概率论与数理统计第二章
合集下载
第二章概率论与数理统计

例5.设电话总机在某段时间内接收到的呼唤次数服从 5.设电话总机在某段时间内接收到的呼唤次数服从 参数为3的泊松分布。 参数为3的泊松分布。求: 恰好接收到5次呼唤的概率; (1)恰好接收到5次呼唤的概率; 接收到不超过5次呼唤的概率。 (2)接收到不超过5次呼唤的概率。
表示电话总机接收到的呼唤次数, 解:设X表示电话总机接收到的呼唤次数,则 设 表示电话总机接收到的呼唤次数
P{ X
P{ X = 0} = P ( A1 A2 A3 A4 A5 ) = (1-p)5 = 5 p (1 − p ) 4 = 1} = P{ A1 A 2 A 3 A 4 A 5 ∪ A1 A2 A 3 A 4 A 5 ∪ ...
2 P{ X = 2} = P{ A1 A2 A 3 A 4 A 5 ∪ A1 A 2 A3 A 4 A 5 ∪ ... = C5 P 2 (1 − P ) 3
泊松定理设随机变量 泊松定理设随机变量 n~B(n, p), (n=0, 1, 2,…), 定理设随机变量X = 很大, 很小 很小, 且n很大,p很小,记λ=np,则 很大 ,
P{ X = k } ≈
λk
k!
e
−λ
,
k = 0,1,2,...
上题用泊松定理 取λ =np=(400)(0.02)=8, 故 近似地有 P{X≥2}=1- P{X=0}-P {X=1} =1-(1+8)e-8=0.996981. (3) 泊松(Poisson)分布 λ) ) 泊松 分布P(λ 分布
X
1
0
pk
p
1− p
(2)设将试验独立重复进行n次,且在每次试验 中,事件A发生的概率均为p。若用X表示n重贝努 里试验中事件A发生的次数,则称X服从参数为 n,p的二项分布。记作X~B(n,p),其概率分布律 为:
概率论与数理统计课件第2章

2
2.2.1 随机变量 • 注意: 注意:
(1)随机变量定义于抽象的样本空间上,不是普 )随机变量定义于抽象的样本空间上, 通的实函数。 通的实函数。 (2)随机事件可以通过随机变量的各种取值状态 )随机事件可以通过随机变量的各种取值状态 取值范围来表示 来表示。 和取值范围来表示。
3
2.1.2 随机变量的分布函数 • 既然随机事件可以通过随机变量的各种取值状态和取值 范围来表示, 范围来表示,研究随机现象的统计规律性就转化为研究 随机变量取值的规律性,即取值的概率。 随机变量取值的规律性,即取值的概率。但概率是集合 函数,随机变量定义于抽象空间上,都不便于处理。 函数,随机变量定义于抽象空间上,都不便于处理。 • 能不能找到一种方法,使得我们研究随机变量取值的规 能不能找到一种方法, 律性可以转化为研究普通的实函数? 律性可以转化为研究普通的实函数?
2.1 随机变量及其分布函数 在前面的讨论中,只是孤立地考虑一些事件的概率, 在前面的讨论中,只是孤立地考虑一些事件的概率, 这种研究方法缺乏一般性, 这种研究方法缺乏一般性,而且不便于分析数学工具的引 为了这一目的,随机变量的引入具有非常重要的意义。 入,为了这一目的,随机变量的引入具有非常重要的意义。 随机变量的引入是概率论发展史上的重大事件。 随机变量的引入是概率论发展史上的重大事件。它使得研 究概率论的数学工具更丰富有力,从此, 究概率论的数学工具更丰富有力,从此,概率论的研究进 入一个崭新的天地。 . 入一个崭新的天地。
P{ X ≥ 1} = 5 / 9 ,求p =
x≤0 , 0 < x ≤1 x >1
,概率 P{0 ≤ X ≤ 0.25} =
,
;
X |< 0.5} ;2)分布函数 分布函数F(x) 分布函数
概率论与数理统计--第二章PPT课件

由概率的可列可加性得X的分布函数为
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
概率论与数理统计第二章

且
这样,我们就掌握了X这 个随机变量取值的概率 规律。
一、离散型随机变量概率分布的定义
1、定义 设离散型随机变量X的所有可能取值为xk (k=1, 2, …),称X取各个可能值的概率,即事件 {X=xk}的概率, P{X=xk}=pk, (k=1, 2, …) 为X的分布律或概率分布(Probability distribution )。也可以表示为 X x1 x2 … xk … pk p1 p2
② 进行5次试验,事件D={试验成功一次},F={试 验至少成功一次},G={至多成功3次} X:试验成功的次数
二、引入随机变量的意义
随机变量概念的引入是概率论走向成熟的一个标 志,它弥补了随机试验下的随机事件种类繁多, 不易一一总结它们取值规律的缺陷,因为如果知 道随机变量的分布, 随机试验下任一随机事件 的概率也随之可以得到;另外引入随机变量后, 可以使用高等数学的方法来研究随机试验。
0-1分布 b n, p) 二项分布 B ((n,p) p 泊松分布 P( ) ()
正态分布的概率计算
均匀分布 U(a,b) N (m ,2)2) 正态分布 N(a, ) 指数分布 EE(q) (
§2.1 随机变量
一、随机变量概念的产生
在实际问题中,有些随机试验的结果本身就是 数值(如班级的平均分数),而许多并不是数 值(掷硬币的结果)。我们对数值的处理比较 得心应手。因此,如果能用数值来表示样本空 间的样本点,就会非常方便。由此就产生了随 机变量的概念。
1, X (e ) 0,
e = H; e = T.
