新课标高中数学知识点归纳总结

合集下载

高中数学新课标知识点总结

高中数学新课标知识点总结

高中数学新课标知识点总结高中数学新课标知识点总结一、函数与方程1. 函数:函数的概念和性质,函数的表示与图像,函数的性质与运算,反函数2. 一次函数与二次函数:一次函数的性质与图像,二次函数的性质与图像,二次函数的解与判别式3. 指数与对数函数:指数函数的性质与图像,对数函数的性质与图像,指数方程与对数方程的解法4. 三角函数:弧度与角度的转化,常用三角函数的计算,三角函数图像与性质,三角函数的单调性与奇偶性,三角函数的解析式,解三角函数方程与不等式5. 幂函数与反比例函数:幂函数的性质与图像,反比例函数的性质与图像二、数列与数列极限1. 数列与数列极限的概念2. 等差数列与等差数列的通项公式与求和公式3. 等比数列与等比数列的通项公式与求和公式4. 数列极限的定义与性质,数列极限的求解方法,夹逼定理与极限存在准则,无穷小,无穷大,无穷小的比较三、三角恒等变换1. 弧度制与角度制的互化2. 三角函数基本关系式:弧度与角度的关系,终边的位置关系,三角函数的定义,三角函数的基本关系式(倒数关系、余角关系、和角差角关系、倍角关系、半角关系)3. 三角函数的恒等变换:和角公式、差角公式、倍角公式、半角公式、辅助角公式、平方和与平方差公式等四、立体几何1. 空间几何体的概念与性质:点、线、面、体的关系与性质2. 直线与平面的位置关系:直线与平面的交点,直线与面的垂直关系3. 球的性质与计算:球面积与体积的计算4. 锥体与圆台的性质与计算:锥体表面积与体积的计算,圆台表面积与体积的计算五、排列与组合1. 排列的概念与计算:全排列与部分排列的计算2. 组合的概念与计算:组合的计算与性质,二项式定理的应用3. 基本计数原理与容斥原理:简单计数原理的应用,容斥原理的应用六、概率与统计1. 事件与概率:样本空间与事件的关系,事件的运算与概率运算,经典概型与概率的计算2. 条件概率与独立事件:条件概率的计算与性质,乘法定理与独立事件的判定3. 随机变量与概率分布:离散型与连续型随机变量,随机变量的分布律与分布函数,期望值与方差的计算4. 统计与抽样:样本与总体,统计量与抽样分布,正态分布的应用5. 统计图与描述统计:直方图、折线图、饼图的绘制与分析,集中趋势与离散程度的度量综上所述,高中数学新课标知识点主要涵盖了函数与方程、数列与数列极限、三角恒等变换、立体几何、排列与组合、概率与统计等内容。

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表一、函数与导数1. 函数基础- 函数的概念与表示法- 函数的性质:定义域、值域、单调性、奇偶性、周期性- 函数的运算:四则运算、复合函数、反函数、基本初等函数(幂函数、指数函数、对数函数、三角函数)2. 极限与连续- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 函数的连续性与间断点3. 导数与微分- 导数的定义与几何意义- 导数的运算法则- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用4. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 罗尔定理、拉格朗日中值定理、柯西中值定理- 泰勒公式与麦克劳林公式5. 不定积分- 积分的概念与性质- 基本积分表- 积分的运算法则- 特殊积分技巧:换元法、分部积分法二、平面向量与立体几何1. 平面向量- 向量的基本概念与运算- 向量的几何意义与线性运算- 向量的数量积与向量积- 平面向量的坐标表示与运算2. 立体几何- 空间几何体的性质与计算- 直线与平面的方程- 空间向量及其运算- 立体图形的表面积与体积三、解析几何1. 圆锥曲线- 圆的方程- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线- 圆锥曲线的应用问题2. 参数方程与极坐标- 参数方程的概念与应用- 极坐标系与直角坐标系的转换- 简单曲线的极坐标方程四、概率与统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立事件- 全概率公式与贝叶斯公式- 随机变量与分布函数2. 统计学基础- 统计量的概念:均值、方差、标准差、中位数、众数 - 抽样与估计- 假设检验- 线性回归分析五、数学分析进阶1. 定积分- 定积分的概念与性质- 微积分基本定理- 定积分的计算方法- 定积分的应用:面积、体积、弧长、工作量2. 级数- 数项级数的概念与性质- 正项级数与收敛性判别法- 交错级数与绝对收敛- 幂级数与泰勒级数3. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值与最优化问题- 多重积分的概念与计算4. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程以上是新课标高中数学的主要知识点汇总,涵盖了函数、几何、概率统计以及数学分析等领域的核心内容。

