3、机器人的位姿描述与坐标变换

合集下载

第3章 位姿描述和齐次变换

第3章 位姿描述和齐次变换
ZB ZA YB

P
AP
XB
OA
YA
A
参考坐标系{A}
机器人研究所
4
第1节 位置和姿态的表示
位置描述(Description of Position)
px A p p y pz
Ap
zA
{A}
p
A
p
:p点在坐标系{A}中的表示,
xA
oA
yA
也称作位置矢量。
图1 位置表示
齐次的,将其等价为齐次变换形式:
A A p B R | A pBo B p 0 0 0 | 1 1 1
A A B p B R p A pBo A
直角坐标
齐次坐标
等价于
p A BT
B
p
11
齐次变换
机器人研究所
22
第3节 齐次坐标变换
机器人研究所14坐标变换复合变换compositetransform机器人研究所15例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所16例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所17例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所18例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述3030086605303030050866坐标变换机器人研究所19例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所20例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述0866051211098050866坐标变换第第33节节齐次坐标变换齐次坐标变换旋转变换通式第三章位姿描述和齐次变换机器人研究所22齐次坐标变换齐次坐标和齐次变换坐标变换式中对于点是非齐次的将其等价为齐次变换形式

机器人技术基础实验报告2(机器人空间位姿描述)

机器人技术基础实验报告2(机器人空间位姿描述)

机器人技术基础实验报告班级:学号:姓名:台号: 2 课程:2.机器人空间位姿描述成绩:批改日期:教师签字:实验目的:1、认识机器人位置与姿态的描述方式2、了解多种姿态的描述方法实验设备及软件:1、珞石XB4机器人2、MATLAB实验原理:位置描述:建立坐标系后可以用一个3×1的位置矢量对坐标系中的任何点进行定位。

用三个相互正交的带有箭头的单位矢量来表示一个坐标系{A}.用一个矢量来表示一个点P A ,并且可等价地被认为是空间的一个位置矢量,或者简单地用一组有序的三个数字来表示。

矢量的各个元素用下标x,y和z 来标明:姿态描述:为了描述物体的姿态,需要在物体上固定一个坐标系并且给出此坐标系相对于参考系的表达。

用X B 、Y B和Z B来表示坐标系{B}主轴方向的单位矢量。

在用坐标系{A}的坐标表达时,写成X B A、Y B A、Z B A。

这三个单位矢量按照顺序排列组成一个3×3的矩阵,称之为旋转矩阵。

记为:R B A= [X B A Y B A Z B A]分别绕X 轴,Y轴,Z轴的旋转变换为:坐标系变换是一个坐标系描述到另一个坐标系描述的变换。

被描述的空间点本身没有改变,只是它的描述改变了。

一般情况下坐标系{A}与坐标系{B}既存在位置差异又存在姿态差异。

则相对于坐标系{B}描述的点PB在坐标系{A}下的描述为:AP A=R B A P B+P BORG为了简化表达,可改写为:[P A1]=[R B A P BORG A 01][P B 1]=T B A[P B 1] 其中T B A =[RB A P BORGA01]为4×4矩阵,称为齐次变换矩阵。

描述了坐标系{B} 相对于坐标系{A}的变换。

姿态其他描述: X-Y-Z 固定角 等效转轴表示法 X-Y-Z 欧拉角 四元素法 1、X-Y-Z 固定角:坐标系{B}的方位规则如下:最初坐标系{B}与{A}重合,转动相对固定坐标系{A}来描述,先绕X A 轴转γ 角 ,再绕Y A 轴转β角,最后绕Z A 轴转α角。

2、机器人的位姿描述与坐标变换

2、机器人的位姿描述与坐标变换

机器人学第二章机器人的位姿描述与坐标变换战强北京航空航天大学机器人研究所第二章 机器人的位姿描述与坐标变换 机器人的位姿连杆I 的位姿YX ZYi XiZi YwXwZw2-1、基本概念1) 自由度(Degree of Freedom, DOF):指一个点或一个物体运动的方式,或一个动态系统的变化方式。

