粒子位置和速度的测量原理
piv技术的原理与应用

PIV技术的原理与应用1. 什么是PIV技术?PIV(Particle Image Velocimetry)技术是一种用于测量流体中速度变化的光学测量技术。
它基于成像和粒子追踪的原理,通过记录流体中的颗粒运动轨迹,从而推断速度信息。
PIV技术可以应用于多个领域,包括流体力学研究、流体工程、航空航天等。
2. PIV技术的原理PIV技术的原理基于两个主要步骤:成像和粒子追踪。
2.1 成像在PIV实验中,成像是通过激光束照射流体中的颗粒,形成一个平面投影,并利用高速摄像机记录下颗粒的图像。
成像过程中需要注意以下几点:•使用适当的激光光源,以确保产生足够能量的光线来照亮流体中的颗粒,同时避免对流体的影响。
•选择适当的摄像机来记录图像。
高速摄像机通常具有较高的帧率和分辨率,可以捕捉到颗粒的快速运动。
2.2 粒子追踪粒子追踪是PIV技术中的核心步骤,它通过分析颗粒在连续图像帧中的位移来推断流体的速度。
粒子追踪主要包括以下两个步骤:•特征提取:在每一帧图像中,使用适当的特征提取算法找到颗粒的位置。
常用的特征提取算法包括亮度加权相关方法和互相关方法。
•位移估计:通过对颗粒在不同帧之间的位移进行比较,可以估计出流体的速度。
位移估计通常使用相关与平均方法或剪切相关方法。
3. PIV技术的应用PIV技术以其快速、非侵入性和高精度的特点,得到了广泛的应用。
以下是PIV技术在不同领域中的应用示例:3.1 流体力学研究PIV技术在流体力学研究中起着至关重要的作用。
通过使用PIV技术,研究人员可以获得流体中不同位置的速度分布和涡旋结构等信息。
这有助于深入了解流体运动的本质,优化流体系统的设计。
3.2 流体工程PIV技术在流体工程中的应用非常广泛。
例如,在风洞实验中,通过使用PIV 技术,可以获得飞机在风中的速度分布和风阻等参数。
这对于飞机设计和气动性能评估非常重要。
3.3 航空航天PIV技术在航空航天领域中也有广泛的应用。
例如,在火箭推进系统中,PIV 技术可以帮助研究人员分析燃烧室内的流动特性,优化燃烧效率。
粒子计数原理

粒子计数原理粒子计数是一种常用的实验手段,用于测量液体或气体中微小颗粒的数量。
粒子计数原理是基于颗粒在流体中的运动特性和传感器的测量原理。
在实际应用中,粒子计数常用于环境监测、医疗设备、食品加工等领域。
首先,粒子计数原理涉及到颗粒在流体中的运动特性。
在液体或气体中,颗粒会随着流体的流动而运动,其速度和方向取决于流体的性质和流动状态。
根据颗粒在流体中的运动特性,可以通过传感器捕捉颗粒的运动轨迹和频率,从而实现对颗粒数量的测量。
其次,粒子计数原理还涉及到传感器的测量原理。
传感器是实现粒子计数的关键设备,其测量原理通常是基于颗粒与传感器之间的相互作用。
传感器可以通过光学、电学、声学等方式感知颗粒的存在,并将感知到的信号转化为数字信号进行处理。
通过传感器的测量原理,可以实现对颗粒数量的准确测量。
在粒子计数的实际应用中,为了获得准确的测量结果,需要考虑到流体的性质、颗粒的特性以及传感器的精度。
流体的性质包括流速、粘度、密度等,这些因素会影响颗粒在流体中的运动状态;颗粒的特性包括大小、形状、浓度等,这些因素会影响传感器的感知效果;传感器的精度则直接影响到测量结果的准确性。
因此,在实际应用中需要综合考虑这些因素,选择合适的传感器和测量方法,以获得准确可靠的粒子计数结果。
总的来说,粒子计数原理是基于颗粒在流体中的运动特性和传感器的测量原理,通过捕捉颗粒的运动轨迹和频率,以及传感器的感知原理,实现对颗粒数量的准确测量。
在实际应用中,需要综合考虑流体的性质、颗粒的特性以及传感器的精度,以获得准确可靠的粒子计数结果。
以上就是粒子计数原理的相关内容,希望对您有所帮助。
粒子图像测速技术