新高考高中数学知识点全总结

新高考高中数学知识点全总结

新高考高中数学知识点全总结一、集合与简易逻辑1. 集合定义:集合是由确定的对象所组成,这些对象称为集合的元素。

表示方法:列举法、描述法。

集合之间的关系:子集、真子集、相等。

集合的运算:并集、交集、补集。

2. 简易逻辑充分条件与必要条件。

四种命题及其关系:原命题、逆命题、否命题、逆否命题。

逻辑联结词:且、或、非。

二、函数1. 函数的概念定义:设A、B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作y=f(x),x∈A。

其中,x称为自变量,x的取值范围A称为函数的定义域;与x的值对应的y值称为因变量,因变量的取值范围称为函数的值域。

2. 函数的性质单调性:函数在某一区间内,函数值随自变量增大而增大(或减少)的性质。

奇偶性:若对于定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数;若f(-x)=f(x),则称f(x)为偶函数。

3. 常见函数一次函数:f(x)=kx+b (k≠0)。

二次函数:f(x)=ax²+bx+c (a≠0)。

指数函数:f(x)=a^x (a>0, a≠1)。

对数函数:f(x)=logₐx (a>0, a≠1)。

幂函数:f(x)=x^α (α为实数)。

三、数列1. 数列的概念定义:按一定顺序排列的一列数称为数列。

通项公式:表示数列中每一项与项数之间关系的公式。

2. 等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。

通项公式:aₙ=a₁+(n-1)d。

前n项和公式:Sₙ=n/2[2a₁+(n-1)d]。

3. 等比数列定义:从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。

通项公式:aₙ=a₁q^(n-1)。

前n项和公式:Sₙ=a₁(1-q^n)/(1-q)(q≠1)。

四、三角函数1. 角度与弧度角度制:用度(°)、分(')、秒('')来表示角的大小的制度。

新高考数学归纳知识点

新高考数学归纳知识点

新高考数学归纳知识点新高考数学的知识点归纳是帮助学生系统地掌握高中数学知识,提高解题能力的重要环节。

以下是对新高考数学知识点的归纳总结:一、集合与函数- 集合的概念:元素、子集、并集、交集、补集等。

- 函数的概念:定义域、值域、单调性、奇偶性、周期性等。

- 函数的表示方法:解析法、图像法、列表法等。

二、数列- 数列的基本概念:通项公式、前n项和等。

- 等差数列与等比数列:通项公式、求和公式。

- 数列的极限:无穷等比数列的极限、单调有界定理等。

三、三角函数与三角恒等变换- 三角函数的定义:正弦、余弦、正切等。

- 三角函数的基本性质:周期性、奇偶性、单调性等。

- 三角恒等变换:和角公式、差角公式、倍角公式、半角公式等。

四、解析几何- 平面直角坐标系:点的坐标、直线方程、圆的方程等。

- 空间直角坐标系:空间直线与平面的方程。

- 圆锥曲线:椭圆、双曲线、抛物线的性质与方程。

五、立体几何- 空间几何体:柱、锥、台、球等的体积与表面积。

- 空间直线与平面的位置关系:平行、垂直、相交等。

- 空间向量:向量的加减、数乘、点积、叉积等。

六、概率与统计- 随机事件的概率:古典概型、几何概型、条件概率等。

- 统计初步:数据的收集、整理、描述等。

- 离散型随机变量及其分布列:期望、方差等。

七、导数与微分- 导数的概念:导数的定义、几何意义、物理意义等。

- 基本初等函数的导数:幂函数、三角函数、指数函数、对数函数等。

- 导数的应用:函数的单调性、极值、最值等。

八、积分- 不定积分与定积分的概念:原函数、积分区间、积分值等。

- 积分的基本公式与计算方法:换元积分法、分部积分法等。

- 定积分的应用:面积、体积、物理量等。

九、复数- 复数的概念:复平面、复数的四则运算等。

- 复数的代数形式与三角形式:欧拉公式、德摩弗定理等。

- 复数的应用:解析几何、电路分析等。

十、逻辑与推理- 逻辑连接词:与、或、非、蕴含等。

- 推理方法:演绎推理、归纳推理、类比推理等。

高中数学新课标要点总结

高中数学新课标要点总结

高中数学新课标要点总结随着教育改革的不断深入,高中数学新课程标准(简称新课标)对数学教学提出了新的要求和目标。

新课标强调数学学科的核心素养,注重学生的全面发展,旨在培养学生的数学思维、解决问题的能力以及创新精神。

以下是高中数学新课标的主要要点总结:1. 课程目标的转变新课标将课程目标从单纯的知识传授转变为培养学生的数学核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六个方面。