每个自由度可表示一个独立的变量,而利用所有的自由度,就可完全规定所研究的一个物体或一个系统的位置和姿态。

也指描述物体运动所需的独立坐标数,3维空间需要6个自由度。

2) 操作臂(Manipulator):具有和人手臂(Arm)相似的功能、可在空间抓放物体或进行其它操作的机电装置。

----Arm3) 末端执行器(End-Effector):位于机器人腕部的末端,直接执行工作要求的装置。

如灵巧手、夹持器。

----Hand/Gripper4) 手腕(Wrist):位于执行器与手臂之间,具有支撑和调整末端执行器姿态功能的机构。

操作臂的组成部分之一。

5)手臂(Arm):位于基座和手腕之间,由操作手的动力关节和连杆等组成的组件。

能支撑手腕和末端执行器,并具有调整末端执行器位置的功能。

操作臂的组成部分。

Outdated!6) 世界坐标系(World Coordinate System):参照地球的直角坐标系。

7)机座坐标系、基坐标系(Base reference coordinate system):参照机器人基座的坐标系,即机器人末端位姿的参考坐标系。

8)坐标变换(Coordinate Transformation):将一个点的坐标描述从一个坐标系转换到另一个坐标系下描述的过程。

手腕机座手臂Yw XwZw9)位姿(Position&Pose):机器人末端执行器在指定坐标系中的位置和姿态。

10)工作空间(Working Space):机器人在执行任务时,其腕轴交点能在空间活动的范围。

由连杆尺寸和构形决定。

第3章 机器人位姿的数学描述与坐标变换

第3章 机器人位姿的数学描述与坐标变换

x=a(1-cos) , y=a(1-sinθ)
第3章 机器人位姿的数学描述与坐标变换
3.1 机器人位姿的数学描述
#假设机器人的连杆和关节都是刚体 (1)首先,建立一个参考坐标系; (2)然后,在刚体上任意建立一个刚体坐标系。
Z Z'
O' Y'
O
X'
X Y
第3章 机器人位姿的数学描述与坐标变换
刚体位置:
,
)
=

j i
R(,q
,
)
=
R(Z
,
)
R(Y
,q
)R(Z
,
)
绕动坐标轴依次转动时,每 个旋转矩阵要从左往右乘。
Z2
Zj
Zi (Z1)
q
q
Yj
(Y2 )
q Y1
Yi
Xi
X1 X2 X j
第3章 机器人位姿的数学描述与坐标变换
cos − sin 0 cosq 0 sinq cos − sin 0
R(Z
i
,q
)
=
s
inq
cosq
0
0
0 1
Zi Zj
q Xi
Xj
Yj q
Yi
第3章 机器人位姿的数学描述与坐标变换
1 0
0
j i
R(
X
i
,q
)
=
0
cosq

s in q
0 sinq cosq
cosq 0 sinq
j i
R(Yi
,q
)
=
0
1
0
− sinq 0 cosq

3机器人的位姿描述与坐标变换

3机器人的位姿描述与坐标变换
利用旋转矩阵的正交性质:
假设:
整理得:
旋转变换通式
讨论:
(1)
(2)
(3)
例:坐标系B原来与A重合,将坐标系B绕过原点O的轴线
转动
,求旋转矩阵
解答:
1)
2)
3)带入旋转通式得:
2、等效转轴与等效转角
转轴和转角
旋转矩阵
1
2?
1)将方程两边矩阵的主对角线元素分别相加,则
2)将方程两边矩阵的非对角线元素成对相减得:
►绕多个坐标轴旋转的转动矩阵
1)、绕固定坐标系旋转
2)、绕运动坐标系旋转
ZYZ欧拉角
注意:多个旋转矩阵连乘时,次序不同则含义不同。1)绕新的动坐标轴依次转动时,每个旋转矩阵要从左往右乘,即旋转矩阵的相乘顺序与转动次序相同;2)绕旧的固定坐标轴依次转动时,每个旋转矩阵要从右往左乘,即旋转矩阵的相乘顺序与转动次序相反。
解:
1)
2)
Z
i
X
i
Y
i
P
坐标系j由坐标系i旋转而成
求点P在i坐标系的坐标:
已知点P在j坐标系的坐标:
P

