直角三角形的边角关系单元测试题

合集下载

直角三角形的边角关系单元测试

直角三角形的边角关系单元测试

《直角三角形的边角关系》单元测试班级: 姓名: 学号: 分数:一、选择题(每小题4分,共32分) 1.已知△ABC 中,∠C=90°,tanA=( )A .AB AC B .AB BC C .BC AC D .ACBC2.在△ABC 中,∠C=90,若sinA=31,则cosB= ( )A. 1B. 3C. 31 D 2323.在Rt△ABC中,两直角的比为5:12,则最小角的余弦值( ) A .125 B .123 C .512 D .13124.在Rt△ABC中,如果各边长度都扩大2倍,那么锐角A的正切值( ) A .没有变化 B .扩大2倍 C .缩小2倍 D .不能确定5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,BC=3,AC=4,设∠BCD=α,则 tan α的值为( ) A.34; B.43; C.35; D.456. 若∠A 为锐角,且则∠A 的度数为( )A.30°B.45°C.60°D.90°7.在 Rt △ABC 中,∠C=900, a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列关系式错误的是( )A. b=c ·cosBB.b=a ·tanBC.a=c ·sinAD. a=b ·tanA 8. 等腰三角形底边长为1Ocm ,周长为36cm ,那么底角的余弦等于( ) A.513 B.1213 C. 1013 D. 512二.填空题:(每小题3分,共15分)1.在△ABC 中,∠C为直角,若3AC=BC 3,则∠A的度数是 ,cosB 的值是_ _ 。

2.已知ABC △中,90C ∠=,A B C ∠∠∠,,所对的边分别是a b c ,,,且3c a =,则cos A =________.3.已知:Rt △ABC 中,∠C=90°,sinA=513,则sinB=________.4.如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平 距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

北师大版初三数学9年级下册 第1章(直角三角形的边角关系)单元测试卷(含答案)

北师大版初三数学9年级下册 第1章(直角三角形的边角关系)单元测试卷(含答案)

北师大版九年级数学下册第一章直角三角形的边角关系单元测试卷(时间:120分钟 满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案填在下面的答题框内)题号12345678910答案1.在△ABC中,∠C=90°,∠B=2∠A,则cosA=( )A.32B.12C.3D.332.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是( )A.35B.45C.34D.433.在△ABC中,若tanA=1,sinB=22,你认为最确切的判断是( )A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形4.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=35,AB=4,则AD的长为( )A.3 B.163C.203D.1655.如图,将一张矩形纸片ABCD 沿DE 折起,使顶点C 落在C ′处,测量得AB =4,DE =8,则sin ∠C ′ED =( )A .2 B.12 C.22 D.326.如图,市政府准备修建一座高AB =6 m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为35,则坡面AC 的长度为( )A .10 m B .8 m C .6 m D .63 m7.下列不等式不成立的是( )A .sin20°<sin40°<sin70°B .cos20°<cos40°<cos70°C .tan20°<tan40°<tan70°D .sin30°<cos45°<tan60°8.如图,在离地面高5 m 处引拉线固定电线杆,拉线与地面成60°角,则拉线AC 的长是( )A .10 m B.1033 m C .53 m D .5 m9.如图,直线y =-43x +4与x 轴、y 轴分别交于点M ,N ,作OA ⊥MN 于点A ,则tan ∠AON =( )A.45B.35C.43D.3410.如图,在矩形ABCD 中,DE ⊥AC 于点E ,∠EDC ∶∠EDA =1∶3,且AC =10,则DE 的长度是( )A .3B .5C .52 D.522二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上)11.在Rt △ABC 中,∠C =90°,cosB =23,则a ∶b =____________.12.已知,在△ABC 中,∠C =90°,3a =3b ,则tanA =33,∠B =____________.13.如图,在△ABC 中,cosB =22,sinC =35,AC =10,则△ABC 的面积为____________.14.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均落在格点上,则tanC =____________.三、解答题(本大题共6个小题,共54分) 15.(本小题满分6分)计算:(1)sin45°+cos45°-tan30°×sin60°;(2)24sin45°+cos230°-12tan60°+2sin60°.16.(本小题满分8分)在Rt△ABC中,∠C=90°,AB=13,BC=5,求sinA,cosA,tanA.17.(本小题满分8分)如图,在△ABC中,∠A=30°,∠B=45°,BC=6,求AB的长.18.(本小题满分10分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24 m,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8 m到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6 m,求教学楼AB的高度.(精确到0.1 m,参考数据:2≈1.41,3≈1.73)19.(本小题满分10分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为C,连接AB,AC.(1)求该反比例函数的表达式;(2)若△ABC的面积为6,求sin∠ABC的值;(3)求点C到直线AB的距离.20.(本小题满分12分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求sin∠AMB的值.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上)21.在△ABC中,∠C=90°,边a,c满足c2-5ac+6a2=0,则cosA=_____.22.如图,在2×2的正方形网格中,以格点为顶点的△ABC的面积为32,则sin∠CAB=_____.23.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上.如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影子长2米,则树的高度为_____米.24.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tan∠EAC=13,则BE的长为_____.25.如图,正方形ABCD的边长为22,过点A作AE⊥AC,AE=1,连接BE,则tanE=_____.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)如图,在△ABC中,∠C=150°,AC=4,tanB=1 8 .(1)求BC的长;(2)利用此图形求tan15°的值.27.(本小题满分10分)如图,坡上有一棵与水平面EF垂直的大树AB,台风过后,大树倾斜后折断倒在山坡上,大树顶部B接触到坡面上的D点.已知山坡的坡角∠AEF=30°,量得树干倾斜角∠BAC=45°,大树被折断部分和坡面所成的角∠ADC=60°且AD=4米.(1)求∠CAE的度数;(2)求这棵大树折断前的高度AB.(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4)28.(本小题满分12分)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∥AB时,连接EF,求tan∠DEF的值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x的取值范围;(3)连接CE,若△CDE为等腰三角形,求BF的长.参考答案北师大版九年级数学下册第一章直角三角形的边角关系单元测试卷(时间:120分钟 满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案填在下面的答题框内)题号12345678910答案A A B B B A B B C D1.在△ABC中,∠C=90°,∠B=2∠A,则cosA=(A)A.32B.12C.3D.332.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cosB的值是(A)A.35B.45C.34D.433.在△ABC 中,若tanA =1,sinB =22,你认为最确切的判断是(B)A .△ABC 是等腰三角形B .△ABC 是等腰直角三角形C .△ABC 是直角三角形D .△ABC 是一般锐角三角形4.如图,在矩形ABCD 中,DE ⊥AC 于点E ,设∠ADE =α,且cos α=35,AB =4,则AD 的长为(B)A .3 B.163 C.203 D.1655.如图,将一张矩形纸片ABCD 沿DE 折起,使顶点C 落在C ′处,测量得AB =4,DE =8,则sin ∠C ′ED =(B)A .2 B.12 C.22 D.326.如图,市政府准备修建一座高AB =6 m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为35,则坡面AC 的长度为(A)A .10 m B .8 m C .6 m D .63 m7.下列不等式不成立的是(B)A .sin20°<sin40°<sin70°B .cos20°<cos40°<cos70°C .tan20°<tan40°<tan70°D .sin30°<cos45°<tan60°8.如图,在离地面高5 m 处引拉线固定电线杆,拉线与地面成60°角,则拉线AC 的长是(B)A .10 mB.1033 mC .53 mD .5 m9.如图,直线y =-43x +4与x 轴、y 轴分别交于点M ,N ,作OA ⊥MN 于点A ,则tan ∠AON =(C)A.45 B.35 C.43 D.3410.如图,在矩形ABCD 中,DE ⊥AC 于点E ,∠EDC ∶∠EDA =1∶3,且AC =10,则DE 的长度是(D)A .3B .5C .52D.522二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上)11.在Rt △ABC 中,∠C =90°,cosB =23,则a ∶b =2∶5.12.已知,在△ABC 中,∠C =90°,3a =3b ,则tanA =33,∠B =60°.13.如图,在△ABC 中,cosB =22,sinC =35,AC =10,则△ABC 的面积为42.14.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均落在格点上,则tanC =2.三、解答题(本大题共6个小题,共54分)15.(本小题满分6分)计算:(1)sin45°+cos45°-tan30°×sin60°;解:原式=22+22-33×32=2-12.(2)24sin45°+cos 230°-12tan60°+2sin60°.解:原式=24×22+(32)2-12×3+2×32=14+34-36+3=1+536.16.(本小题满分8分)在Rt △ABC 中,∠C =90°,AB =13,BC =5,求sinA ,cosA ,tanA.解:由勾股定理,得AC =AB 2-BC 2=132-52=12,∴sinA =BC AB =513,cosA =AC AB=1213,tanA =BC AC =512.17.(本小题满分8分)如图,在△ABC 中,∠A =30°,∠B =45°,BC =6,求AB 的长.解:过点C 作CD ⊥AB 于点D.∵∠B =45°,∴CD =BD.∵BC =6,∴CD =BD =3.∵∠A =30°,tan30°=CD AD,∴AD =CD tan30°=333=3.∴AB =AD +BD =3+3.18.(本小题满分10分)如图,校园内有两幢高度相同的教学楼AB ,CD ,大楼的底部B ,D 在同一平面上,两幢楼之间的距离BD 长为24 m ,小明在点E(B ,E ,D 在一条直线上)处测得教学楼AB 顶部的仰角为45°,然后沿EB 方向前进8 m 到达点G 处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F ,H 距离地面的高度均为1.6 m ,求教学楼AB 的高度.(精确到0.1 m ,参考数据:2≈1.41,3≈1.73)解:延长HF 交CD 于点N ,延长FH 交AB 于点M ,由题意,得MB =HG =FE =ND =1.6 m ,HF =GE =8 m ,MF =BE ,HN =GD ,MN =BD =24 m.设AM =x m ,则CN =x m.在Rt△AFM中,MF=AMtan45°=x1=x,在Rt△CNH中,HN=CNtan30°=x33=3x,∴HF=MF+HN-MN=x+3x-24,即8=x+3x-24,解得x≈11.7.∴AB=11.7+1.6=13.3(m).答:教学楼AB的高度约为13.3 m.19.(本小题满分10分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为C,连接AB,AC.(1)求该反比例函数的表达式;(2)若△ABC的面积为6,求sin∠ABC的值;(3)求点C到直线AB的距离.解:(1)设反比例函数的表达式为y=k x ,由题意,得k=xy=2×3=6.∴反比例函数的表达式为y=6 x .(2)设B点坐标为(a,b),过点A作AD⊥BC于点D,则D(2,b).∵反比例函数y=6x的图象经过点B(a,b),∴b=6a.∴AD=3-6a.∴S△ABC=12BC·AD=12a(3-6a)=6,解得a=6.∴b=6a=1,AD=3-6a=2.∴B(6,1).∴AB=(2-6)2+(3-1)2=25.∴sin∠ABC=225=55.(3)过点C作CE⊥BA交BA的延长线于点E,在Rt△BCE中,sin∠ABC=CE BC=55,BC=6,∴CE =655.∴点C 到直线AB 的距离为655.20.(本小题满分12分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM ,DN.(1)求证:四边形BMDN 是菱形;(2)若AB =2,AD =4,求sin ∠AMB 的值.解:(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°.∴∠MDO =∠NBO.∵MN 是BD 的垂直平分线,∴BO =DO ,MN ⊥BD.在△DMO 和△BNO 中,{∠MDO =∠NBO ,DO =BO ,∠MOD =∠NOB ,∴△DMO ≌△BNO(ASA).∴OM =ON.∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴四边形BMDN 是菱形.(2)∵四边形BMDN 是菱形,∴MB =MD.设MD =x ,则AM =4-x ,MB =DM =x.在Rt △AMB 中,BM 2=AM 2+AB 2,即x 2=(4-x)2+22,解得x =52.∴sin ∠AMB =AB BM =45.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上)21.在△ABC中,∠C=90°,边a,c满足c2-5ac+6a2=0,则cosA=32或223.22.如图,在2×2的正方形网格中,以格点为顶点的△ABC的面积为32,则sin∠CAB=35.23.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上.如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影子长2米,则树的高度为(6+3)米.24.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tan∠EAC=13,则BE的长为3或5.25.如图,正方形ABCD的边长为22,过点A作AE⊥AC,AE=1,连接BE,则tanE=23.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)如图,在△ABC中,∠C=150°,AC=4,tanB=1 8 .(1)求BC的长;(2)利用此图形求tan15°的值.解:(1)过点A作AD⊥BC,交BC的延长线于点D,在Rt△ADC中,AC=4,∵∠ACB=150°,∴∠ACD=30°.∴AD=12AC=2,CD=AC·cos30°=4×32=23.在Rt△ABD中,tanB=ADBD=2BD=18,∴BD=16.∴BC=BD-CD=16-23.(2)在BC边上取一点M,使得CM=AC,连接AM,∵∠ACB=150°,∴∠AMC=∠MAC=15°.∴tan15°=tan∠AMD=ADMD=24+23=12+3=2-3.27.(本小题满分10分)如图,坡上有一棵与水平面EF垂直的大树AB,台风过后,大树倾斜后折断倒在山坡上,大树顶部B接触到坡面上的D点.已知山坡的坡角∠AEF=30°,量得树干倾斜角∠BAC=45°,大树被折断部分和坡面所成的角∠ADC=60°且AD=4米.(1)求∠CAE的度数;(2)求这棵大树折断前的高度AB.(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4)解:(1)延长BA交EF于点H,则∠AHE=90°,∠HAE=60°.∵∠BAC=45°,∴∠CAE=180°-∠EAH-∠BAC=75°.(2)过点A作AM⊥CD于点M,则∠CAM=90°-45°=45°,∠DAM=75°-45°=30°,∴AM=AD·cos30°=4×32=23,MD=12AD=2,∵∠C =∠CAM =45°,∴CM =AM =23,AC =2AM =2×23=26.∴AB =AC +CM +MD =26+23+2≈2×2.4+2×1.7+2=10.2≈10.∴这棵大树折断前的高度约为10米.28.(本小题满分12分)如图,在Rt △ABC 中,∠C =90°,AC =BC =6,点D 为AC 中点,点E 为边AB 上一动点,点F 为射线BC 上一动点,且∠FDE =90°.(1)当DF ∥AB 时,连接EF ,求tan ∠DEF 的值;(2)当点F 在线段BC 上时,设AE =x ,BF =y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)连接CE ,若△CDE 为等腰三角形,求BF 的长.解:(1)∵AC =BC =6,∠ACB =90°,∴AB =62.∵DF ∥AB ,点D 为AC 中点,∴AD =CD =12AC =3,DF =12AB =32.∴DE =322.在Rt △DEF 中,tan ∠DEF =DF DE =32322=2.(2)过点E 作EH ⊥AC 于点H ,设AE =x ,∵BC ⊥AC ,∴EH ∥BC.∴∠AEH =∠B.∵∠B =∠A ,∴∠AEH =∠A.∴HE =HA =22x.∴HD =3-22x.易证△HDE ∽△CFD ,∴HDCF =HEDC ,即3-22x6-y =22x 3.∴y =9-92x(2≤x ≤32).(3)∵CE ≥12AB =32>3,CD =3,∴CE >CD.∴若△DCE 为等腰三角形,只有DC =DE 或ED =EC 两种可能.当DC =DE 时,点F 在边BC 上,过点D 作DG ⊥AE 于点G(如图1),可得AE=2AG=32,即点E在AB中点.∴此时F与C重合.∴BF=6.当ED=EC时,点F在BC的延长线上,过点E作EM⊥CD于点M(如图2),∵EM⊥CD,ED=EC,∴DM=CM=12CD=32.易证EM=AM=AD+DM=3+32=92.∵DE⊥DF,∴∠EDM+∠FDC=90°.∵∠FDC+∠F=90°,∴∠F=∠EDM.∴△DFC∽△EDM.∴CFDM=CDEM,即CF32=392.∴CF=1.∴BF=7.综上所述,BF的长为6或7.。