2. 课程内容的整合与优化新课标对高中数学课程内容进行了整合与优化,将原有的知识点重新组织,形成了更加系统和连贯的知识体系。

同时,新课标还增加了一些现代数学的内容,如概率统计、算法初步等,以适应社会和科技发展的需要。

3. 教学方法的创新新课标鼓励教师采用多样化的教学方法,如探究式学习、合作学习、项目学习等,以激发学生的学习兴趣和主动性。

同时,新课标还强调信息技术在数学教学中的应用,提倡利用计算机和网络资源辅助教学。

4. 评价方式的多样化新课标提倡多元化的评价方式,不仅包括传统的笔试,还包括口试、实验操作、项目报告等多种评价形式。

这样的评价方式更能够全面地反映学生的学习过程和能力。

5. 课程资源的开发与利用新课标鼓励教师和学校开发和利用各种课程资源,包括教材、教辅资料、网络资源等,以丰富教学内容和提高教学效果。

6. 教师专业发展新课标强调教师的专业发展,要求教师不断更新教育理念,提高教学技能,以适应新课程的要求。

同时,新课标还鼓励教师进行教学研究和创新,以促进教学质量的提升。

7. 学生学习方式的转变新课标倡导学生从被动接受知识转变为主动探究和学习,鼓励学生在学习过程中提出问题、解决问题,培养自主学习和终身学习的能力。

8. 课程实施的灵活性新课标允许学校和教师根据学生的实际情况和需求,灵活地调整课程内容和教学进度,以满足不同学生的学习需求。

通过上述要点的总结,我们可以看出高中数学新课标旨在通过课程改革,提高学生的数学素养,培养学生的创新能力和实践能力,以适应未来社会的发展需求。

高中数学知识知识点总结2024

高中数学知识知识点总结2024

高中数学知识知识点总结2024一、集合与函数1. 集合的基本概念集合是数学中最基本的概念之一,表示具有某种共同属性的事物的全体。

常见的集合表示方法有列举法和描述法。

列举法:将集合中的元素一一列举出来,如 \( A = \{1, 2, 3\} \)。

描述法:用集合中元素的共同属性来表示,如 \( B = \{x \mid x > 0\} \)。

2. 集合的运算集合的运算包括并集、交集、补集和差集。

并集:\( A \cup B = \{x \mid x \in A \text{ 或 } x \in B\} \)。

交集:\( A \cap B = \{x \mid x \in A \text{ 且 } x \in B\} \)。

补集:\( C_U A = \{x \mid x \in U \text{ 且 } x \notin A\} \),其中 \( U \) 是全集。

差集:\( A B = \{x \mid x \in A \text{ 且 } x \notin B\} \)。

3. 函数的概念函数是数学中描述两个变量之间依赖关系的重要工具。

函数的定义域、值域和对应关系是函数的三要素。

定义域:函数中自变量 \( x \) 的取值范围。

值域:函数中因变量 \( y \) 的取值范围。

对应关系:自变量 \( x \) 和因变量 \( y \) 之间的对应法则。

4. 常见函数类型一次函数:\( y = ax + b \),图像为一条直线。

二次函数:\( y = ax^2 + bx + c \),图像为一条抛物线。

指数函数:\( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

对数函数:\( y = \log_a x \),其中 \( a > 0 \) 且 \( a \neq 1 \)。

三角函数:包括正弦函数 \( y = \sin x \)、余弦函数 \( y = \cos x \) 和正切函数 \( y = \tan x \)。

新课程高中数学知识点归纳(完整版)

新课程高中数学必备知识点归纳 ----必须理解、记忆和应用第一册第一章 集合与常用逻辑用语一、集合的定义与表示1.集合的定义:把研究对象统称为元素,把一些元素组成的总体叫做集合2.集合的表示:常用大写拉丁字母 ,,,C B A 表示,集合中的元素一般用小写拉丁字母 ,,,c b a 表示3.集合的性质:确定性、互异性、无序性(集合中元素的性质)4.元素与集合的关系:属于(A a ∈) , 不属于(A a ∉)5.常用数集:R Q,Z,,N N N,*+或 6.集合的表示:列举法:把集合中的所有元素一一列举出来,并用“{ }”括起来表示集合的方法叫做列举法。