►姿态矢量矩阵
坐标系j相对于i的方位
旋转矩阵的性质:
旋转矩阵
►绕一个坐标轴旋转的转动矩阵
1)RX
2)RY
3)RZ
转动矩阵的特点:(1) 主对角线上有一个元素为1,其余均为转角的余弦/正弦;(2) 绕轴转动的次序与元素1所在的行、列号对应;(3) 元素1所在的行、列,其它元素均为0;(4) 从元素1所在行起,自上而下,先出现的正弦为负,后出现的为正,反之依然。
2、变换矩阵T的相乘 ★矩阵相乘的顺序一般不可换,特殊可换的情况为变换都是同参考系下的平移或绕同一坐标轴的旋转。

机器人运动学-1位姿表示,坐标变换 第五讲 数理基础共27页

机器人运动学-1位姿表示,坐标变换 第五讲 数理基础共27页

0
0
0
3
0 0 1 7 1 0 0 0 0 0 1 0 2
0 0 0
1
0
0 0 1 0
而齐次变换公式和变换矩阵变为:
APA BTBP, A BTB A0 R AP 1B0
三、齐次坐标变换
2.平移齐次坐标变换
{A}分别沿{B}的X、Y、Z坐标轴平移a、b、c距 离的平移齐次变换矩阵写为:
1 0 0 a Trans(a,b,c) 0 1 0 b
0 0 1 c 0 0 0 1
用非零常数乘以变换矩阵的每个元素,不改变特性。
3.位姿描述
• 刚体位姿(即位置和姿 态),用刚体的方位参考
坐标的原点位置矢量和
旋转矩阵表示,即
B B A RA p B 03 4

表示位置时,A B
R
• 表示姿态时,ApB0=0
一、位置和姿态的表示
4.机器人手爪坐标系
T noaP
n:法向矢量 (normal)
o:方向矢量
(orientation) a:接近矢量 (approach) P:位置矢量 (position)
0 1 0 07 3
R(z,90) 1
0
0
0.3=
7
0 0 1 02 2
0
0
0
11
1
0 0 1 03 2
R(y,90)
0
1 0 0. 7 =7
1 0 0 0 2 3
0
0
0
1
1
1
例4-4:在上述基础上再平移(4,-3,7)。
1 0 0 42 6 Tra(n4,s3,7)0 1 0 3.7=4
因此旋转矩阵是单位正交矩阵,具有如下特性: B AR1B ART B AR1

机器人学--坐标转换

机器人学--坐标转换

1
p px py pz T ,n nx ny nz T ,o ox oy oz T ,a ax ay az T
Robotics 数学基础
2.4 物体的变换 及逆变换
3.变换方程初步 {B}:基坐标系 {T}:工具坐标系 {S}:工作台坐标系 {G}:目标坐标系
或工件坐标系 满足方程
A P
1
A B
R
0
A
PB 1
0
B P
1
P点在{A}和{B}中的位置矢量分别增广为:
(2-14)
AP Ax A y Az 1T ,BP Bx B y Bz 1T
而齐次变换公式和变换矩阵变为:
A P ABTB P,
ABT
A B
R
0
A
PB0 1
(2-15,16)
Robotics 数学基础
ny
oy
ay
0
fx
f
yvers
f z s
fy fyvers c
fz fyvers fxs 0
nz 0
oz 0
az 0
0 1
fx
f z v ers 0
f y s
fy fzvers fxs 0
fz fzvers c 0
0 1
将上式对角线元素相加,并简化得
nx
oy
az
(
f
2 x
f
2 y
f
2023最新整理收集 do
something
机器人技术数学基础
Mathematic Preparation for Robotics
2.1 位置和姿态的表示 2.2 坐标变换 2.3 齐次坐标变换 2.4 物体的变换及逆变换 2.5 通用旋转变换