再如:将一枚硬币抛掷三次,观察出现正面和反
面的情况,则样本空间是S={HHH, HHT, HTH,
THH, HTT, THT, TTH, TTT}。令X表示三次投掷
概率论与数理统计第二章

26
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB) , P(B)
P(B)>0
2)从加入条件后改变了的情况去算
例:A={掷出2点},B={掷出偶数点}
掷骰子
P(A|B)= 1 3
B发生后的 缩减样本空间 所含样本点总数
在缩减样本空间 中A所含样本点
个数
27
例8 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
实际上,这个假定并不完 全成立,有关问题的实际概 率比表中给出的还要大 .
当人数超过23时,打赌 说至少有两人同生日是有利 的.
18
例3 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求 电话号码由五个不同数字组成的概率.
解:
a
A150 105
=0.3024
问:
b
P( A) =1-0.524=0.476
即22个球迷中至少有两人同生日的概率为0.476.
这个概率随着球迷人数的增加而迅速增加.
17
人数 至少有两人同
生日的概率
20
0.411
21
0.444
22
0.476
23
0.507
24
0.538
30
0.706
40
0.891
50
0.970
60
0.994
所有这些概率都是在假 定一个人的生日在 365天的 任何一天是等可能的前提下 计算出来的.
25
3. 条件概率的性质 设B是一事件,且P(B)>0,则 1. 对任一事件A,0≤P(A|B)≤1;
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB) , P(B)
P(B)>0
2)从加入条件后改变了的情况去算
例:A={掷出2点},B={掷出偶数点}
掷骰子
P(A|B)= 1 3
B发生后的 缩减样本空间 所含样本点总数
在缩减样本空间 中A所含样本点
个数
27
例8 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
实际上,这个假定并不完 全成立,有关问题的实际概 率比表中给出的还要大 .
当人数超过23时,打赌 说至少有两人同生日是有利 的.
18
例3 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求 电话号码由五个不同数字组成的概率.
解:
a
A150 105
=0.3024
问:
b
P( A) =1-0.524=0.476
即22个球迷中至少有两人同生日的概率为0.476.
这个概率随着球迷人数的增加而迅速增加.
17
人数 至少有两人同
生日的概率
20
0.411
21
0.444
22
0.476
23
0.507
24
0.538
30
0.706
40
0.891
50
0.970
60
0.994
所有这些概率都是在假 定一个人的生日在 365天的 任何一天是等可能的前提下 计算出来的.