直角三角形的边角关系测试题及答案

直角三角形的边角关系测试题及答案

AD′直角三角形的边角关系测试题一、选择题(每小题3分,共计30分):1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )A 、sinA=a cB 、cosB=c bC 、cosB=a bD 、tanA=ba 2.在Rt △ABC 中,∠C=90°,sinA=21,则BC ∶AC ∶AB 等于( )A 、1∶2∶5B 、1∶3∶5C 、1∶3∶2D 、1∶2∶33.在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形 4.已知在Rt △ABC 中,∠C=90°.若sinA=22,则sinB 等于( ) A 、21 B 、22 C 、23 D 、1 5.化简2)130(tan - =( )。

A 、331-B 、13-C 、133-D 、13-6.等腰三角形的一腰长为6cm ,底边长为63cm ,则其底角为( )。

A. 120° B. 90° C. 60° D. 30°7如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 18.当锐角A 的cosA >22时,∠A 的值为( )。

A. 小于45° B. 小于30° C. 大于45° D. 大于30°9.小刚在距某电信塔10 m 的地面上(人和塔底在同一水平面上),测得塔顶的仰角是 60°, 则塔高为( )BNACDMA 、103mB 、53mC 、102mD 、20m 10.如图,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线MN交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )A 、4cmB 、6cmC 、8cmD 、10cm二、填空题(每小题3分, 共计18分):11.在△ABC 中.∠C=90°,若tanA=1,则∠B= 度. 12.锐角A满足2sin(A-150)=3,则∠A=_____度. 13.如图,若某人沿坡度i =3:4的斜坡前进10米,则他所在 的位置比原来的位置升高________米.14.若︒<<︒900α,︒=60cos sin α,则_____tan =α 15.已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-21)2+|tanB-1|=0,则∠C= 度。

(必考题)初中数学九年级数学下册第一单元《直角三角形的边角关系》测试卷(包含答案解析)

(必考题)初中数学九年级数学下册第一单元《直角三角形的边角关系》测试卷(包含答案解析)