工业机器人位姿描述

工业机器人位姿描述

其中, n • n o • o a • a 1
n•a a•o o•n 0
故旋转矩阵是正交矩阵,并且满足条件
BAR1BART ;
A B
R
1.
8
上海电机学院
2个常用的公式:
a b axbx ayby azbz
i jk
a b ax a y az (aybz azby )i (azbx axbz ) j (axby aybx )k
引言
1
多自由度 单自由度
上海电机学院
引言
机器人运 动学问题
运动学正 已知机器人中各运动副的运动
问题
参数,求末端执行器位姿。
运动学逆 已知末端执行器位姿,求各
问题
运动副的运动参数。
2
上海电机学院
运动学研究的问题
Where is my hand?
Direct Kinematics HERE!
运动学正问题
bx by b z
9
上海电机学院
位姿描述——姿态的描述(旋转矩阵)
位置矢量 旋转矩阵
刚体的位姿
齐次坐标
10
非方阵
nx ox ax px
A ny
oy
ay
p
y
nz oz az pz
上海电机学院
位姿描述——齐次坐标
将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即 为n维坐标的齐次坐标。
运动学逆问题
How do I put my hand here?
Inverse Kinematics: Choose these angles!
3
上海电机学院
第3章 工业机器人运动学和动力学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Zi
Zj Yj
cosq j R( Z i ,q ) sin q i 0
sin q cosq 0
0 0 1
q
Xi
q
Xj
Yi
0 1 j R( X i ,q ) 0 cosq i 0 sin q
0 sin q cosq
cosq j R(Yi ,q ) 0 i sin q
0 1 j R( X i ,q ) 0 cosq i 0 sin q 0 sin q cosq
Zi Zj
cosq j R(Yi ,q ) 0 i sin q
0 sin q 1 0 0 cosq
q q
Xi Xj Yi Yj
cos(X i , X j ) cos(X i , Y j ) cos(X i , Z j ) x j i P cos(Yi , X j ) cos(Yi , Y j ) cos(Yi , Z j ) y j cos(Z , X ) cos(Z , Y ) cos(Z , Z ) z i j i j i j j
q q
Yj Ym Yi
j i
R( ,q ) R( Z ,q ) R( X , )
Xi
Xm
q
Xj
i
cosq j R( ,q ) sin q 0
sin q cosq 0
0 1 0 0 0 cos 1 0 sin
0 cosq sin sin q cos 0
cos(X ' X ) cos(Y ' X ) cos(Z ' X ) O' R [ O ' X O 'Y O ' Z ]33 cos(X ' Y ) cos(Y ' Y ) cos(Z ' Y ) O O O O cos(X ' Z ) cos(Y ' Z ) cos(Z ' Z ) 姿态矩阵R的特点:
《机器人学》
第三章 机器人的位姿描述与坐标变换
战强
北京航空航天大学机器人研究所
第三章 机器人的位姿描述与坐标变换
Z Y X 机器人 的位姿
Zi Xi
连杆I的 位姿 Yi
Zw
Yw
Xw
3-1 刚体位姿的数学描述
¥ ¥假设机器人的连杆和关节都是刚体¥ ¥
刚体位置 :
x0 o' P y0 o z0
Zj
Zi
zi
P
zj
yj
Yj
xi
Xi
yi
Yi
xj
Xj
xi x j cos(X i , X j ) y j cos(X i , Y j ) z j cos(X i , Z j ) i P yi x j cos(Yi , X j ) y j cos(Yi , Y j ) z j cos(Yi , Z j ) z x cos(Z , X ) y cos(Z , Y ) z cos(Z , Z ) j i j j i j j i j i