粒子图像测速技术(PIV )1.PIV 简介粒子图像测速技术(PIV)作为一种全新的无扰、瞬态、全场速度测量方法,在流体力学及空气动力学研究领域具有极高的学术意义和实用价值。
粒子图像测速技术(PIV )是一种用多次摄像以记录流场中粒子的位置,并分析摄得的图像,从而测出流动速度的方法。
PIV 是流场显示技术的新发展。
它是在传统流动显示技术基础上, 利用图形图像处理技术发展起来的一种新的流动测量技术。
动测量技术。
综合了单点测量技术和显示测量技术的优点综合了单点测量技术和显示测量技术的优点, 克服了两种测量技术的弱点而成的, 既具备了单点测量技术的精度和分辨率, 又能获得平面流场显示的整体结构和瞬态图像。
的整体结构和瞬态图像。
图1. 粒子图像测速技术粒子图像测速技术2.PIV PIV的原理的原理PIV 技术原理简单,就是在流场中撤入示踪粒子,以粒子速度代表其所在流场内相应位置处流体的运动速度.应用强光(片形光束)照射流场中的一个测试平面,用成像的方法(照像或摄像)记录下2次或多次曝光的粒子位置,用图像分析技术得到各点粒子的位移,由此位移和曝光的时间间隔便可得到流场中各点的流速矢量,并计算出其他运动参量(包括流场速度矢量图、速度分量图、流线图、漩度图等)。
因采用的记录设备不同, 又分别称FPIV FPIV ( ( 用胶片作记录) 和数字式图像测速DPIV (用CCD 相机作记录)。
3.PIV PIV系统组成系统组成PIV 系统通常由三部分组成, 每一部分的要求都相当严格。
每一部分的要求都相当严格。
图2. 粒子图像测速系统结构粒子图像测速系统结构(1)直接反映流场流动的示踪粒子。
除要满足一般要求( 无毒、无腐蚀、无磨蚀、化学性质稳定、化学性质稳定、清洁等清洁等) 外,还要满足流动跟随性和散光性等要求。
还要满足流动跟随性和散光性等要求。
要使要使粒子的流动跟随性好, 就需要粒子的直径较小, 但这会使粒子的散光性降低,不易于成像。
马尔文激光粒度仪-颗粒表征技术原理及介绍

a mn
x( d 1 ... x(dn
) )
• f(q):在角度 qi 的单位检测器面积上的衍射光强度 • aij: 在角度 qi 和粒径 dj 的衍射模型 • x(dj): 在粒径 dj的分布幅度
但是衍射矩阵的解不是惟一的… 类似于:
› 问: 6 x 7 =?
42! 太简单, 因为答案是惟一的
› 颗粒粒径比激光波长大得多 › 颗粒是完全不透明的,在激光光束
中只有衍射现象存在
› 所有颗粒具有相同的衍射效率
衍射模型 - Mie理论
› 不象 Fraunhofer, Mie理论:
考虑到了光与物质的相互作用,适合 所有波长,衍射角度及粒径范围
Mie理论-预知光衍射
衍射光
入射光
吸收
折射
衍射光
衍射模型 - Mie理论
› 但是问: 42=?
21 x 2 40 + 2 126 ÷ 3 ………
衍射数据
粒度分布的计算
假设一个粒 度分布
粒度分布
改变假设的粒度 分布
Mie理论
反演出的衍 射数据
作为最终 粒度结果
差别最小
与测量的数 据比较
激光衍射—结果计算
› 数学反演过程中有两组数据… › 反演出的理论数据(红色) ,测量的原始衍射数据(绿色) › 两根曲线之间的区域被用来计算并得到残差
1. 一般对于小颗粒测试具有较高地灵敏度; 2. 不受待测物质折射率等光参影响; 3. 可以附加给出样品Zeta电位信息。
不足: 1. 一般只能测乳液或者悬液样品 2. 对于大颗粒样品测试效果不佳 3. 对于较宽分布的样品测量效果不佳;
图像分析法
图像分析的基本原理(可见光成像)
动态光散射测量粒径的原理