一、选择题1.在Rt ABC △中,如果各边长度都扩大为原来的2倍,那么锐角A 的余弦值( ) A .扩大2倍 B .缩小2倍 C .扩大4倍 D .没有变化 2.如图,在ABC ∆中,AC BC ⊥,30ABC ︒∠=,点D 是CB 延长线上的一点,且AB BD =,则tan DAC ∠的值为( )A .33B .23C .23+D .23- 3.如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,4tan 3B =,若10BC =,则AD 的长为( )A .6B .323C .7.5D .104.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点E ,且DE CE =,若3AB =,则DE 等于( )A .1B .32C .12D .335.如图,已知ABC 中,30CAB B ∠=∠=︒,23AB =D 在BC 边上,把ABC 沿AD 翻折使AB 与AC 重合,得AB D ',则ABC 与AB D '重叠部分的面积为( )A .332-B .312-C .33-D .336- 6.△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,且22440c ac a -+=,则sinA+cosA 的值为( )A .132+B .122 C .232+ D .27.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,则( )A .3sin 4A =B .4cos 5A =C .3cos 4B =D .3tan 5B =8.如图,是一个正六棱柱的主视图和左视图,则图中x 的值为( )A .2B .3C .3D .3329.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tanA 的值是( )A 5B 10C .2D .81910.如图大坝的横断面,斜坡AB 的坡比i =1:2,背水坡CD 的坡比i =1:1,若坡面CD 的长度为62米,则斜坡AB 的长度为( )A .43B .63C .65D .24 11.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则sin ∠BDE 的值是 ( )A .15B .14C .13D .2412.如图,菱形ABCD 的边长是2,∠B=120°,P 是对角线AC 上一个动点,E 是CD 的中点,则PE +PD 的最小值为( )A .2B .3C .2D .5二、填空题13.如图,在平面直角坐标系中,Rt ABC 的顶点A C 、的坐标分别是()0,3、3,0.90ACB ∠=︒,2AC BC =,反比例函数()0k y x x=>的图象经过点B ,则k 的值为________.14.如图,在△ABC 中,∠ACB =90º,点D 在边AC 上,AD =4CD ,若∠BAC =2∠CBD ,则tan A = ___.15.如图,菱形ABCD 的两个顶点,B D 在反比例函数k y x =的图象上,对角线,AC BD 的交点О恰好是坐标原点,已知()2,2A ,120BCD ∠=︒,则k 的值是__________.16.如图,在平面直角坐标系中,点B 在第一象限,BA x ⊥轴于点A ,反比例函数()0k y x x=>的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C 关于直线y x =的对称点'C 的坐标为()()1,1n n ≠,若OAB 的面积为4.则下列结论:①2n =;②4k =;③不等式k x x <的解集是2x >;④tan 2ABO ,其中正确结论的序号是________.17.如图,ABC ∆的顶点都是正方形网格中的格点,则cos CAB ∠=__________.18.如图,在矩形ABCD 中,点E 是AB 的中点,点F 为射线AD 上的一个动点,AEF ∆沿着EF 折叠得到HEF ∆,连接AC ,分别交EF 和直线EH 于点N 和M ,已知30BAC ∠=︒,2BC =,若EMN ∆与AEF ∆相似,则AF 的长度是________.19.如图所示,在四边形ABCD 中,233AD AB =,30A ∠=︒,将线段CD 绕点C 逆时针旋转90°,并延长至其3倍(即3CE CD =),过点E 作EF AB ⊥于点F ,当63AD =,3BF =,74EF =时,边BC 的长是______.20.如图,已知90ACB ∠=︒,90BAD ∠=︒,AB AD =,若5CD =,1tan 4BAC ∠=,则四边形ABCD 的面积为______.三、解答题21.计算下列各小题(1)2245603060cos tan tan cos ︒+︒⋅︒-︒;(2)()23tan 308451tan 60︒+︒+-︒22.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点,,A D G 在同一直线上,且5,3AD DE ==,连接,,AC CG AE ,并延长AE 交CG 于点H .(1)求sin EAC ∠的值.(2)求线段AH 的长.23.如图,△ABC 中,BD 平分∠ABC ,E 为BC 上一点,∠BDE =∠BAD =90°.(1)求证:BD 2=BA •BE ;(2)求证:△CDE ∽△CBD ;(3)若AB =6,BE =8,求CD 的长.24.如图,旗杆AB 竖立在斜坡CB 的顶端,斜坡CB 长为65米,坡度为i =125.小明从与点C 相距115米的点D 处向上爬12米到达建筑物DE 的顶端点E .在此测得旗杆顶端点A 的仰角为39°,求旗杆的高度AB .(参考数据:sin39°≈0.63,cos39°≈0.78,t an39°≈0.81)25.某数学小组开展了一次测量小山高度的活动,如图,该数学小组从地面A 处出发,沿坡角为53°的山坡AB 直线上行一段距离到达B 处,再沿着坡角为22°的山坡BC 直线上行600米到达C 处,通过测量数据计算出小山高CD =612m ,求该数学小组行进的水平距离AD (结果精确到1m ).(参考数据:sin22°≈0.37,cos22°≈0.92,cos53°≈0.6,tan53°≈1.3)26.226(sin30sin 60)︒︒-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角函数的定义和分数的基本性质联手解答即可.【详解】如图,cosA=BC AB , 根据分数的基本性质,得BC AB =22BC AB, ∴余弦值不变,故选D .【点睛】本题考查了锐角三角函数的定义及其分数的基本性质,熟练掌握函数的定义,灵活运用分数的基本性质是解题的关键.2.C解析:C【分析】设AC=x ,根据三角函数可得,3x ,AB=2x ,求出DC 即可.【详解】解:设AC=x , ∵AC BC ⊥,30ABC ︒∠=,tan ∠ABC=AC BC, 33AC BC =, 3x ,sin ∠ABC=AC AB,12AC AB =, AB=2x ,BD=2x ,=(2x +,tan ∠DAC=(22DC x AC x+==, 故选:C .【点睛】本题考查了特殊角的三角函数和求三角函数值,解题关键是根据三角函数的定义,利用特殊角,表示出相关线段长. 3.B解析:B【分析】设DC=4x ,BD=3x ,根据勾股定理求CD ,再根据∠ACD=∠B ,用三角函数求AD .【详解】解:∵CD AB ⊥,4tan 3DB B DC ==,设DC=4x ,BD=3x , (3x )2+(4x )2=102,∵x>0,解得x=2,∴BD=6,CD=8∵∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B , ∴4tan 3ACD ∠=, ∴43AD CD =,CD=8, ∴323AD =, 故选:B .【点睛】 本题考查了三角函数,勾股定理等知识,解题关键是根据已知的正切值求出线段长. 4.A解析:A【分析】由题意,根据菱形的性质和等腰三角形,以及三角形的内角和定理,求出30CBD ∠=︒,然后由特殊角的三角函数值,即可求出答案.【详解】解:由题意,在菱形ABCD 中,有 AB=BC=CD=3, ∴CBD CDB ∠=∠,∵DE CE =,∴ECD CDB ∠=∠,∴22BEC ECD CDB CDB CBD ∠=∠+∠=∠=∠,∵CE BC ⊥,即90BCE ∠=︒,∴90CBD BEC ∠+∠=︒,∴390CBD ∠=︒,∴30CBD ∠=︒,在Rt △BCE 中,有tan tan 30CE CBD BC ∠=︒=, ∴333=, ∴1CE =.故选:A .【点睛】本题考查了特殊角的三角函数值,菱形的性质和等腰三角形,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的求出30CBD ∠=︒.5.A解析:A【分析】首先过点D 作DE ⊥AB′于点E ,过点C 作CF ⊥AB ,由△ABC 中,∠CAB =∠B =30°,AB =23,利用等腰三角形的性质,即可求得AC 的长,又由折叠的性质,易得∠CDB′=90°,∠B′=30°,B′C =AB′−AC =23−2,继而求得CD 与B′D 的长,然后求得高DE 的长,继而求得答案.【详解】过点D 作DE ⊥AB′于点E ,过点C 作CF ⊥AB ,∵△ABC 中,∠CAB =∠B =30°,23AB =∴AC =BC ,AF =12∴AC =AF÷cos ∠CAB2=2,由折叠的性质得:AB′=AB =∠B′=∠B =30°,∵∠B′CD =∠CAB +∠B =60°,∴∠CDB′=90°,∵B′C =AB′−AC =−2,∴CD =12B′C 1,B′D =B′C•cos ∠B′=(2)∴DE =•CD B D B C ''=∴S 阴影=12AC•DE =12故选:A .【点睛】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.6.A解析:A【分析】由22440c ac a -+=得2c a =,则1sin 2a A c ==,即可得到30A ∠=︒,利用特殊角的三角函数值就可以求出结果.【详解】解:∵22440c ac a -+=,∴()220c a -=,即2c a =, ∵90C ∠=︒, ∴1sin 2a A c ==, ∴30A ∠=︒,∴cos A =,∴1sin cos 2A A +=. 故选:A .【点睛】本题考查锐角三角函数,解题的关键是掌握特殊角的三角函数值.7.B解析:B【分析】首先由勾股定理求得斜边AB=5;然后由锐角三角函数的定义依次计算判断即可.【详解】解:∵在Rt △ABC 中,∠C=90°,AC=4,BC=3.∴AB=2222435AC BC +=+=A. 3sin =5BC A AB =,故此项错误; B. 4cos =5AC A AB =,故此项正确; C. os =35c BC B AB =,故此项错误; D. 4tan 3AC BC B ==,故此项错误; 故选B .【点睛】 本题考查了锐角三角函数定义,勾股定理.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 8.D解析:D【分析】先画出俯视图,利用主视图与左视图,求出边长AB ,构造三角形ABC 与三角形ABE ,利用三角函数解直角三角形即可【详解】由正六棱柱的主视图和左视图,得俯视图如图,标注字母如图,由主视图可得到正六棱柱的最长的对角线长BD 是6,BF=1BD 2=3,则边长AB 为3, 连AC 交BD 于E ,则AC ⊥BD ,由左视图得AE=CE=x ,在△ABC 中,AB=BC=3,∠ABC=120°,∴在Rt△ABE中,∠BAE=30°,AB=3,∴BE=32,AE=AB•cos30°=33,即x=33.故选择:D.【点睛】本题考查了正六棱柱的三视图,掌握三视图中俯视图的画法,利用主视图与左视图画出准确的俯视图,注意题目中的隐含条件及左视图的特点,可将其转化到直角三角形中解答.培养了学生的空间想象能力.9.D解析:D【分析】过点B作BD AC⊥,利用面积法求出BD的长,再由勾股定理求出AD的长,即可求出tanA的值.【详解】解:如图,过点B作BD AC⊥,2BC=,17AB5AC=,根据面积法,24855 BD⨯==,根据勾股定理,226419 17255AD AB BD=-=-=,∴885tan19195BDAAD===.故选:D.【点睛】本题考查锐角三角函数,解题的关键是掌握构造直角三角形求锐角三角函数的方法.10.C解析:C【分析】过B作BE⊥AD于E,过C作CF⊥AD于F,则四边形BEFC是矩形,得BE=CF,由坡比得BE=CF=DF=22CD=6(米),AE=2BE=12(米),再由勾股定理解答即可.【详解】过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BEFC是矩形,∴BE=CF.∵背水坡CD的坡比i=1:1,CD=62∴CF=DF2CD=6(米),∴BE=CF=6米,又∵斜坡AB的坡比i=1:2=BEAE,∴AE=2BE=12(米),∴AB222212665AE BE++=(米),故选:C.【点睛】本题考查了解直角三角形的应用−坡度坡角问题、等腰直角三角形的性质以及勾股定理等知识;熟练掌握坡比的定义,正确作出辅助线构造直角三角形是解题的关键.11.C解析:C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=12BC=12AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=12BC=12AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴AF AD =EF BE =2 ∴AF =2EF , ∴AE =3EF =DE ,∴ sin ∠BDE =EF 1=DE 3, 故选C .【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键. 12.B解析:B【详解】∵四边形ABCD 是菱形,∴点B 与点D 关于直线AC 对称.如图,连接BE 与AC 相交于点P ,由轴对称确定最短路线问题,BE 的长度即为PE+PD 的最小值,连接BD.∵∠B=120°,∴∠BCD=180°−120°=60°.又∵BC=CD ,∴△BCD 是等边三角形.∵E 是CD 的中点,3sin 6023BE BC =⋅=⨯= . 故选B.二、填空题13.