25
3. 条件概率的性质 设B是一事件,且P(B)>0,则 1. 对任一事件A,0≤P(A|B)≤1;
概率论与数理统计第二章

k =0
k 1− k
n
服从参数为n和 的二项分布 的二项分布, 称 r.v X 服从参数为 和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B(1, p) 此时有 P {X = k } = p (1 − p )
, k = 0,1
(0 <
p < 1)
即(0-1)分布是二项分布的一个特例. )
第二章 随机变量及其分布
Random Variable and Distribution 在前面的学习中,我们用字母A 在前面的学习中,我们用字母A、B、 C...表示事件 并视之为样本空间S 表示事件, C...表示事件,并视之为样本空间S的子 针对等可能概型 主要研究了用排 可能概型, 集;针对等可能概型,主要研究了用排 列组合手段计算事件的概率 手段计算事件的概率。 列组合手段计算事件的概率。 本章,将引入随机变量表示随机事件, 本章,将引入随机变量表示随机事件, 随机变量表示随机事件 以便采用高等数学的方法描述、 高等数学的方法描述 以便采用高等数学的方法描述、研究随 机现象。 机现象。
设 P { A} = p , 则 P { A} = 1 − p
抛硬币: 出现正面” 抛硬币:“出现正面”,“出现反面” 出现反面”
例如: 例如
抽验产品: 是正品” 抽验产品:“是正品”,“是次品” 是次品”
将伯努利试验E独立地重复地进行 次 将伯努利试验E独立地重复地进行n次 ,则称这 一串重复的独立试验为n重伯努利试验 重复的独立试验为 一串重复的独立试验为 重伯努利试验 . 次试验中P(A)= p 保持不变 保持不变. “重复”是指这 n 次试验中 重复” 独立” “独立”是指各 次试验的结果互不影响 .
依题意, 可取值 可取值0, 解: 依题意 X可取值 1, 2, 3,4.以p表示每组信号 以 表示每组信号 灯禁止汽车通过的概率 设 Ai={第i个信号灯禁止汽车通过 i=1,2,3,4 个信号灯禁止汽车通过}, 第 个信号灯禁止汽车通过
k 1− k
n
服从参数为n和 的二项分布 的二项分布, 称 r.v X 服从参数为 和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B(1, p) 此时有 P {X = k } = p (1 − p )
, k = 0,1
(0 <
p < 1)
即(0-1)分布是二项分布的一个特例. )
第二章 随机变量及其分布
Random Variable and Distribution 在前面的学习中,我们用字母A 在前面的学习中,我们用字母A、B、 C...表示事件 并视之为样本空间S 表示事件, C...表示事件,并视之为样本空间S的子 针对等可能概型 主要研究了用排 可能概型, 集;针对等可能概型,主要研究了用排 列组合手段计算事件的概率 手段计算事件的概率。 列组合手段计算事件的概率。 本章,将引入随机变量表示随机事件, 本章,将引入随机变量表示随机事件, 随机变量表示随机事件 以便采用高等数学的方法描述、 高等数学的方法描述 以便采用高等数学的方法描述、研究随 机现象。 机现象。
设 P { A} = p , 则 P { A} = 1 − p
抛硬币: 出现正面” 抛硬币:“出现正面”,“出现反面” 出现反面”
例如: 例如
抽验产品: 是正品” 抽验产品:“是正品”,“是次品” 是次品”
将伯努利试验E独立地重复地进行 次 将伯努利试验E独立地重复地进行n次 ,则称这 一串重复的独立试验为n重伯努利试验 重复的独立试验为 一串重复的独立试验为 重伯努利试验 . 次试验中P(A)= p 保持不变 保持不变. “重复”是指这 n 次试验中 重复” 独立” “独立”是指各 次试验的结果互不影响 .
