量直径,取其 平均直径计算面积,取三处测得的 最小值为试样的原始横截面积
(2)
对于矩形和弧形横截面试样,在其 标距的两端及中间三处横截面上测量 厚度(或壁厚) 和宽度,取三处测得的最 小横截面积为试样的原始横截面积。
Ag
Agt
A At
图1
最大力总伸长率Agt和
最大力非比例伸长率Ag
的测定
(1) 图解方法(包括自动方法) 引伸计标距应等于或 近似等于试样标距。 建议,当最大力总延伸率< 5 %时,使用不劣于1 级引 伸计; ≥5 %时,使用不劣于2 级引伸计。试验时纪录 力-延伸曲线或采集力-延伸数据,直至超过最大力 点。取最大力点的总延伸计算A gt 。 从最大力总延伸中扣除弹性延伸部分得到非比例延 伸,扣除的方法见标准中的图1 所示。用得到的非比 例延伸计算A g 。当曲线在最大力呈现一平台时,应 以平台的中点作为最大力点,见标准中的图1 。
Ag
Agt
A At
计算实例
600 MPa
400 MPa 弹性模量 200GPa
Ag Ag
0.3%
=19.7%修约 后20%
A=39.2%修约后 39%
20%
A 39.4%
0.2%
断面收缩率Z 的测定
1
圆形横截面试样断面收缩率的测定
圆形横截面试样拉断后缩颈处最小横截面
并不一定为圆形横截面形状,但测定的方 法基础是建立在假定为圆形横截面形状上。 这样,以测定试样原始横截面积与断裂后 缩颈处最小横截面积之差与原始横截面积 之比计算断面收缩率。
原始横截面积的测量和计算值
1 测量的准确度要求 要求测量出最小原始横截面积( So ) 。以实测的横 截面尺寸计算试样原始横截面积。除非相关产品 标准或协议另有规定,采用标称横截面积。测量准 确度要求: 薄板和薄带用矩形试样: 横截面积准确度≤±2 % 不经机加工试样:横截面积准确度≤±1 % 机加工圆形和矩形试样:每个横截面尺寸准确度 ≤±0. 5 % 机加工弧形试样和环形试样(圆管段试样) :横截面 积准确度≤±1 %
< 10% 0.5%
0.5%
> 10%
1%
试样的横截面形状和尺寸 相关产品标准或协议根据产品的 形状和尺寸,可按标准中附录A~ D 所规定试样的形状和尺寸。 特殊产品可以规定其它不同的试 样。试样横截面的形状一般可为 圆形、矩形、弧形和环形,特殊 情况可以为其它形状。标准中的 附录A~D 按照产品的形状规定 了主要的试样类型。
试样比例标距的计算值应修约到最接近
上屈服强度ReH和 下屈服强度ReL的测定
(1)
图解方法(包括自动方法) 引伸计标距应≥1/ 2 L o 。引伸计和试验机 应不劣于1 级准确度。试验速率按13. 1 和 13. 2 的要求。记录力-延伸曲线或力-位移 曲线,或采集力-延伸(位移) 数据,直至超过 屈服阶段。按照定义在曲线上判定上屈服 力和下屈服力的位置点,判定下屈服力时 要排除初始瞬时效应的影响。
仅采用图解方法(包括自动方法) 。 引伸计标距应等于试样标距。 建议,若断裂总延伸率< 5 %时,使用不劣 于1 级引伸计; ≥5 %时,使用不劣于2 级引 伸计。 试验时记录力-延伸曲线或采集力-延伸数 据,直至断裂。以断裂点的总延伸计算A t 。
实验设备
Instron3367 电子材料试验机
与试样原始横 截面积不存在式(1) 的关系。 如果采用比例试样,应采用比例系数 k = 5. 65 的值,因为此值为国际通用,除非 采用此比例系数时不满足最小标距 15mm 的要求。 在必须采用其他比例系数的情况下, k = 11. 3 的值为优先采用。 产品标准或协议可以规定采用非比例标 距。 不同的标距对试样的断后伸长率的测定 影响明显。
原始标距的标记
5mm的倍数,中间数值向较大一方修约。 标记原始标距的准确度应在±1 %以内。 由于标记试样标距装置的检验尚无相应 标准,因此,建议试验室应自行检查其准 确度。可以用小冲点、细划线或细墨线 做标记,标记应清晰,试验后能分辨,不影 响性能的测定。对于带头试样,原始标 距应在平行长度的居中位置上标出。
金属材料拉伸实验
按国家标准执行
主讲教师 胥明
东南大学力学实验中心
钢材试验标准
GB/T 228-87 金属材料室温 拉伸试验方法 GB/T 228-2002 金属材料室温 拉伸试验 方法