【分析】过作于求解再求解证明由可得再求解从而可得答案【详解】解:过作于由故答案为:【点睛】本题考查的是勾股定理的应用等腰直角三角形的判定与性质锐角三角函数的应用利用待定系数法求解反比例函数的解析式掌 解析:27.4【分析】 过B 作BH OC ⊥于,H 求解2232,AC OA OC =+= 再求解32BC =证明,CH BH = 由cos ,CH BCH BC ∠=2,32= 再求解3,2CH = 339,3,222BH OH ==+= 从而可得答案. 【详解】解:过B 作BH OC ⊥于,H90,BHC AOC ∴∠=︒=∠()()0,3,3,0,A B3,OA OC ∴==2232,AC OA OC ∴=+=2,AC BC =322BC ∴= 90,45,ACB ACO ∴∠=︒∠=︒45,BCH CBH ∠=︒=∠,CH BH ∴=由cos ,CH BCH BC∠= 2232=3,2CH ∴= 339,3,222BH OH ∴==+= 93,,22B ⎛⎫∴ ⎪⎝⎭3927.224k xy ∴==⨯=故答案为:27.4【点睛】 本题考查的是勾股定理的应用,等腰直角三角形的判定与性质,锐角三角函数的应用,利用待定系数法求解反比例函数的解析式,掌握以上知识是解题的关键.14.【分析】将沿BC 翻折180°得到然后通过轴对称的性质及等量代换得出从而得出然后利用勾股定理求出BC 的长度最后利用即可求解【详解】将沿BC 翻折180°得到根据轴对称的性质有∴点DCE 在同一条直线上故答解析:115 【分析】将BCD △沿BC 翻折180°得到BCE ,然后通过轴对称的性质及等量代换得出ABE AEB ∠=∠,从而得出AB AE =,然后利用勾股定理求出BC 的长度,最后利用即可求解.【详解】将BCD △沿BC 翻折180°得到BCE ,根据轴对称的性质有,BCD CBE BDC BEC ∠=∠∠=∠,90ACB ∠=︒,∴点D 、C 、E 在同一条直线上,90ABD CBD BAC ∠=︒-∠-∠.2BAC CBD ∠=∠,903ABD CBD ∴∠=︒-∠,290ABE ABD CBD CBD ∴∠=∠+∠=︒-∠.90BEC BDC CBD ∠=∠=︒-∠,ABE AEB ∴∠=∠,AB AE =∴.4AD CD =,6AB AE CD ∴==,BC ∴==,tan BC A AC ∴===,. 【点睛】本题主要考查了三角函数,勾股定理和轴对称,关键是利用角之间的关系构造出等腰三角形.15.【分析】由点求得进而求得根据点在直线上可以求得点的坐标从而可以求得的值【详解】解:四边形是菱形是等边三角形点∴直线的解析式为直线的解析式为点在直线上点的坐标为点在反比例函数的图象上解得故答案为:【点 解析:12-【分析】由点()2,2A,求得OA =OB =B 在直线:BD y x =-上,可以求得点B 的坐标,从而可以求得k 的值.【详解】 解:四边形ABCD 是菱形,BA BC ∴=,AC BD ⊥,120BCD ∠=︒,60ABC ∴∠=︒,ABC 是等边三角形,点()2,2A ,∴OA =a tan t n 30OA OA BO ABO ∴====∠︒ 直线AC 的解析式为y x =,∴直线BD 的解析式为y x =-,2OB =B 在直线BD 上,∴点B的坐标为(-, 点B 在反比例函数k y x=的图象上,∴=解得,12k =-,故答案为:12-.本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.16.②④【分析】根据对称性求出C 点坐标进而得OA 与AB 的长度再根据已知三角形的面积列出n 的方程求得n 进而用待定系数法求得k 再利用相关性质即可判断【详解】解:∵点C 关于直线y=x 的对称点C 的坐标为(1n ) 解析:②④【分析】根据对称性求出C 点坐标,进而得OA 与AB 的长度,再根据已知三角形的面积列出n 的方程求得n ,进而用待定系数法求得k ,再利用相关性质即可判断.【详解】解:∵点C 关于直线y=x 的对称点C'的坐标为(1,n )(n≠1),∴C (n ,1),∴OA=n ,AC=1,∴AB=2AC=2,∵△OAB 的面积为4, ∴12n×2=4, 解得,n=4,故①不正确;∴C (4,1),B (4,1),∴k=4×1=4,故②正确;解方程组4y x y x =⎧⎪⎨=⎪⎩,得:22x y =⎧⎨=⎩(负值已舍), ∴直线y=x 反比例函数(0)k y x x=>的图象的交点为(2,2),观察图象,不等式k x x<的解集是02x <<,故③不正确; ∵B (4,1),∴OA=4,AB=2, ∴tan ABO 2OA AB∠==,故④正确; 故答案为:②④.本题是反比例函数图象与一次函数图象的交点问题,主要考查了一次函数与反比例函数的性质,对称性质,正切函数等,关键是根据对称求得C 点坐标及由三角形的面积列出方程.17.【分析】根据题意和图形可以得到ACBC 和AB 的长然后根据等面积法可以求得CD 的长再利用勾股定理求得AD 的长从而可以得到cos ∠CAB 的值【详解】解:作CD ⊥AB 交AB 于点D 由图可得∵解得∴∴故答案为 解析:25 【分析】根据题意和图形,可以得到AC 、BC 和AB 的长,然后根据等面积法可以求得CD 的长,再利用勾股定理求得AD 的长,从而可以得到cos ∠CAB 的值. 【详解】解:作CD ⊥AB ,交AB 于点D ,由图可得,22221310,2,3332AC BC AB =+===+=∵322ABC AB CD BC S ∆⋅⨯==, 解得,2CD =, ∴2222(10)(2)22AD AC CD =-=-= ∴2225cos 510CAB A A C D ∠===, 25. 【点睛】 本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 18.1或3【分析】分两种情况:①当EM ⊥AC 时△EMN ∽△EAF ;②当EN ⊥AC 时△ENM ∽△EAF 分别进行求解即可【详解】①当EM ⊥AC 时△EMN ∽△EAF ∵四边形ABCD 是矩形∴AD=BC=2∠B=解析:1或3【分析】分两种情况:①当EM ⊥AC 时,△EMN ∽△EAF ;②当EN ⊥AC 时,△ENM ∽△EAF ,分别进行求解即可.【详解】①当EM ⊥AC 时,△EMN ∽△EAF ,∵四边形ABCD 是矩形,∴AD=BC=2,∠B=90︒,∵∠CAB=30︒,∴∠AEM=60︒,∴∠AEF=30︒,∴AF=3·tan 3031AE ︒=⨯=, ②当EN ⊥AC 时,△ENM ∽△EAF ,可得AF=·tan 60333AE ︒=⨯=,故答案为:1或3.【点睛】本题考察翻折变换、矩形的性质及解直角三角形,解题的关键是熟练掌握基本知识. 19.【分析】由锐角三角函数可求∠DEC=30°通过证明△ADE ∽△BDC 可得由勾股定理可求AE 的长即可求解【详解】解:如图连接BDAEDE ∵将线段CD 绕点C 逆时针旋转90°并延长至其倍∴∠DCE=90°解析:258【分析】 由锐角三角函数可求∠DEC=30°,通过证明△ADE ∽△BDC ,可得12BC DC AE DE ==,由勾股定理可求AE 的长,即可求解.【详解】解:如图,连接BD ,AE ,DE ,∵将线段CD 绕点C 逆时针旋转90°3∴∠DCE=90°,CE 3CD ,∴3.tan 3DC DEC EC ∠==, ∴∠DEC=30°,∴cos 2EC DEC DE ∠==1sin 2DC DEC DE ∠==,∵AD AB =,∴2AB AD =, ∴EC AB DE AD=, 又∵∠DEC=∠DAB=30°,∴△DEC ∽△DAB ,∴∠ADB=∠EDC ,DC DE DB AD =, ∴∠ADE=∠BDC ,∴△ADE ∽△BDC , ∴12BC DC AE DE ==,∵3AD AB =, ∴AB=9,又∵BF=3,∴AF=6,∴254AE ===, ∴12528BC AE ==, 故答案为:258. 【点睛】 本题考查了旋转的性质,勾股定理,锐角三角函数等知识,证明△DEC ∽△DAB 是本题的关键.20.10【分析】过点D 作DE ⊥AC 于E 利用AAS 证出ABC ≌DAE 从而得出BC=AEAC=DE ∠BAC=∠ADE 根据锐角三角函数可得设BC=AE=x 则AC=DE=4x 从而求出CE 利用勾股定理列出方程即可解析:10【分析】过点D 作DE ⊥AC 于E ,利用AAS 证出ABC ≌DAE ,从而得出BC=AE ,AC=DE ,∠BAC=∠ADE ,根据锐角三角函数可得14BC AE AC DE ==,设BC=AE=x ,则AC=DE=4x ,从而求出CE ,利用勾股定理列出方程即可求出x 的值,从而求出BC 、AC 和DE ,再根据四边形ABCD 的面积=ABC ACD SS +即可求出结论.【详解】 解:过点D 作DE ⊥AC 于E∴∠EAD +∠ADE=90°∵90BAD ∠=︒∴∠BAC +∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,AB AD = ∴ABC ≌DAE∴BC=AE ,AC=DE ,∠BAC=∠ADE ∴1tan tan 4BAC ADE ∠=∠=∴14BC AE AC DE == 设BC=AE=x ,则AC=DE=4x∴EC=AC -AE=3x在Rt CDE 中,CE 2+DE 2=CD 2即(3x )2+(4x )2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形ABCD 的面积=ABC ACD SS + =12BC·AC +12AC·DE =12×1×4+12×4×4 =10故答案为:10.【点睛】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.三、解答题21.(1)32;(2)1. 【分析】(1)直接利用特殊角的三角函数值代入得出答案;(2)直接利用特殊角的三角函数值代入得出答案;【详解】(1)22cos 45tan 60tan 30cos60︒+︒︒-︒=212232⎛⎫⨯+- ⎪ ⎪⎝⎭=131132=11=23222⨯+-+- .(2)3tan 3045︒+︒+=332⨯+=)1+=412. 【点睛】本题考查了特殊角的三角函数值,熟练掌握知识点是解题的关键;22.(1)17;(2)17【分析】 (1)作EM AC ⊥于M ,根据sin EM EAM AE∠=求出EM 、AE 即可解决问题. (2)先证明GDC EDA ∆≅∆,得GCD EAD ∠=∠,推出AH GC ⊥,再根据1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅,即可解决问题. 【详解】解:(1)作EM AC ⊥于M .四边形ABCD 是正方形,90ADC ∴∠=︒,5AD DC ,45DCA ∠=︒,∴在RT ADE ∆中,90ADE ∠=︒,5AD =,3DE =,AE ∴=在RT EMC ∆中,90EMC ∠=︒,45ECM ∠=︒,2EC =,EM CM ∴=∴在RT AEM ∆中,217sin 34EM EAC AE ∠===.(2)在GDC ∆和EDA ∆中,DG DE GDC EDA DC DA =⎧⎪∠=∠⎨⎪=⎩,GDC EDA ∴∆≅∆,GCD EAD ∴∠=∠,34GC AE =90DAE AED ∠+∠=︒,DEA CEH ∠=∠,90DCG HEC ∴∠+∠=︒,90EHC ∴∠=︒,AH GC ∴⊥,1122AGC S AG DC GC AH ∆=⋅⋅=⋅⋅, ∴11853422AH ⨯⨯=, 2034AH ∴=【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.23.(1)见解析;(2)见解析;(3)CD =3【分析】(1)直接利用两角对应相等两三角形相似进而得出答案;(2)直接利用相似三角形的性质结合互余两角的关系得出∠DBE=∠EDC ,即可得出答案; (3)利用锐角三角函数关系得出∠ABD=∠DBE=30°,进而得出答案.【详解】解:(1)证明:∵BD 平分∠ABC ,∴∠BAD =∠DBE ,又∵∠A =∠BDE ,∴△BAD ∽△BDE ,∴BABD =BDBE,∴BD2=BA•BE;(2)证明:∵△BAD∽△BDE,∴∠ADB=∠DEB,∵∠BDE=90°,∴∠DBE+∠BED=90°,∠ADB+∠EDC=90°,∴∠DBE=∠EDC,又∵∠C=∠C,∴△CDE∽△CBD;(3)解:由(1)得:BD2=BA•BE,∵AB=6,BE=8,∴BD2=6×8=48,∴BD=43,∴cos∠ABD=ABBD=43=3,∴∠ABD=30°,∴∠ABD=∠DBC=30°,∴∠C=30°,∴∠C=∠DBE,∴BD=CD=43.【点睛】此题主要考查了相似三角形的判定与性质以及锐角三角函数关系,正确应用相似三角形的判定与性质是解题关键.24.9米.【分析】过点B作CD的垂线,设垂足为F,再过点E作EG⊥BF,垂足为G,依题意分别求出线段BF、CF、DF、AG的长度,即可求得旗杆的高度AB.【详解】解:过点B作CD的垂线,设垂足为F,再过点E作EG⊥BF,垂足为G,如图,∵斜坡CB 长为65米,坡度为i =125, 设BF=12x ,则CF=5x ,∴()()22212565x x +=, 解得x=5,∴BF=60,CF=25,∵DC=115,∴EG=DF=115-25=90,在Rt AEG ∆中,39AEG ∠=︒,∴AG=tan39900.8172.9EG ︒≈⨯=,∴AB=AG+FG-BF=72.9+12-60=24.9,答:旗杆的高度AB 为24.9米.【点睛】本题考查了坡度的定义,锐角三角比的定义,勾股定理的应用,解题的关键是准确作出辅助线,构造直角三角形.25.852m【分析】过B 作BE ⊥CD 于点E ,过B 作BH ⊥AD 于点H ,通过证明四边形BEDH 是矩形,得到DE =BH ,BE =DH ,再根据三角函数的性质,分别计算得BE 、AH 的长,即可完成求解.【详解】如图,过B 作BE ⊥CD 于点E ,过B 作BH ⊥AD 于点H又∵CD AD ⊥∴//BH ED ,//EB DH ,90EDH ∠=︒∴四边形BEDH 是矩形,∴DE =BH ,BE =DH ,在Rt △BCE 中,∵BC=600,∠CBE=22°∴CE=BC•sin22°=600×0.37=222m,BE=BC•cos22°=600×0.92=552m∴DH=BE=552m∵CD=612m,∴BH=DE=CD-CE=612-222=390m在Rt△ABH中,∵∠BAH=53°∴tan53°=BHAH∴AH3901.3==300m∴AD=AH+DH=300+552=852m∴该数学小组行进的水平距离AD为852m.【点睛】本题考查了矩形、三角函数的知识;解题的关键是熟练掌握矩形、三角函数的性质,从而完成求解.26.162 -+【分析】先利用特殊的三角函数值计算,再利用二次根式的混合运算法则计算得出结果.【详解】解:原式1()22=--1322=-+12=+.【点睛】本题考查了特殊的三角函数值及二次根式的混合运算,解题的关键是熟练掌握运算法则.。