依题意, 可取值 可取值0, 解: 依题意 X可取值 1, 2, 3,4.以p表示每组信号 以 表示每组信号 灯禁止汽车通过的概率 设 Ai={第i个信号灯禁止汽车通过 i=1,2,3,4 个信号灯禁止汽车通过}, 第 个信号灯禁止汽车通过
《概率论与数理统计》第二章 随机变量及其分布
两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k
概率论与数理统计第二章
的球若干, 例2:设袋中有编号为 ,2,3,4的球若干,从中任意取出 :设袋中有编号为1, , , 的球若干 一个,假设取到球的概率与球上的号码成反比,求取到球 一个,假设取到球的概率与球上的号码成反比,求取到球 的号码X的分布 的分布。 的号码 的分布。 解:X可以取值为 ,2,3,4。 可以取值为1, , , 。 可以取值为
P { X = 1} = 5 %
X P
0 95%
1 5%
两点分布:只有两个可能取值的随机变量所服从的分布。 两点分布:只有两个可能取值的随机变量所服从的分布。 随机变量所服从的分布 概率函数: 概率函数:P{X=xk}=pk k=1,2 0-1分布:只有 和1两个值的随机变量所服从的分布。 - 分布 只有0和 两个值的随机变量所服从的分布 分布: 两个值的随机变量所服从的分布。 概率函数: 概率函数:P{X=k}=pk(1-p) 1-k k=0,1
用随机变量表示事件 例1:某时间段内寻呼台收到的寻呼次数记作 。“收到 次 :某时间段内寻呼台收到的寻呼次数记作X。 收到20次 寻呼” 寻呼” 可写成 {X=20}。 。 “收到的寻呼次数介于30到100之间”可写作{30<X<100}。 收到的寻呼次数介于 到 之间”可写作 } 之间 例2:从一大批产品中随机抽取一件,记该产品的寿命为 :从一大批产品中随机抽取一件, Y(小时 则{Y>1500}表示“产品的寿命大于 小时),则 表示“ 小时” 小时 表示 产品的寿命大于1500小时”。 小时
−∞
−∞
0
2
∴ A= 3 . 8
(2)用概率密度函数定义求 用概率密度函数定义求
3 3 2 1 P(0≤ X<1) = ∫0 f ( x)dx = ∫0 ( 2 x− 4 x )dx = 2 ,
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
概率论与数理统计 第2章
5
§2.2 一维离散型随机变量及其分布律
一、一维离散型随机变量的分布律
定义:设 ~离散型r.v.,它可能取的数值是 x1,x2,…,xn,…,又设
P xi pi i 1,2,, n,
则称下表
P
x1 p1
x2 p2
… …
xk pk
… …
为离散型r.v.的分布律或概率分布。
k
k!
e
e
k!
k 0
k
e e 1
13
⑶ 泊松分布亦是一个重要分布,它是一种散
点子分布,如布匹上的瑕疵点数;放射粒子
数;一段时间内的电话呼唤数及侯车人数等都
服从泊松分布。 例7:设书的某页中印刷错误的个数 服从 0.1 的泊松分布,试求该页中有印刷错误的概率。 例8:设 服从参数为 的泊松分布,已知
1
2、具体而言: 变量的值取决于试验的结果~随机变量,用 希腊字母 , , 表示。 以前所学的变量~普通变量,用英文字母 x,y,z,a,b,c等表示。 随机变量所取的值用普通变量表示。 3、~随机变量;a~数;
a 或 a ~随机事件,或发生或不发生; P a ~它的概率。
3
4、按取值的不同,随机变量可分为两类: ⑴ 离散型随机变量~它可能取的值是有限数 组和可数无穷多个值。 ⑵ 连续型随机变量~它可以在一个区间或数 轴上任意取值。 二、二维随机变量 在某些实际问题中,需用两个或两个以上的随 机变量来描述随机试验的结果。
4
定义:设某个随机试验的基本事件空间为
, 和 是定义在该基本事
19
§2.3 二维离散型随机变量及其分布律 一、联合分布律与边缘分布律 定义:设二维r.v. , 只能取有限对或者最多
§2.2 一维离散型随机变量及其分布律
一、一维离散型随机变量的分布律
定义:设 ~离散型r.v.,它可能取的数值是 x1,x2,…,xn,…,又设
P xi pi i 1,2,, n,
则称下表
P
x1 p1
x2 p2
… …
xk pk
… …
为离散型r.v.的分布律或概率分布。
k
k!
e
e
k!
k 0
k
e e 1
13
⑶ 泊松分布亦是一个重要分布,它是一种散
点子分布,如布匹上的瑕疵点数;放射粒子
数;一段时间内的电话呼唤数及侯车人数等都
服从泊松分布。 例7:设书的某页中印刷错误的个数 服从 0.1 的泊松分布,试求该页中有印刷错误的概率。 例8:设 服从参数为 的泊松分布,已知
1
2、具体而言: 变量的值取决于试验的结果~随机变量,用 希腊字母 , , 表示。 以前所学的变量~普通变量,用英文字母 x,y,z,a,b,c等表示。 随机变量所取的值用普通变量表示。 3、~随机变量;a~数;
a 或 a ~随机事件,或发生或不发生; P a ~它的概率。
3
4、按取值的不同,随机变量可分为两类: ⑴ 离散型随机变量~它可能取的值是有限数 组和可数无穷多个值。 ⑵ 连续型随机变量~它可以在一个区间或数 轴上任意取值。 二、二维随机变量 在某些实际问题中,需用两个或两个以上的随 机变量来描述随机试验的结果。
4
定义:设某个随机试验的基本事件空间为
, 和 是定义在该基本事
19
§2.3 二维离散型随机变量及其分布律 一、联合分布律与边缘分布律 定义:设二维r.v. , 只能取有限对或者最多
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ,max= 2
4. 渐近线 以X轴为渐进线
5. 曲线的变化规律
设X~ N ( , ) ,
2
X的分布函数是
1 F ( x) 2
x
(t ) 2 22Fra bibliotekedt , x
标准正态分布
0, 1 的正态分布称为标准正态分布.