Xi
X1 X 2 X j
2)、绕固定坐标系旋转
( X i , ) ( Z i , q)
坐标系 ( X i , Yi , Z i )
Zi Zm Zj
坐标系( X m , Ym , Z m )
j i
坐标系 ( X j , Y j , Z j )
q q
Yj Ym Yi
R?
证明与讨论:
1) Pm mj R Pj R ( Z i , q) Pj 2) Pi mR Pm R ( X i , ) Pm i R ( X i , ) R ( Z i , q) Pj
cos cosq sin sin cos sin cosq sin cos cos sin q sin
cos sin q sin sin q cosq
注意:多个旋转矩阵连乘时,次序不同则含义不同。
1动坐标轴依次转动时,每个旋转矩阵要从左往右乘,即旋 转矩阵的相乘顺序与转动次序相同; 固定坐标轴依次转动时,每个旋转矩阵要从右往左乘,即 旋转矩阵的相乘顺序与转动次序相反。
sin cos 0
0 cosq 0 0 1 sin q
0 sin q cos 1 0 sin 0 cosq 0
sin cos 0
0 0 1
cos cosq cos sin sin sin cosq cos cos sin sin q sin
Xj
Zj
P
Oj
Yj
Oi P OiO j O j P
i
Zi
Oj i
P
P P P
Oj i j
Xi
Oi
Yi
沿着不同轴向的组合平移:
x 0 0 x Oj P 0 y 0 y i 0 0 z z
Xi
Xm
q
Xj
适用的机器人类型举例(有旋转关节)
例1: 已知坐标系B初始位姿与A重合,首先B相对于坐标系A的Z 轴转30度, 假设点P在 坐标系B的描述为PB={3,7,0}T,求它在坐标 系A中的描述PA.
3、坐标变换综合(平移+旋转)
Zi Z
j
Zi
Zj
q q
Yj
q
Yi Y j
Yi Xi Xi X
j
q
Xj
1)RX
Zi
Zj
2)RY
Yj
q
q
Xi Yi
Xj
3)RZ
Zi Z
j
q q
Yj Yi
Xi
Xj
cos(X i , X j ) cos(X i , Y j ) cos(X i , Z j ) x j i P cos(Yi , X j ) cos(Yi , Y j ) cos(Yi , Z j ) y j cos(Z , X ) cos(Z , Y ) cos(Z , Z ) z i j i j i j j
0 sin q 1 0 0 cosq
cosq j R( Z i ,q ) sin q i 0
sin q cosq 0
0 0 1
转动矩阵的特点:
(1) 主对角线上有一个元素为1,其余均为转角的余弦/正弦;
(2) 绕轴转动的次序与元素1所在的行、列号对应; (3) 元素1所在的行、列,其它元素均为0; (4) 从元素1所在行起,自上而下,先出现的正弦为负,后出现 的为正,反之依然。
证明: 1)绕运动坐标系旋转
R( Z i , )
坐标系 ( X i , Yi , Z i )
Z2 Zj Z i (Z1 )
R(Y1 ,q ) R( Z 2 , ) 坐标系 ( X 1 , Y1 , Z 1 ) 坐标系 ( X 2 , Y2 , Z 2 )
坐标系 ( X j , Y j , Z j )
Z2
q
Z i (Z1 )
R( Z i , )
j i
R(Y1 ,q )
R( Z 2 , )
Zj
R( ,q , ) R( Z , ) R(Y ,q ) R( Z , )
ZYZ欧拉角

q

Yj (Y2 )

q
Y1 Yi

Xi
X1 X 2 X j
cos j R( ,q , ) sin i 0
X
Z b Z' O' O
Y' t
n
X'
Y
刚体姿态 :O ' O' R [ O X O 'Y O O
单位主矢量
cos(X ' X ) cos(Y ' X ) cos(Z ' X ) O' Z ]33 cos(X ' Y ) cos(Y ' Y ) cos(Z ' Y ) O cos(X ' Z ) cos(Y ' Z ) cos(Z ' Z )

9个元素,只有3个独立, 满足6个约束条件:
O' O O' O
X .O ' X O
O' O
Y .O ' Y O
O 'Z .O ' Z 1 O O
X .O ' Y O 'Y .O ' Z O 'Z .O ' X 0 O O O O O
R 1 O 'R T O R 1

j i
R
j
P
►姿态矢量矩阵
cos(X ' X ) cos(Y ' X ) cos(Z ' X ) O' R cos(X ' Y ) cos(Y ' Y ) cos(Z ' Y ) O cos(X ' Z ) cos(Y ' Z ) cos(Z ' Z )
sin q cos cosq cos sin
sin q sin cosq sin cos
2)、绕运动坐标系旋转(绕中间坐标系旋转-顺序向右乘)
坐标系 ( X i , Yi , Z i ) 坐标系 ( X 1 , Y1 , Z 1 ) 坐标系 ( X 2 , Y2 , Z 2 ) 坐标系 ( X j , Y j , Z j )
相关文档
最新文档