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案解析)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案解析)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案解析)一、单选题1.如图,在Rt ABC 中,90C ∠=︒,13cosA =,则tanB 的值为( )A .2B .3C .324D .242.在ABC 中,B ∠,C ∠都是锐角,1tanB =,2cosC =,则对ABC 的形状最确切的判断是( ) A .锐角三角形 B .等腰直角三角形 C .等腰三角形D .直角三角形3.在Rt △ABC 中,∠C=90°,∠B=2∠A ,则cosB 等于( ) A 3 B .12C 3D 34.如图,在正方形网格中,已知ΔABC 的三个顶点均在格点上,则ACB ∠的正切值为( )A .2B 25C 5D .125.下列三角函数的值是无理数的是( ) A .45tan ︒B .30sin ︒C .60cos ︒D .30tan ︒6.已知α是锐角,2(α45)1cos +︒=,则α的值是( ) A .15︒B .30︒C .45︒D .60︒7.如图,为测楼房BC 的高,在距楼房50米的A 处,测得楼顶的仰角为a ,则楼房BC 的高为( )A .50tan a 米B .50tan a米 C .50sin a 米D .50sin a米8.如图,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sinA 的式子为( )A .BDABB .CDOCC .AEADD .BEOB9.如图,∠α的顶点为O ,一边在x 轴的正半轴上,另一边上有一点P (3,4),则sin α=( )A .43B .34C .45D .3510.如图所示,菱形ABCD 的周长为20cm ,DE AB ⊥,垂足为E ,35sinA =,则下列结论正确的个数有( )①3cm DE =,②1cm BE =,③菱形的面积为215cm ,④210cm BD =. A .1个B .2个C .3个D .4个二、填空题11.如图,大坝横截面的迎水坡AB 的坡比为1:2(即BC :AC =1:2),若坡面AB 的水平宽度AC 为12米,则斜坡AB 的长为 米.12.在Rt ABC 中,86AC BC ==,,则cosA 的值等于 .13.某山坡的坡度13i =:,若沿该山坡坡面前进1000m ,则升高了 m .14.如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .三、计算题15.计算:4523060sin cos tan ︒+︒-︒. 16.(1)解方程:234x x -=;(2)计算:26045230tan sin cos ︒+︒-︒17.计算:101()260160(2022π)3sin tan ---︒+-︒+- 18.计算(1)2sin30°+tan45° (2)112cos45+︒四、解答题19.如图,在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是45°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.3≈1.732≈1.41,结果保留整数).20.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图(1)所示的坡路进行改造.如图(2)所示,改造前的斜坡的高度100AE =米,坡角30ABE ∠=︒;将斜坡AB 的高度AE 降低20米后,斜坡AB 改造为斜坡CD ,其坡度为1:4,改造后的斜坡多占多长一段地面?(结果保留根号)21.先化简,再求代数式2311442a a a a +⎛⎫÷+ ⎪+++⎝⎭的值,其中2cos302tan45a =︒-︒.22.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A 处接到指挥部通知,在他们西北方向距离6海里的B 处有一艘捕鱼船正在沿南偏西75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以14海里的速度沿北偏西某一方向航行,在C 处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.五、综合题23.如图,在ΔABC 中,90ABC ∠=︒,8AB =cm ,6BC =cm ,点M 从点A 出发,沿折线AB →BC 以2cm/s 速度向点C 运动,同时点D 从点C 出发,沿CA 方向以1cm/s 的速度向点A 运动,点M 到达点C 时,点M ,D 同时停止运动,当点M 不与A ,C 重合时,作点M 关于直线AC 的对称点N ,连接MN 交AC 于点E ,连接DM ,DN .设运动时间为t (s )(07t <<),请解答下列问题:(1)当t 为何值时,MD BC ?(2)点M 在线段BC 上运动时,是否存在某一时划t 使得ΔCMD ∽CBA ∆?若存在,请求出此刻的t 值;若不存在,请说明理由;(3)当t 为何值时,ΔDMN 为直角三角形?参考答案与解析1.【答案】D【解析】【解答】解:在Rt ABC 中,90C ∠=︒,13cosA =, ∴13AC AB =, ∴可设AC x =,则3AB x =, ∴2222BC AB AC x =-=, ∴2422AC tanB BC x ===, 故答案为:D.【分析】根据余弦函数的定义得13AC AB =,设AC=x ,则AB=3x ,根据勾股定理表示出BC ,进而再根据正切函数的定义即可求出答案. 2.【答案】B【解析】【解答】解:由1tanB =,2cosC =,得 45B ∠=︒,45C ∠=︒. 90A ∴∠=︒.则对ABC 形状的判断最确切的是等腰直角三角形. 故答案为:B.【分析】根据特殊锐角三角函数值可得∠B=45°,∠C=45°,根据三角形的内角和定理可得∠A=90°,从而即可得出结论. 3.【答案】B【解析】【解答】解:∵∠C=90°, ∴∠A+∠B=90°, ∵∠B=2∠A , ∴∠A+2∠A=90°, ∴∠A=30°, ∴∠B=60°, ∴cosB=12故答案为:B.【分析】根据三角形的内角和定理并结合已知可得∠B 的度数,进而根据特殊锐角三角函数值即可得出答案. 4.【答案】D【解析】【解答】解:延长CB 交网格于D ,连接AD ,如图所示:则454590ADC ∠=︒+︒=︒,22112AD =+=222222CD =+=,ACB ∴∠的正切值21222AD CD ===; 故答案为:D.【分析】延长CB 交网格于D ,连接AD ,利用方格纸的特点易得∠ADC=90°,根据勾股定理算出AD 、CD 的长,进而根据正切函数的定义即可算出∠ACB 的正切值. 5.【答案】D【解析】【解答】解:A .451tan ︒=,1是整数,属于有理数,故本选项不符合题意; B .1302sin ︒=,12是分数,属于有理数,故本选项不符合题意; C .1602cos ︒=,12是分数,属于有理数,故本选项不符合题意; D .330?3tan =,33是无理数,故本选项符合题意. 故答案为:D .【分析】根据特殊角三角函数值分别求出各项的值,再根据无理数的定义判断即可. 6.【答案】A 【解析】【解答】解:2(α45)1cos +︒=,1(α45)2cos ∴+︒=,又1602cos ︒=, α4560∴+︒=︒,解得α15=︒, 故答案为:A .【分析】由2(α45)1cos +︒=可得1(α45)2cos +︒=,利用特殊角三角函数值可得α4560+︒=︒,继而得解. 7.【答案】A【解析】【解答】解:在直角△ABC 中,sin α=BC AB ,cos α=ACAB, ∴BCAC=tan α, ∴BC=AC •tan α=50tan α. 故答案为:A.【分析】由题意知AC=50米,利用tan α=BCAC即可求解. 8.【答案】C【解析】【解答】解:∵ BD ⊥AC 于D ,CE ⊥AB 于E , ∴∠AEC=∠BEC=∠ADB=∠CDB=90°, ∴∠A+∠ACE=90°,∠ACE+∠COD=90°, ∴∠COD=∠A , 又∵∠COD=∠BOE , ∴∠A=∠BOE ,∴sinA=sin ∠DCE=sin ∠BOE , 又∵sin CE A AC =,sin BD A AB =,sin CD COD OC ∠=,sin BEBOE OB∠=, ∴sin BD CD BE CE A AB OC OB AC====. 故答案为:C.【分析】根据垂直的定义得∠AEC=∠BEC=∠ADB=∠CDB=90°,根据同角的余角相等及对顶角相等得∠A=∠BOE=∠COD ,进而根据等角的同名三角函数值相等得sinA=sin ∠DCE=sin ∠BOE ,进而根据正弦函数的定义可得sin BD CD BE CEA AB OC OB AC====,据此一一判断得出答案. 9.【答案】C【解析】【解答】 解:∵l 上有一点P (3,4), ∴点P 到x 轴距离为4,到y 轴距离为3, OP 2234+,∴sina =45. 故答案为:C .【分析】已知点P 的坐标,可得点P 到x 轴距离为4,到y 轴距离为3,根据勾股定理就可以求出OP 的长.最后根据三角函数的定义求解即可. 10.【答案】C【解析】【解答】解:由题意可得, ∵菱形ABCD 的周长为20cm ,∴2045cm AD DC AB BC ====÷=, ∵35sinA =, ∴33cm 5DE AD =⨯=,故①正确; ∴22534cm AE =-= ,∴541cm BE AB AE =-=-=,故②正确 ∴菱形的面积为253=15cm ⨯③正确; ∴223110BD += 故答案为:C.【分析】利用菱形的周长可求出菱形的边长,再在Rt △ADE 中,利用解直角三角形求出DE 的长,可对①作出判断;利用勾股定理求出AE 的长,即可得到BE 的长,可对②作出判断;利用菱形的面积公式,可求出菱形ABCD 的面积,可对③作出判断;然后在Rt △BED 中,利用勾股定理求出BD 的长,可对④作出判断;综上所述可得到正确结论的个数. 11.【答案】65【解析】【解答】解:∵大坝横截面的迎水坡AB 的坡比为1:2,AC =12米, ∴BC 1BCAC 212== ∴BC =6(米),∴AB 2222AC BC 126++65. 故答案为:65【分析】根据坡比的概念建立方程求出BC 的长,进而利用勾股定理即可算出AB 的长. 12.【答案】45【解析】【解答】解:∵在Rt ABC 中,86AC BC ==,, ∴2210AB AC BC +=, ∴84105AC cosA AB ===. 故答案为:45.【分析】由勾股定理求出AB ,利用ACcosA AB=即可求解. 13.【答案】10010【解析】【解答】解:由题意可知ABC 中,∵AC BC ⊥,1000m AB =,13i =:, ∴13AC BC =::,设m AC x =,则3m BC x =, 根据勾股定理有222AB AC BC =+, 即()22210003x x =+解得110010x =210010x =- (负值舍去) 故答案为: 10010 【分析】根据坡度为1:3可得AC :BC=1:3,设AC=xm ,则MC=3xm ,然后利用勾股定理计算即可. 14.【答案】58【解析】【解答】解:∵点E ,F 分别是BC ,AD 的中点,∴1122AF AD BE BC ==,, ∵四边形ABCD 是矩形, ∴∠A=90°,AD ∥BC ,AD=BC , ∴12AF BE AD ==, ∴四边形ABEF 是矩形, 由题意知,AD=2AB , ∴AF=AB ,∴矩形ABEF 是正方形, ∴AB=BE ,∠ABE=∠BEF=90°, ∵BG=EH ,∴△ABG ≌△BEH (SAS ), ∴∠BAG=∠EBH ,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°, ∴∠AOB=90°, ∵BG =EH =25BE =2, ∴BE=5, ∴AF=5, ∴2229AG AB BG =+=∵∠OAB=∠BAG ,∠AOB=∠ABG , ∴△AOB ∽△ABG , ∴OA OB ABAB BG AG==,即5229OA OB ==, ∴2929OA OB == ∵OM ⊥ON ,∴∠MON=90°=∠AOB , ∴∠BOM=∠AON ,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH , ∴∠OBM=∠OAN , ∴△OBM ~△OAN ,∴OB BM OA AN=, ∵点N 是AF 的中点, ∴1522AN AF ==, 29255229BM =,解得:BM=1, ∴AM=AB-BM=4, ∴55248AN tan AMN AM ∠===. 故答案为:58. 【分析】易得AF=12AD ,BE=12BC ,由矩形的性质可得∠A=90°,AD ∥BC ,AD=BC ,则AF=BE=12AD ,由题意知:AD=2AB ,则AF=AB ,推出矩形ABEF 是正方形,证明△ABG ≌△BEH ,得到∠BAG=∠EBH ,进而得到∠AOB=90°,由已知条件可知BG =EH =25BE =2,则BE=AF=5,利用勾股定理求出AG ,证明△AOB ∽△ABG ,根据相似三角形的性质可得OA 、OB ,由等角的余角相等可得∠OBM=∠OAN ,证明△OBM ~△OAN ,然后相似三角形的性质可得BM ,由AM=AB-BM 可得AM ,然后根据三角函数的概念进行计算.15.【答案】解:原式2323=+ 2332=+ 22= 【解析】【分析】先代入特殊锐角三角函数值,再计算二次根式的乘法,最后合并同类二次根式即可.16.【答案】(1)解:234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4(2)解:原式3+22-23 =12【解析】【分析】(1)首先将方程整理成一般形式,进而将方程的左边利用十字相乘法分解因式,根据两个因式的乘积等于0,则至少有一个因式为0,从而将方程降次为两个一元一次方程,求解即可得出原方程的解;(2)先代入各个特殊锐角的三角函数值,再计算乘方和乘法,最后合并同类二次根式即可.17.【答案】解:原式=-3﹣233|+1 =-333﹣1+1=-3.【解析】【分析】先代入特殊角的三角函数值,进行负整数指数幂和零次幂的运算,再去绝对值,最后合并同类二次根式和进行有理数的加减运算即可.18.【答案】(1)解:原式=12122⨯+= (2)解:原式21212=+⨯ 【解析】【分析】(1)由1sin 302︒=,tan 451︒=,计算可得结果; (2)由2cos 45︒=,计算可得结果。