若随机变量X的概率分布为: P(X=1)=p,0<p<1 P(X=0)=1-p=q 则称X服从参数为p的两点分布.
二项分布
例4 设射手每一次击中目标的概率为p,现连续 射击n次,求恰好击中次数X 的概率分布.
若随机变量X的概率分布为
Pn (k ) P( X k)C p (1 p)
k n k
3. F(x+0)=F(x)
例1:设随机变量X的分布函数为
a be x , x 0 F ( x) x0 0 ,
求常数a, b及概率 P( X 2)
2.2
离散型随机变量的概率分布
定义1 :设xk(k=1,2, …)是离散型随机变量X 所取的一切可能值,pk是X取 xk值的概率,称
0
1 8
1
a
2
2a
Pk
(1)求常数a ; (2) P( X 1), P(2 X 0), P( X 2)
例2 在五件产品中有两件次品,从中任取出两 件。用随机变量X表示其中的次品数,求X的分 布律和分布函数.
X
P
0
0.3
1
0.6
2
0.1
1.0 0.9
0 0.3 F ( x) 0.9 1.0
均匀分布
则称X 在区间[a, b]上服从均匀分布, 简记为X ~ U [ a, b].
例3:设随机变量X~U[1,6],求二次方程
x Xx 1 0
2
有实根的概率。
指数分布
若随机变量 X具有概率密度
则称X服从以 为参数的指数分布, 简记为 X ~ E( ) . 指数分布常用于可靠性统计研究 中,如电子元件的寿命.
,x 0 ,0 x 1 ,1 x 2 ,x 2
0.3 0
1 2
离散型随机变量的分布函数
F ( x) P( X x)
0, p , 1 p1 p2 , F ( x) i pk , k 1
xk x
p
k
x x1 x1 x x2 x2 x x3 xi x xi 1 , i 1
超几何分布
设N个元素分为两类,有M个属于第一类,其 余属于第二类。现在从中不重复抽取n个,其 中包含的第一类元素的个数X的分布律为 k nk CM C N M P( X k ) , (k 0,1, , l ) n CN
l min(n, M )
则称随机变量X服从参数为的超几何分布,记 作 X ~ H ( N , M , n)
e f ( x) 0
x
x0 x0
0
例4:某电子元件的使用寿命X是一个连续型随 机变量,其概率密度为
x 100 Ce , x 0 f ( x) 0, x0
(1) 确定常数C; (2)寿命超过100小时的概率; (3)已知该元件已正常使用200小时,求它至 少还能正常使用100小时的概率。
F(x2)-F(x1)
F(x2-0)-F(x1)
F(x2)-F(x1-0)
分布函数的性质
1. 若a b, 则F (a) F (b)
2. 0 F ( x) 1, ( x ),且 lim F ( x) F () 0,
x x
lim F ( x) F () 1
P( X xk ) pk , k=1,2,… …
为离散型随机变量X的概率函数或分布律,也 称概率分布. X Pk x1 p1 x2 p2
… …
xk pk
… …
分布列
其中 pk (k=1,2, …) 满足:
(1) pk 0, k=1,2, …
(2)
例1
p 1
k k
X
2 1
a 3a
这种对应关系在数学上理解为定义了一种 实值函数. w.
X(w) R
对于试验的每一个样本点w,都对应着一个实数 X(w),而X(w)是随着实验结果不同而变化的一个 变量。
随机变量的定义
设随机实验E的样本空间 ,若对每一个 样本点 ,都有唯一的实数 X ( )与之对应, 则称 X ( )为随机变量,简记为 X .
2. 箱子中有5个编号为1,2,3,4,5的球,从 中任取3个,以X表示取出的3个中的最大号码 求:X的分布列,X的分布函数并画图
2.3
概率密度
对于随机变量 X ,如果存在非负函数f(x) , 使得对任意的实数x,都有
F ( x) P( X x)
x
f (t )dt
则称 X为连续型r.v,称 f(x)为 X 的概率密度函 数,简称为概率密度或分布密度。
对于固定n及p,当k增加时 ,概率P(X=k) 先 是随之增加直至 达到最大值, 随后单调减少.