描述法:设A 是一个集合,把集合A 中所具有共同特征)(x P 的元素x 所组成的集合表示为)}(|{x P A x ∈,这种表示集合的方法称为描述法。

二、集合间的基本关系(从文字语言、图形语言、符号语言等方面理解) 1.子集:一般地,对于两个集合,A B ,如果集合A 中任意一个元素都是集合B 中的元素,称集合A 是集合B 的子集,记作B A ⊆(读作A 包含于B )或A B ⊇(读作B 包含A )。

韦恩表示图略 2.集合相等:如果集合A 中的任何一个元素都是集合B 的元素,同时集合B 中的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等。

记作A B =。

若B A ⊆且A B ⊆,则A B =。

韦恩表示图略 3.真子集:如果集合B A ⊆,但存在元素,x B ∈且,x A ∉称集合A 是集合B 的真子集,记作B A ≠⊂(读作A真含于B )或A B ≠⊃(读作B 真包含A )。

韦恩表示图略4.空集:不含任何元素的集合叫做空集。

空集是任何集合的子集,空集是任何非空集合的真子集 拓展:集合的子集个数含有n 个元素的集合的子集个数为n2,真子集个数为12-n,非空真子集个数为22-n三、集合的基本运算(从文字语言、图形语言、符号语言等方面理解) 1.并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作A B(读作:“A 并B ”),即{},A B x x A x B =∈∈或,韦恩表示图略,数轴表示略。

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结新课标人教版高中数学全册的考点及题型如下:一、函数与方程1.函数的基本概念和性质:定义域、值域、图像、增减性、奇偶性等。

2.一次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

3.二次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

4.指数函数:函数的表示方式及性质、函数的图像与应用、指数函数的性质与指数关系。

5.对数函数:函数的表示方式及性质、函数的图像与应用、对数函数的性质与底数关系。

6.三角函数:函数的表示方式及性质、函数的图像与应用、三角函数的性质与周期关系。

二、数列与数学归纳法1.数列的基本概念与表示:公式、通项、前n项和、数列的性质等。

2.等差数列:公差、前n项和、等差数列的性质及应用。

3.等比数列:公比、前n项和、等比数列的性质及应用。

4.通项公式及求和公式的推导与应用。

5.数学归纳法的基本概念和使用。

三、三角函数基本关系式与证明1.正弦函数与余弦函数的关系。

2.正切函数与余切函数的关系。

3.正割函数与余割函数的关系。

4.辅助角公式及证明。

5.万能角公式及证明。

6.统一化问题的求解及应用。

四、解析几何基本定理与推理1.重矢量的定义与性质。

2.数量积的基本性质与运算规则。

3.向量的线性相关性与线性独立性。

4.解析几何定理的证明与推理。

五、概率与统计1.基本概念与方法:样本空间、随机事件、概率、频率、统计量等。

2.概率的基本性质:加法原理、乘法原理、条件概率等。

3.随机变量和概率分布的基本概念与性质。

4.离散型随机变量与连续型随机变量的概率分布。

5.正态分布的基本性质和应用。

以上是新课标人教版高中数学全册的考点及题型的总结,希望对你有帮助。

高中数学新课标的考点汇总

高中数学新课标的考点汇总高中数学新课标是针对高中阶段数学教学内容和要求的指导性文件,它涵盖了高中数学教育的核心知识点和能力要求。

以下是高中数学新课标的考点汇总:1. 数与式:包括实数的概念、性质和运算;复数的概念、性质和运算;指数与对数的概念、性质和运算;多项式的概念、性质和运算;分式的概念、性质和运算。

2. 函数:包括函数的概念、性质和图像;一次函数、二次函数、指数函数、对数函数、三角函数等基本初等函数的性质和图像;函数的单调性、奇偶性、周期性等性质;函数的复合、反函数、函数的极限等概念。

3. 解析几何:包括平面直角坐标系、极坐标系、参数方程等坐标系的概念和性质;直线、圆、椭圆、双曲线、抛物线等基本几何图形的方程和性质;点、线、面的位置关系;向量的概念、运算和应用。

4. 立体几何:包括空间直角坐标系的概念和性质;空间直线、平面、多面体、旋转体等基本几何图形的方程和性质;空间几何体的体积、表面积的计算;空间向量的概念、运算和应用。

5. 概率与统计:包括随机事件、概率、条件概率的概念和计算方法;离散型随机变量、连续型随机变量的概念和分布;统计图表、统计量(均值、方差、标准差等)的概念和计算方法;数据的收集、处理和分析。