鲁教版(五四学制)九年级数学上册《第二章直角三角形的边角关系》单元测试卷及答案

鲁教版(五四学制)九年级数学上册《第二章直角三角形的边角关系》单元测试卷及答案

鲁教版(五四学制)九年级数学上册《第二章直角三角形的边角关系》单元测试卷及答案一、单选题1.已知α,β是△ABC 的两个角,且sinα,tanβ是方程2x 2﹣3x+1=0的两根,则△ABC 是( )A .锐角三角形B .直角三角形或钝角三角形C .钝角三角形D .等边三角形2.若△A ,△B 都是锐角,且tanA=1,sinB=22,则△ABC 不可能是( ) A .等腰三角形 B .等腰直角三角形 C .锐角三角形D .直角三角形3.如果小丽在楼上点A 处看到楼下点B 处小明的俯角是35°,那么点B 处小明看点A 处小丽的仰角是( )A .35°B .45°C .55°D .65°4.如图,在正方形网格中,已知ΔABC 的三个顶点均在格点上,则ACB ∠的正切值为( )A .2B 25C 5D .125.春节期间,小澎陪妈妈去爬山,如图,两人从山脚下A 处沿坡前行,到达C 处时,发现C 处标语牌上写着“恭喜你已上升50米”,若此山坡的坡度1:2.4i =,爱思考的小澎很快告诉妈妈:“我们至少走坡路( )米了”.A .50B .120C .130D .1706.如图,点A 、B 、C 、D 在O 上,OA BC ⊥于点E .若30ADC ∠=︒,AE=2,则BC 的长为( )A .3B .3C .8D .47.如图,已知矩形ABCD 中,点E 是BC 边上的点AE BC DF AE =⊥, 21BE EC ==,垂足为F 下列结论:①ADF EAB ≌;②AF EB =;③DF 平分ADC ∠;④2.3sin CDF ∠=其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,在△ABC 中,△C=90°,△B=43°,BC=8,若用科学计算器求AC 的长,则下列按键顺序正确的是( )A .B .C .D .9.在Rt△ABC 中,△C=90°,若cosA=53,则tanB=( ) A .52B .255 C .53D .5310.如图,在正方形ABCD 中,AB=4,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF AB⊥于点F ,EG BC ⊥于点G ,连接,DE FG .下列结论:①DE FG =;②DE FG ⊥;③BFG ADE ∠=∠;④FG 的最小值为3.其中正确结论的个数有( )A .1个B .2个C .3个D .4个11.如图,在菱形ABCD 中,过顶点D 作DE AB ⊥,DF BC ⊥ 垂足分别为E ,F ,连接EF ,若2cos 3A =,BEF 的面积为2,则菱形ABCD 的面积为( )A .18B .24C .30D .3612.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O 、F ,且OP=OF ,则cos△ADF 的值为( )A .1113 B .1315C .1517D .1719二、填空题13.计算:sin30°-tan45°+3cos30°= .14.如图,在Rt ABC 90B ∠=︒ D 为AB 边上的一点,将BCD 沿CD 翻折,得到B CD '.连接AB AB BC '',,若18tan 2AB DCB =∠=',,则B '到AC 边上的距离为 .15.如图所示,某拦水大坝的横断面为梯形ABCD ,AE 、DF 为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB= 62 米,背水坡CD 的坡度i=1: 3(i 为DF 与FC 的比值),则背水坡CD 的坡长为 米.16.用一张直角三角形纸片玩折纸游戏,如图1,在Rt ABC 中90ACB ∠=︒ 30B ∠=︒ AC=2.第一步,在AB 边上找一点D (不与点A ,B 重合),将纸片沿CD 折叠,点A 落在A '处,如图2;第二步,将纸片沿CA '折叠,点D 落在D '处,如图3.当点D '恰好落在直角三角形纸片的边上时,线段A D ''的长为 .17.如图,在 Rt ABC 中90B ∠=︒ , AB=2 , BC=1 .将 ABC 绕点 A 按逆时针方向旋转 90︒ 得到 ''AB C ,连接 'B C ,则 tan 'ACB ∠= .三、解答题18.如图,在Rt ABC 中90C ∠=︒,AB=13,BC=12,求tan B 的值.19.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米 18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)20.如图,AB 和CD 是同一地面上的两座相距39米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°.求楼CD 的高(结果保留根号).21.如图,在一张矩形纸片ABCD 中,2AD =cm ,E ,F 分别是CD 和AB 的中点,现将这张纸片折叠,使点B 落在EF 上的点G 处,折痕为AH ,若HG 的延长线恰好经过点D .(1)求BAH ∠的度数.(2)设DH 与AC 交于点M ,求sin GAM ∠的值.22.如图1和图2,已知在四边形ABCD 中,AB=8 211BC =,CD=12,DA=6,90A ∠=︒点M 在AD边上,且2DM =,将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA ',A MA ∠'的平分线MP 所在直线交折线AB BC-于点P(不与点A重合),设点P在该折线上运动的路径长为x,连接A P',连接BD.(1)求CBD∠的度数(2)当180n=︒时,请求出x的值(3)若点P到BD的距离为2,求cot A MP∠'的值(4)当点P在边AB上运动时,设点A'到直线AB距离为y,求y关于x的函数解析式并写出定义域参考答案与解析1.【答案】B【解析】【解答】解:由2x2﹣3x+1=0得:(2x﹣1)(x﹣1)=0,∴x= 12或x=1.∴sinα>0,tanβ>0若sinα= 12,tanβ=1,则α=30°,β=45°,γ=180°﹣30°﹣45°=105°∴△ABC为钝角三角形.若sinα=1,tanβ= 12,则α=90°,β<90°,△ABC为直角三角形.故答案为:B.【分析】先利用因式分解法求出方程2x2﹣3x+1=0的两个根,根据正弦函数及正切函数的性质可知:sinα>0,tanβ>0,然后分类讨论:①若sinα= 12,tanβ=1,②若sinα=1,tanβ=12分别根据特殊锐角三角函数值,求出α,β 的度数,再根据三角形的内角和和求出第三个内角的度数,根据三角形中最大内角的度数即可判断出该三角形是什么三角形。

北师大版初三数学9年级下册 第1章(直角三角形的边角关系)测试卷 含答案)