(n 1) p或(n 1) p 1, k0 [(n 1) p], (n 1) p是整数 (n 1) p不是整数
泊松分布
若随机变量X的概率分布为
P ( X k ) e
———|——>
X x
x
如果将 X 看作数轴上随机点的坐标, 那么分布函数 F(x) 的值就表示 X落在区间
( , x ] 的概率.
已知X的分布函数为 F(x),下列 各事件概率用F(x) 如何表示? P(X<x)
P(X=x) P(X>x) P(x1<X<=x2) P(x1<X<x2) P(x1<=X<=x2) F(x-0) F(x)-F(x-0) 1-F(x)
k
k!
, k0,1,2,,
其中λ>0为常数,则称X服从参数为λ的泊松 分布,简记为 X ~ P( )
泊松定理 设随机变量Xn(n=1,2,..)服从二项分布 Xn~B(n,pn),又设 npn 是一个常数,则有
n
lim P( X n k ) lim C p (1 pn )
离散型随机变量的分布函数特点 1. 它的图形是一条右连续的阶梯型曲线 2. 在随机变量的每一个可能取值点 x=xk(k=1,2,…),该图形都有一个跳跃,跳 跃值为pk
几种常见的离散型随机变量的分布
两点分布 (0-1分布)
例3:一批产品的废品率为5%,从中任意抽取 一个进行检验,用随机变量X描述废品出现的 情况,即写出X的分布。
f (x)
o
x
例1 :已知连续型随机变量X有概率密度
kx 1 0 x 2 f ( x) 其它 0
求系数k及分布函数F(x),并计算P(0.5<X<3).
设a, b为有限数, 且a b.若随机变量X 的概率密度为 1 f ( x ) b a, 0, a xb else
例7:若一年中某类保险者里面每个人死亡的概 率为0.002,现有2000个这类人参加人寿保险。参 加者交纳24元保险金,而死亡时保险公司付给 其家属5000元赔偿费。计算“保险公司亏本” 和“保险公司盈利不少于10000元”的概率。
几何分布
在独立试验序列中, 若一次伯努利试验中 某事件A发生的概率为, 只要事件A不发生, 试 验就不断地重复下去,直到事件A发生,试验 才停止。设随机变量X为直到事件A发生为止 所需的试验次数X的概率分布为
第二章 随机变量及其分布
2.1
在实际问题中,随机试验的结果可以用数量 来表示,由此就产生了随机变量的概念.
掷一颗骰子,面上出现的点数 七月份福州的最高温度 灯泡的使用寿命
在有些试验中,试验结果看来与数值无关, 但我们可以采用“数量化”的方法,使实 验结果与数值相对应。
抛硬币实验
射手射击击中目标.
若x是 f(x)的连续点,则随机变 量X取值为x的概率为f(x)吗?
5.P( X x) 0
P ( a X b) P ( a X b) P ( a X b) P ( a X b)
P( x X x x) f ( x)x
密度函数 f (x)在某点处a的高度,并不反映 X取值的概率. 但是,这个高度越大,则X 取a附近的值的概率就越大. 也可以说,在 某点密度曲线的高度反映了概率集中在该 点附近的程度.
例9.一批产品共有N件,其中M件是废品。现 在从全部N件产品中抽取n件(n≤ N),求恰好取 到废品件数X的分布。
作业:
1. 某保险公司发现某类保险者一年中仅有0.001 的死亡概率,则在入保这类人中任意选取的 10000个人寿保险者在下一年中,不超过5个客 户死亡事件的概率是多少?(计算出来)
注意: (2)(3)引出的特点
指数分布的无记忆特性
若随机变量X,对任意的S>0,T>0满足 P(X>S+T| X>S) = P(X>T) 则称X的分布具有无记忆性. “永远年轻”!
例5: 某机场在任何长为t 的时间内飞机来到的 数目X服从参数为λt 的泊松分布,求跑道的 “等待时间”即相继两架飞机到来的时间间隔 T的概率分布。
nk
, k 0,1,, n
其中0<p<1,称X服从参数为n和p的二项分布, 记作 X~B(n,p)
例5:一随机数字序列要有多长才能使0至少出 现一次的概率不小于0.9?
0123597153861258702550865218930254991…