6. 三角学:包括任意角的概念、三角函数的概念和性质;三角恒等式、和差化积、积化和差等公式;反三角函数的概念和性质;三角函数的图像和性质。

7. 数列与级数:包括数列的概念、性质和通项公式;等差数列、等比数列、递推数列等特殊数列的性质和求和方法;级数的概念、性质和收敛性判断。

8. 微积分:包括极限的概念、性质和运算;导数的概念、性质和运算;微分的概念和运算;积分的概念、性质和运算;定积分和不定积分的计算方法;微分方程的基本概念和求解方法。

9. 线性代数:包括矩阵的概念、运算和性质;行列式的概念、性质和计算方法;线性方程组的概念、性质和求解方法;向量空间、子空间、基、维数等概念;线性变换的概念和性质。

高中数学新课标知识点梳理

高中数学新课标知识点梳理高中数学作为基础教育的重要组成部分,其课程标准不断更新以适应时代的发展和学生的需求。

新课标强调了数学知识的应用性、创新性和实践性,旨在培养学生的数学思维和解决问题的能力。

以下是对高中数学新课标知识点的梳理:1. 函数与方程- 函数的概念、性质和图像- 一次函数、二次函数、指数函数、对数函数、三角函数等基本函数类型- 函数的单调性、奇偶性、周期性等性质- 函数的复合、反函数、函数的极值和最值- 方程的解法,包括一元一次方程、一元二次方程、二元一次方程组等2. 数列- 数列的概念和分类- 等差数列和等比数列的性质和求和公式- 数列的通项公式和递推关系- 数列的极限和收敛性3. 三角学- 三角函数的定义、图像和性质- 三角恒等式和三角变换- 解三角形问题,包括正弦定理和余弦定理- 三角函数的应用,如周期问题、角度问题等4. 空间几何- 平面几何的基本性质和定理- 空间直线和平面的位置关系- 空间多面体和旋转体的性质- 空间向量及其在几何问题中的应用5. 概率与统计- 随机事件的概率计算- 离散型和连续型随机变量的概率分布- 统计数据的收集、整理和分析- 统计图表的绘制和解读6. 微积分初步- 极限的概念和运算- 导数的定义、性质和应用- 积分的概念、性质和计算方法- 微分方程的初步介绍7. 线性代数初步- 矩阵的概念、运算和性质- 行列式的定义和计算- 线性方程组的解法- 向量空间和线性变换的基本概念8. 算法初步- 算法的概念和设计原则- 基本算法结构,如顺序结构、选择结构、循环结构- 算法的效率分析和优化新课标还强调了数学与其他学科的交叉融合,鼓励学生在实际问题中应用数学知识,培养创新思维和实践能力。

同时,新课标也注重数学文化的传承,让学生了解数学的历史和文化背景,增强数学学习的趣味性和深度。

通过这些知识点的系统学习,学生能够构建起扎实的数学基础,为未来的学术和职业生涯打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修+选修知识点归纳新课标人教A版引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:*N或+N,整数集合:Z,有理数集合:Q,实数集合:R.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。

记作BA⊆.2、如果集合BA⊆,但存在元素Bx∈,且Ax∉,则称集合A是集合B的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,则集合A有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:BA .2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:BA .3、全集、补集?{|,}UC A x x U x U=∈∉且§1.2.1、函数的概念1、设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数()xf和它对应,那么就称BAf→:为集合A到集合B的一个函数,记作:()Axxfy∈=,.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,0②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。

注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。

第二章:基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =;当n 为偶数时,a a n n=. 3、 我们规定: ⑴m n mna a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n a ann; 4、 运算性质: ⑴()Q s r a aa a sr sr ∈>=+,,0;⑵()()Q s r a a a rs sr ∈>=,,0;⑶()()Q r b a b a ab rr r∈>>=,0,0.§2.1.2、指数函数及其性质 1、记住图象:()1,0≠>=a a a y x2、性质:§2.2.1、对数与对数运算1、指数与对数互化式:log xa a N x N =⇔=;2、对数恒等式:log a NaN =.3、基本性质:01log =a ,1log =a a .4、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=; ⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、重要公式:log log n ma a mb b n= 7、倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、记住图象:()1,0log ≠>=a a x y a2、性质: §2.3、幂函数1、几种幂函数的图象:第三章:函数的应用§3.1.1、方程的根与函数的零点1>a10<<a图象1111性 质 (1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x=1时,y=0 (4)在 (0,+∞)上是增函数 (4)在(0,+∞)上是减函数(5)0log ,1>>x x a ; 0log ,10<<<x x a(5)0log ,1<>x x a ; 0log ,10><<x x a0<a<1a>11y=a x o yx0<a<1a>11y=log a x oyx1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点. 2、 零点存在性定理:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点第一章:空间几何体 1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

相关文档
最新文档