第一单元《直角三角形的边角关系》测试卷一、选择题(本大题共14个小题,每题2分,共28分)1.如图,在量角器的圆心处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是( ).A .30°B .40°C .50°D .60°2.tan45°的值等于( )A .2BC .-1D .13.如图,∠α的顶点为O ,一边在x 轴的正半轴上,另一边上有一点P (3,4),则sin α=( )A .B .C .D .4.已知中,,CD 是AB 上的高,则=( )A .B .C .D .5.Rt ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,下列关系式错误的是( )A .b=c·cosB B .b=a·tan BC .a=c·sin AD .a=c·cos B6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据淄博市的地理位置设计的圭表,其中,立柱根部与圭表的冬至线的距离(即的长)为.已知,冬至时淄博市的正午日光入射角约为°,则立柱高约为( )O AB 43344535ABC ∆90C ∠=︒CD BD sin A cos A tan A cot AAC BC a ABC ∠26.5ACA .B .C .D.7.已知在中,∠C =90°,AB =13,AC =12,则∠B 的余弦值为( )A .B .C .D.8.把一块直尺与一块三角板如图放置,若sin ∠,则∠2的度数为( )A .120°B.135°C .145°D .150°9.如图,在中,,于,下列结论错误的有( )个①图中有两对相似三角形;②;③;④若,,则.A .0B .lC .2D .310.如图,在菱形中,,为边上的高,将沿所在直线翻折,sin 26.5a ︒cos 26.5a ︒tan 26.5a ︒tan 26.5a︒Rt ABC 1213513512125Rt ABC ∆90BCA ∠=︒CD AB ⊥D sin AD B AC =BC AC AB CD ⋅=⋅BC =8AD =4CD =ABCD 45B ∠= AE BC ABE ∆AE得到,若,则菱形的边长为( )AB .C .D11.如图,在□ABC D 中,AB=6,∠B=75°,将△ABC 沿AC 边折叠得到△AB ′C ,B ′C 交AD 于E ,∠B′AE=45°,则点A 到B ′C 的距离为()A .B .CD 12.如图,平面直角坐标系中,,,将绕顶点顺时针旋转一定角度到处,此时线段与的交点为的中点,则点的坐标为( )A .B .C .D .13.如图,把三角形纸片折叠,使的对应点在上,点的对应点在上,折痕分别为,,若,,,则的长为( )AB E '∆1C B '=-21()0,2A ()B AOB O COD △CD BO E BO D )3-2⎫-⎪⎭ABC C E AB B D BC AD FG 30CAB ∠=︒135C ∠=︒DF =EFABC.3D.14.如图,某天然气公司的主输气管道从市的北偏东方向直线延伸,测绘员在处测得要安装天然气的小区在市的北偏东方向,测绘员由处沿主输气管道步行1000米到达点处,测得小区位于点的北偏西方向,试在主输气管道上寻找支管道连接点,使点到该小区铺设的管道最短,此时铺设的管道的最短距离约是().)A.366米B.650米C.634米D.700米二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.在方格纸中的位置如图所示,则的值是________.16.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.17.△ABC中,∠C=90°,tan A=,则sin A+cos A=_____.18.如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点处,EF为折痕,连接.若CF =3,则tan=_____.3+A60︒AM A30°AC M C75︒NN1.414≈ 1.732≈α∠tanα43B'C'AC'B AC''∠三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.计算:.20.如图,在△ABC 中(1)作图,作BC 边的垂直平分线分别交于AC ,BC 于点D ,E (用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD ,若BD =9,BC =12,求∠C的余弦值.22sin 454cos 30︒-︒)0tan 603tan 45--︒+︒21.如图,中,,的平分线交于D ,交的延长线于点E ,交于点F .(1)若,求的度数;(2)若,求的长.22.为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°ABCAB AC =B ÐAC //AE BC BD AF AB ⊥BE 40BAC ∠=︒AFE ∠2AD DC ==AF探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)23.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D 与铲斗顶点E 所在直线DE 垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC 会绕点B 转动,当点A,B,C在同一直线时,斗杆顶点D 升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC 的度数.(2)问斗杆顶点D 的最高点比初始位置高了多少米(精确到0.1米)?(考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34)1.7324.阅读材料,回答问题:小聪学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt △ABC 中,如果∠C=90°,∠=30°,BC ═a=1,,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在R △ABC 中,∠C=90°,BC=a ,AC=b ,AB=C ,请判断此时“==”的关系是否成立?答: (2)完成上述探究后,他又想“对于任意的锐角△ABC ,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC 中,BC=a ,AC=b ,AB=c ,请判断此时“ ==”的关系是否成立?并证明你的判断.(提示:过点C 作CD ⊥AB 于D ,过点A 作AH ⊥BC ,再结合定义或其它方法证明).sin a A sin b Bsin a A sin b B sin c C sin a A sin b B sin c Csin a A sin b B sin c C25.如图1,草原上有A,B,C三个互通公路的奶牛养殖基地,B与C之间距离为100千米,C 在B的正北方,A在C的南偏东60°方向且在B的北偏东30°方向.A地每年产奶3万吨;B 地有奶牛9000头,平均每头牛的年产奶量为3吨;C地养了三种奶牛,其中黑白花牛的头数占20%,三河牛的头数占35%,其他情况反映在图(2),图(3)中.(1)通过计算补全图(3);(2)比较B地与C地中,哪一地平均每头牛的年产奶量更高?(3)如果从B,C两地中选择一处建设一座工厂解决三个基地的牛奶加工问题,当运送一吨牛奶每千米的费用都为1元,那么从节省运费的角度考虑,应在何处建设工厂?26.如图,矩形ABCD中,已知AB=6.BC=8,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F.将△ABE沿直线AE翻折,点B的对应点为点B'.(1)如图1,若点E 为线段BC 的中点,延长AB '交CD 于点M ,求证:AM =FM ;(2)如图2,若点B '恰好落在对角线AC上,求的值;(3)若=,求∠DAB '的正弦值.BE CE BE CE 32答案一、选择题1.B .2.D .3.C .4.D .5.A .6.C.7.B.8.B9.B .10.C .11.C .12.B .13.A .14.A二、填空题15.16.17..18.三、解答题19.原式.20.解:(1)如图所示,直线DE 即为所求;(2)∵DE 是BC 的垂直平分线,∴EC=BC =6,BD =CD =9,∴cos ∠C ===.21.(1);(2)25127514224=⨯131-+⨯3131=--+=12EC DC 6923125AFE ∠=︒AF =【解析】(1)∵,,∴.∵平分,∴, ∵,∴,∴.(2)∵,∴,又,∴,∴,∵∴,∴,∴,∴为等边三角形,∴,∴,∵,∴,在中,22.根据题意可知:OC ⊥AC ,∠OBC=73.14°,∠OAC=30.97°,AB=4m ,∴AC=AB+BC=4+BC ,AB AC =40BAC ∠=︒18040702ABC ︒︒︒-∠==BD ABC ∠170352ABD DBC ︒︒∠=∠=⨯=AF AB ⊥90BAF ∠=︒9035125AFE BAF ABD ∠=∠+∠=︒+︒=︒//AE BC E DBC ∠=∠ADE CDB ∠=∠AD CD=ADE CDB ≌AE CB =,E DBC ABD DBC∠=∠∠=∠E ABD ∠=∠AB AE =AB CB AC ==ABC 60ABC ∠=︒30ABD ∠=︒2AD DC ==4AB =Rt ABF tan 304AF AB ︒=⋅==∴在Rt △OBC 中,BC=,在Rt △OAC 中,OC=AC •tan ∠OAC ≈(4+BC)×0.6,∴OC=0.6(4+),解得OC ≈2.9(m ).答:该设备的安装高度OC 约为2.9m .23.(1)如图2-1,过点C 作于点G.,,,,,,所以动臂BC 与AB 的夹角为为.(2)如图2-2,过点C 作于点P ,过点B 作于点Q 交CG 于点N.在中,(米).在中,(米).(米).tan OBC 3.3OC OC ∠≈⨯ 3.3OC CG AM ⊥AB AM ⊥ DE AM ⊥////AB DECG ∴180110DCG CDE ︒︒∴∠=-∠=30BCG BCD DCG ︒∴∠=∠-∠=180150ABC BCG ︒︒∴∠=-∠=ABC ∠150︒CP DF ⊥BQ DF ⊥Rt CPD cos 700.51DP CD ︒=⨯=Rt BCN sin 60 1.04CN BC ︒=⨯≈ 2.35DE DP PQ QE DP CN AB ∴=++=++≈如图4,过点D 作于点H ,过点C 作点K.在中,(米).(米)(米).所以斗杆顶点D 的最高点比初始位置高了约0.8米.24.(1)∵=c , =c , =c ,∴“==”成立,故答案为成立.(2)作CD ⊥AB 于D .∵在Rt △ADC 和Rt △BDC 中,∠ADC=∠BDC=90°,∴sinA=,sinB=,∴=,=,∴=,同理,作AH ⊥BC 于H ,可证=,DH AM ⊥CK DH ⊥Rt KD C sin 50 1.16DK CD ︒=⨯≈3.16DH DK KH ∴=+≈0.8DH DE ∴-≈sin a A sin b B sin c C sin a A sin b B sin c Cb CD aCD sin a A ab CD sin b B ab CD sin a A sin b Bsin b B sin c C∴==.25.解:(1)由图3可知黑白花牛2000头,占20%,则C 地养牛的总头数是:2000÷20%=10000所以三河牛的头数为:10000-2000-4500=3500条形高度在3500左右(2)C 地每种牛所占比例为:三河牛3500÷10000=35%,草原红牛4500÷10000=45%C 地每头牛的年平均产奶量为:6×20%+4×35%+3×45%=3.95(吨)而B 地每头牛的年平均产奶量为3吨;所以C 地每头牛的年平均产奶量比B 地的高;(3)由题意:C 地每年产奶量为10000×3.95=3.95万吨,B 地每年产奶量为9000×3=2.7万吨,A 地每年产奶量为3万吨.由题意,∠CBA =60°,∠ACB =30°,∴∠BAC =90°,∵BC =100(千米),∴AB =100×sin60°≈86.6(千米),∴AC =100×sin30°=50(千米),如果在B 地建厂,则每年需运费W 1=86.6×3×1+100×3.95×1=654.8(万元)如果在C 地建厂,则每年需运费W 2=50×3×1+100×2.7×1=420(万元)而654.8>420.答:从节省运费的角度考虑,应在C 地建设工厂.sin a A sin b B sin c C26.(1)证明:∵四边形ABCD 为矩形,∴AB ∥CD ,∴∠F =∠BAF ,由折叠可知:∠BAF =∠MAF ,∴∠F =∠MAF ,∴AM =FM .(2)解:由(1)可知△ACF 是等腰三角形,AC =CF ,在Rt △ABC 中,∵AB =6,BC =8,∴AC=10,∴CF =AC =10,∵AB ∥CF ,∴△ABE ∽△FCE ,∴;(3)①当点E 在线段BC 上时,如图3,AB '的延长线交CD 于点M ,由AB ∥CF 可得:△ABE ∽△FCE ,∴,即∴CF =4,由(1)可知AM =FM .设DM =x ,则MC =6﹣x ,则AM =FM =10﹣x ,在Rt △ADM 中,AM 2=AD 2+DM 2,即(10﹣x )2=82+x 2,解得:x =,=63105BE AB CE CF ===32AB BE CF CE ==632CF =95则AM =10﹣x =10﹣=,∴sin ∠DAB '==.②当点E 在BC 的延长线上时,如图4,由AB ∥CF 可得:△ABE ∽△FCE ,∴,即,∴CF =4,则DF =6﹣4=2,设DM =x ,则AM =FM =2+x ,在Rt △ADM 中,AM 2=AD 2+DM 2,即(2+x )2=82+x 2,解得:x =15,则AM =2+x =17,∴sin ∠DAB '=.综上所述:当时,∠DAB '的正弦值为或。

直角三角形边角关系单元综合评价测试题

直角三角形边角关系单元综合评价测试题一、填空题 (每题3分,共27分) 1.cos81°25' = sin . 2.若sin(10)2α-︒=α为 .3.比较大小:sin48°______cos48°. 4.在△ABC ,AB =AC ,AD ⊥BC 于D ,若BC =10,∠BAC =120°,则AD = . 5.已知直角三角形中,较大直角边长为30,此边所对角的余弦值为817,则三角形的周长为 ,面积为 .6.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ,那么sin θ= . 7.在平行四边形ABCD 中,AD ∶AB =1∶2,∠A =60°,AB =4cm ,则四边形面积为 .8.AD 是Rt △ABC 斜边BC 上的高,若 BD =2,DC =8,则tan C 的值为 .9.已知在△ABC 中, 90=∠C ,3cos B =2,AC =52,则AB = . 二、选择题(每题3分,共18分)1.若α是锐角,sin αcos α=p ,则sin α+cos α的值是( )A .1+2pB.C .1-2pD2.若三角形三个内角的比是1∶2∶3,则它们正弦值的比为( )A .1∶B .1∶ 2 C .12D23.如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC 平分∠BAD ,∠B =60º,CD =2cm ,则梯形ABCD 的面积为( )cm 2.A.B .6C. D .124.因为1s i n 302︒=,1sin 2102︒=-,所以s i n 210s i n (18030)︒=︒+︒=-︒;因为s i n 452︒=sin 2252︒=-所以sin 225sin(18045)sin 45︒=︒+︒=-︒,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα︒+=-,由此可知:sin 240︒=( )A .12-B.2- C.2- D.5.如图,两根等高的电线杆的水平距离是50米,某人在杆的底部连结上E 处,测得一根杆顶的仰角是60°,另一根杆顶的仰角为30°,则电线杆顶距地面的高度是( )A .25米B .12.5米C .D .米(第6题图)EDCBA6.在△ABC中,∠A=30°,AC=4,BC=ABC为()A.45°B.60°或120°C.45°或135°D.30°三、解答题(共55分)1.(5分)计算:230116(2)(πtan60)303-⎛⎫--÷-+-︒-︒⎪⎝⎭.2.(6分)在Rt△ABC中,∠C=90°,如果sin A,cos B是方程2210x mx-+=的两实根,求m的值和∠A的度数是多少?3.(6分)如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC 与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程;若不能,请说明理由.B C E4.(7分)某海滨浴场的海岸线可以看作直线l(如图),有两位救生员在岸边的点A同时接到了海中的点B(该点视为定点)的呼救信号后,立即从不同的路径前往救助.其中1号救生员从点A先跑300米到离点B最近的点D,再跳入海中沿直线游到点B救助;2号救生员先从点A跑到点C,再跳入海中沿直线游到点B救助.如果两位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,且∠BAD=45°,∠BCD=60°,请问1号救生员与2号救生员谁先到达点B?5.(8分)在△ABC中∠C=90°,∠A、∠B、∠C对的边分别为a、b、c.(1)若∠A=60°,a+b=3a、b、c及S△ABC;(2)若△ABC的周长为30,面积为30,求a、b、c.6.(7分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km1.41,sin37°≈0.60,cos37°≈0.80)7.(8分)如图,在A B C ∆中,90C ∠=︒,点E 是A C 上一点,ED ⊥AB 于D,cos A =,3cot 4BED CE ∠==,DE 的长.EDC BA8.(8分)如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米.现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4.已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率.甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?HG。

边角关系测试题及答案

边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。

5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。

三、简答题6. 解释什么是补角,并给出一个补角的例子。

7. 解释什么是邻补角,并给出一个邻补角的例子。

四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。

9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。

五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。

答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。

7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。

四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。

第一章《直角三角形的边角关系》单元测试题(含答案)