动态光散射测量粒径的原理动态光散射技术是一种常用的粒径测量方法,其原理是利用光的散射现象来估计被测粒子的尺寸分布。
它利用了散射光的强度与粒子尺寸的关系,通过测量散射光的强度来推断粒子的尺寸。
在动态光散射测量中,一个激光束被照射到封装着粒子的悬浮液中,粒子散射的光会在不同的角度范围内被收集。
根据洛伦兹—朗伯散射理论,散射光的强度与粒子的尺寸之间存在一定的关系。
当粒子直径比较小时,光被散射的方向主要为前向散射,即散射角度较小。
而当粒子直径较大时,光的散射主要发生在更大的散射角度范围内。
因此,通过测量不同散射角度范围内的光散射强度,可以推断出粒子的尺寸分布。
在具体测量中,光散射信号被接收器接收后会经过光电倍增管或光电二极管等转换成电信号,并经过放大、采样和处理等步骤后得到粒子的尺寸分布数据。
通常情况下,可以使用动态光散射衍射仪、多角度光散射仪或激光衍射颗粒分析仪等设备进行测量。
需要注意的是,动态光散射测量中存在一些假设,例如假设粒子是各向同性的球形物体,并且粒子之间是独立散射的。
在实际测量中,这些假设可能不完全成立,会对测量结果产生一定的影响。
因此,在进行实际测量时需要根据具体情况,选择合适的测量仪器和方法,并对测量结果进行合理的解释和分析。
动态光散射测量粒径的优点包括非接触测量、无需稀释样品、测量速度快等。
但同时也存在一些限制,例如对样品浓度、粒子形状和折射率等参数的要求较高,需要根据具体情况进行合理的选择和处理。
总之,动态光散射测量粒径的原理是利用散射光的强度与粒子尺寸的关系,通过测量不同散射角度范围内的光散射强度来推断粒子的尺寸分布。
这种测量方法在颗粒物测量、纳米材料研究等领域具有广泛的应用前景。
粒子影像测速(PIV)技术概述

粒子影像测速(PIV)技术概述1.PIV技术介绍1.1.引言目前为止,人类对流体力学仍有许多疑难问题,如对湍流、非定常流动等现象了解甚少,而在许多工程应用如飞行器外形设计、内燃机燃烧室中的多相流动等中又迫切需要解决这些问题,因而使流场测量问题变得极为重要。
流场测速新方法研究中,至今已发展了激光多普勒测速LDV(Laser Doppler Velocimetry)、粒子影像测速PIV(Particle Image Velocimetry)等技术。
LDV的综合性能较高,具有高精度、高分辨率和非接触测量等优点,通常作为仪器标校技术使用,但LDV只能实现单点测量。
PIV技术是一种全场、动态、非接触测量手段,已获得广泛使用,成功应用于风洞、水洞、水槽燃烧及喷射等实验中。
PIV研究始于上个世纪80年代,随着光学和计算机图像处理技术的迅猛发展,PIV取得了长足进步,测量精度已与LDV接近。
1.2.PIV原理图1是PIV 技术应用的简单原理图。
散播在流场中的跟随性及反光性良好的示踪粒子,由激光光束首先入射到一组球面透镜上,经聚焦后通过全反射镜至一组可调的柱面透镜形成具有一定厚度的片光,照亮流场中特定的区域,此时经过此区域的示踪粒子被照亮,通过CCD(CMOS)成像设备进行成像。
对这个特定的区域在一定时间间隔内利用图1 PIV简单原理图激光脉冲连续照亮两次,就能得到粒子在第一次照亮时间t 和第二次照亮时间t’的两个图像,对这两幅图像进行互相关分析,就能得到流场内部的二维速度矢量分布。
在利用PIV 技术测量流速时,需要在二维流场中均匀散布跟随性、反光性良好且比重与流体相当的示踪粒子。
将激光器产生的光束经透镜散射后形成厚度约1 mm 的片光源入射到流场待测区域,CCD 摄像机以垂直片光源的方向对准该区域。
利用示踪粒子对光的散射作用,记录下两次脉冲激光曝光时粒子的图像,形成两幅PIV 底片(即一对相同待测区域、不同时刻的图片) ,底片上记录的是整个待测区域的粒子图像。
粒子图像测速技术的研究与应用

粒子图像测速技术的研究与应用随着科技的发展,测量粒子和流体速度的需求越来越多,而粒子图像测速技术(Particle Image Velocimetry,PIV)作为一种全息、非接触、全场测量流体速度和颗粒运动的高速精密测量方法得到了广泛的应用。
一、粒子图像测速技术的原理和方法PIV技术基于成像法,利用高速摄像机记录流体中荧光微粒的运动图像,并通过处理荧光微粒的运动轨迹获得流体速度分布。
整个测量过程被分为两个步骤:荧光微粒标记和图像处理。
荧光微粒标记可以使用洛伦兹荧光微粒、纳米颗粒或者钴青天然磁性微粒等,这些微粒被注入到流体中并随之运动,拍摄到的图像经过处理后可得到流体速度平均值和方向。
图像处理可以采用相关方法、互相关法、小波变换等不同的算法,通过处理得到流体速度分布、涡量场和剪切应力等大量的物理量,并可以得到不同时间段内的流体运动轨迹等信息。
二、 PIV技术在流体力学和气象学中的应用PIV技术作为一种高速精密测量方法,在流体动力学和气象学领域得到了广泛的应用,具体有以下几个方面。
1. 流体动力学仿真与实验流体动力学是研究流体运动规律、流体力学特性以及流体与固体或流体与液体交互作用的学科。
PIV技术可用于流场定量表征、流体运动分析和涡旋识别等方面,尤其适用于分析颗粒物在流体中的运动行为。
同时,流体动力学仿真也可用PIV技术验证和修正模型。
2. 气象学观测PIV技术可以有效地研究大气速度、潜热通量等气象学参数,对气象、环境、应急预警等领域有着重要的应用价值。
3. 环境污染监测流体动力学方法可用于水流速度、水流压力的测量、以及水中污染物浓度和扩散规律的研究。
PIV技术可以准确地测量水流中的污染物流量、污染物分布情况和扩散规律,为环境污染监测提供了一种全新的手段。
三、 PIV技术的应用展望近年来,人们对PIV技术的应用发展提出了更高要求,需要能够更加精确、快速、实用和多样化地完成测量。
在此基础上,未来可望有以下方向的发展:1. 超高速PIV技术随着科技发展,各个领域对流体速度测量的需求不断增加,比如高速列车、飞行器等高速运动物体,需要测量的速度更高。
粒度分析仪简介及使用

实验7、粒度分析仪简介及使用纯牛奶粒度分布的测定(激光粒度法)一、实验目的:1.掌握粒度分析仪的测定原理及操作方法。
2.测定纳米粒子的粒度尺径及分布和Zeta电位性质。
二、实验原理:2.1 激光粒度仪介绍激光粒度分析仪仪是利用粒子的布朗运动,根据光的散射原理测量粉颗粒大小的,是一种比较通用的粒度仪。
其特点是测量的动态范围宽、测量速度快、操作方便,尤其适合测量粒度分布范围宽的粉体和液体雾滴。
对粒度均匀的粉体,比如磨料微粉,要慎重选用。
激光粒度仪集成了激光技术、现代光电技术、电子技术、精密机械和计算机技术,具有测量速度快、动态范围大、操作简便、重复性好等优点,现已成为全世界最流行的粒度测试仪器。
激光粒度仪作为一种新型的粒度测试仪器,已经在其它粉体加工与应用领域得到广泛的应用。
它的特点是测试速度快、重复性好、准确性好、操作简便。
对提高产品质量、降低能源消耗有着重要的意义。
2.2激光粒度仪的原理激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。
如图1所示。
图1,激光束在无阻碍状态下的传播示意图米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小,产生的散射光的θ角就越大。
即小角度(θ)的散射光是有大颗粒引起的;大角度(θ1)的散射光是由小颗粒引起的,如图2所示。
进一步研究表明,散射光的强度代表该粒径颗粒的数量。
这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。
图2,不同粒径的颗粒产生不同角度的散射光为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。
我们在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行处理,就会准确地得到粒度分布了,如图3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒子位置和速度的测量原理
粒子位置和速度的测量原理是当今物理学中的基础问题之一。
根据量子力学的原理,粒子的位置和速度不能同时被精确地测量,这被称为海森堡不确定性原理。
为了测量粒子的位置,科学家通常使用探测器来获取粒子的位置信息。
例如,当一个电子被探测器探测到时,电子将与探测器相互作用,并引起探测器中的粒子的束缚。
通过检测束缚粒子的位置,物理学家可以确定电子的位置。
但是,测量粒子的速度带来的挑战比测量位置还要复杂。
在现代物理中,我们使用康普顿散射来测量粒子的速度。
当一束X射线击中粒子时,它会击中粒子并散射到不同的角度。
通过检测X射线的散射角度和能量,科学家可以推断出粒子的速度。
在这种情况下,精确测量探测器的位置和精确分离X射线的散射角度变得至关重要。
总之,现代物理中粒子位置和速度的测量依赖于各种技术和方法,康普顿散射和探测器是最常用的两种方法。
在未来的研究中,科学家将继续探索新的测量方法,以获得更准确的粒子位置和速度信息,推动物理学研究的不断发展。