第一章 直角三角形的边角关系一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.在Rt △ABC 中,∠C =90°,AB =2BC ,那么sin A 的值为( )A.12B.22C.32 D .1 2.在△ABC 中,∠C ,∠B 为锐角,且满足⎪⎪⎪⎪sin C -22+(32-cos B )2=0,则∠A 的度数为( )A .100°B .105°C .90°D .60°3.在Rt △ABC 中,∠C =90°,AB =20,cos A =14,则AC 等于( )A .45B .5 C.15 D.1454.在Rt △ABC 中,如果边长都扩大为原来的5倍,那么锐角A 的正弦值、余弦值和正切值( )A .都没有变化B .都扩大为原来的5倍C .都缩小为原来的15D .不能确定5.如图1-Z -1,过点C (-2,5)的直线AB 与坐标轴分别交于A (0,2),B 两点,则tan ∠OAB 的值为( )图1-Z -1A.25B.23C.52D.326.如图1-Z -2①为折叠椅,图②是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32 cm ,∠DOB =100°,那么椅腿AB 的长应设计为(结果精确到0.1 cm ,参考数据:sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)( )图1-Z -2A .38.1 cmB .49.8 cmC .41.6 cmD .45.3 cm 二、填空题(本大题共5小题,每小题4分,共20分) 7.在△ABC 中,∠C =90°,sin A =14,则tan B =________.8.如图1-Z -3,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =________.图1-Z -39.如图1-Z -4,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sin A =35,则菱形ABCD 的周长是________.图1-Z -410.某校研究性学习小组测量学校旗杆AB 的高度,如图1-Z -5,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为________米.图1-Z -511.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为D ,且满足BD ∶CD =2∶1,则△ABC 的面积为________.三、解答题(本大题共5小题,共56分) 12.(8分)计算:24sin45°+cos 230°-12tan60°+2sin60°.13.(10分)如图1-Z -6,在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43.求:(1)BD 的长; (2)sin B 的值.图1-Z -614.(12分)某大坝修建有以下方案:大坝的横断面为等腰梯形,如图1-Z -7,AD ∥BC ,坝高10米,迎水坡面AB 的坡度i =53,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB 的坡度进行修改,修改后的迎水坡面AE 的坡度i =56.(1)求原方案中此大坝迎水坡AB 的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7米,求坝底将会沿AD 方向加宽多少米.图1-Z -715.(12分)“和谐号”高铁列车的小桌板收起时可近似看作与地面垂直,展开小桌板使桌面保持水平,其示意图如图1-Z -8所示.连接OA ,此时OA =75 cm ,CB ⊥AO ,∠AOB =∠ACB =37°,且桌面宽OB 与BC 的长度之和等于OA 的长度.求支架BC 的长度(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).图1-Z -816.(14分)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can).如图1-Z -9①,在△ABC 中,AB =AC ,底角∠B 的邻对记作can B ,这时can B =底边腰=BCAB .容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=________;(2)如图②,已知在△ABC 中,AB =AC ,can B =85,S △ABC =24,求△ABC 的周长.图1-Z -9详解详析1.[解析] A ∵∠C =90°,AB =2BC ,∴sin A =BC AB =12.故选A.2.[解析] B ∵⎪⎪⎪⎪sin C -22+(32-cos B )2=0,∴sin C -22=0,32-cos B =0,则sin C =22,cos B =32,故∠C =45°,∠B =30°,∴∠A =180°-45°-30°=105°.故选B. 3.[答案] B4.[解析] A 三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 5.[解析] B 方法1:设直线AB 的表达式是y =kx +b .根据题意,得⎩⎨⎧-2k +b =5,b =2,解得⎩⎪⎨⎪⎧k =-32,b =2,则直线AB 的表达式是y =-32x +2.在y =-32x +2中令y =0,解得x =43.则点B 的坐标是(43,0),即OB =43.则tan ∠OAB =OB OA =432=23.故选B.方法2:过点C 作CD ⊥y 轴于点D ,∵C (-2,5), ∴CD =2,OD =5.∵A (0,2),∴OA =2, ∴AD =OD -OA =3.在Rt △ACD 中,tan ∠OAB =tan ∠CAD =CD AD =23.故选B.6.[解析] C 连接BD ,由题意得OA =OB =OC =OD .∵∠DOB =100°,∴∠DAO =∠ADO =50°,∠OBD =∠ODB =40°,∴∠ADB =90°.又∵BD =32 cm ,∴AB =BD sin ∠DAO ≈320.77≈41.6(cm).故选C. 7.[答案] 158.[答案] 12[解析] 过点A 作AD ⊥OB ,垂足为D ,如图,在Rt △AOD 中,AD =1,OD =2,则tan ∠AOB =AD OD =12. 9.[答案] 40[解析] ∵DE ⊥AB ,垂足是E ,∴△AED 为直角三角形,则sin A =DE AD ,即35=6AD ,∴AD =10,∴菱形ABCD 的周长为10×4=40.10.[答案] 9[解析] 过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE =CD =6米,AC =DE .设BE =x 米.在Rt △BDE 中,∵∠BED =90°,∠BDE =30°,∴DE =3BE =3x 米,∴AC =DE =3x 米. 在Rt △ABC 中, ∵∠BAC =90°,∠ACB =60°, ∴AB =3AC =3×3x =3x (米). ∵AB -BE =AE ,∴3x -x =6, ∴x =3,∴AB =3×3=9(米), 即旗杆AB 的高度为9米. 11.[答案] 8或24[解析] △ABC 有两种情况:(1)如图①所示,∵BC =6,BD ∶CD =2∶1,∴BD =4.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD=23BD =83,∴S △ABC =12BC ·AD =12×6×83=8;(2)如图②所示,∵BC =6,BD ∶CD =2∶1,∴BD =12.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD =23BD =8,∴S △ABC =12BC ·AD =12×6×8=24.综上所述,△ABC 的面积为8或24.12.解:原式=24×22+(32)2-12×3+2×32 =14+34-36+ 3 =1+5 36.13.[解析] (1)根据在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43,可以求得AD 的长,从而可以求得BD 的长;(2)由(1)中BD 的长和题目中CD 的长可以求得BC 的长,从而可以求得sin B 的值.解:(1)∵在△ABC 中,CD ⊥AB 于点D ,CD =8,tan A =43,∴tan A =CD AD =43,解得AD =6,∴BD =AB -AD =22-6=16.(2)由(1)知BD =16,∵CD ⊥AB ,CD =8, ∴BC =CD 2+BD 2=82+162=8 5,∴sin B =CD BC =88 5=55.14.[解析] (1)过点B 作BF ⊥AD 于点F ,在直角三角形ABF 中求得AF ,AB 的长; (2)过点E 作EG ⊥AD 于点G ,延长EC 至点M ,延长AD 至点N ,连接MN . 由S △ABE =S 梯形CMND 从而求得DN 的长.解:(1)如图,过点B 作BF ⊥AD 于点F . 在Rt △ABF 中,∵i =BF AF =53,且BF =10米,∴AF =6米,∴AB =102+62=2 34(米).答:原方案中此大坝迎水坡AB 的长为2 34米. (2)如图,过点E 作EG ⊥AD 于点G . 在Rt △AEG 中,∵i =EG AG =56,且EG =BF =10米,易得AG =12米,BE =GF =AG -AF =6米. 延长EC 至点M ,延长AD 至点N ,连接MN .∵方案修改前后,修建大坝所需土石方总体积不变, ∴S △ABE =S 梯形CMND , ∴12·BE ·EG =12(MC +ND )·EG , 即BE =MC +ND ,∴ND =BE -MC =6-2.7=3.3(米). 答:坝底将会沿AD 方向加宽3.3米.15.解:延长CB 交AO 于点D ,∴CD ⊥OA . 设BC =x cm ,则OB =(75-x )cm. 在Rt △OBD 中,∵∠DOB =37°, ∴OD =OB ·cos ∠DOB ≈0.8(75-x )=(60-0.8x )cm ,BD =OB ·sin ∠DOB ≈0.6(75-x )=(45-0.6x )cm ,∴DC =BD +BC ≈(0.4+45x )cm.在Rt △ACD 中,∵∠ACD =37°,∴AD =DC ·tan ∠ACD ≈0.75(0.4x +45)=(0.3x +33.75)cm. ∵OA =AD +OD =75 cm ,∴0.3x +33.75+60-0.8x =75, 解得x ≈37.5, ∴BC ≈37.5 cm ,故支架BC 的长度约为37.5 cm. 16.解:(1) 3(2)过点A 作AE ⊥BC 于点E ,∵can B =85,可设BC =8x ,AB =5x ,则BE =12BC =4x ,∴AE =AB 2-BE 2=3x .∵S △ABC =24, ∴12BC ·AE =12x 2=24, 解得x =2(负值已舍去),故AB =AC =5 2,BC =8 2, ∴△ABC 的周长为AB +AC +BC =5 2+5 2+8 2=18 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形的边角关系单元测试题
一、选择题.
1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么B cos 的值是( )
A 、5
4
B 、5
3
C 、4
3
D 、3
4
2、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A 、扩大2倍
B 、缩小2倍
C 、扩大4倍
D 、没有变化
3.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c 。

当已知∠A 和a 时,求c ,应选择的关系式是( ) A 、A
a c sin =
B 、A
a
c cos =
C 、A a c tan ⋅=
D 、A a c sin ⋅=
4.已知等边△ABC 的边长为2,则其面积为( )
A.2
B. 3
C.23
D.43 5.等腰三角形底边与底边上的高的比是3:2,则顶角为( ) A . 600
B. 900
C. 1200
D. 150
6.在△ABC 中,若1tan =A ,2
2
sin =B ,你认为对△ABC 最确切的判断是( )
A .是等腰三角形
B .是等腰直角三角形
C .是直角三角形
D .是一般锐角三角形
7、等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4
B .23
C .2
D .22
8.在△ ABC 中,已知∠C=90°,5
3
sin =B ,则A cos 的值是( )
A 、53
B 、34
C 、54
D .4
3
9、如图,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=3
5

AB =4, 则AD 的长为( )
A 、3
B 、
163
C 、
203
D 、
165
10.如图,在300m 高的峭壁上测得一塔的塔顶与塔基的俯角分别 11.为30°和60°,则塔高CD 为( ) A.200m B.180m C.150m D.100m
11、如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )
A 、500sin55°米
B 、500cos55°米
C 、500tan55°米
D 、500tan35°米
12、如图,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8, 则tan ∠ACE 的值为( ) A.
21 B.3
4
C.43
D.2 二、填空题.
13、在△ABC 中,∠A ,∠B ,∠C 的对边分别是a 、b 、c ,已知1=a ,1=b ,2=
c ,则
=A sin __________
14、比较下列三角函数值的大小:︒40sin ︒50sin
15、小芳为了测量旗杆高度,在距旗杆底部6米处测得顶端的仰角是60°,小芳的身高不计,则旗杆高 __________米。

(结果保留根号) 16、在ABC ∆中,若90C ∠=︒,1
sin 2
A =,2A
B =,则AB
C ∆的周长为 (结果保留根号)
17.如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测得仰角为︒22,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒50,则宣传条幅BC 的长为 米(小明的身高不计,结果精确到0.1米)
三、解答题.
A B
C
A
B
C
D E
18、计算: (1)︒+︒-︒60tan 245cos 330sin (2)()0
01
260cos 2214π-+-⎪⎭
⎫ ⎝⎛+-
19、如图10,在电线杆上离地面高度5米的C 点处引两根拉线固定电线杆.一根拉线AC 和地面成60°角,另一根拉线BC 与地面成45°角,试求两根拉线的长度。

(精确到0.1米)
20、如图,CD 是平面镜,光线从A 出发经CD 上点E 发射后照射到B 点。

若入射角为α,AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11求tan α的值。

21、如图,为测得峰顶A 到河面B 的高度h ,当游船行至C 处时测得峰顶A 的仰角为α=45°,前进m=50米至D 处时测得峰顶A 的仰角为β=60°(此时C 、D 、B 三点在同一直线上). 求h 的值.(结果精确到0.1m ,2≈1.41,3≈1.73)
22、如图,在东海中某小岛上有一灯塔A ,已知A 塔附近方圆25海里范围内有暗礁.我海军110
舰在O 点处测得A 塔在其西北30°方向;再向正西方向行驶20海里到达B 处,测得A 塔在其西北方向45°,如果该舰继续向西航行,是否有触礁的危险?请通过计算说明理由. 23、
B
α
A
C E D。

相关文档
最新文档