波形的合成和分解实验报告
方波的合成与分解

综合性实验报告题目:方波的合成与分解实验课程:信号与系统学号:姓名:班级:12自动化2班指导教师:方波的分解与合成一、实验类型综合性实验二、实验目的和要求1.观察方波信号的分解。
2.用同时分析法观测方波信号的频谱,并与方波的傅利叶级数各项的频率与系数作比较。
3.掌握带通滤波器的有关特性测试方法。
4.观测基波和其谐波的合成。
三、实验条件实验仪器1.20M 双踪示波器一台。
2.信号与系统实验箱。
四、实验原理1. 信号的频谱与测量信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。
例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)1,1(T t t +内表示为:)sin cos 1(0)(t n nb t n n n a a t f Ω+Ω∑∞=+=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。
AA(c)图7-1 信号的时域特性和频域特性信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图7-1来形象地表示。
其中图7-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图7-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。
反映各频率分量幅度的频谱称为振幅频谱。
图7-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。
反映各分量相位的频谱称为相位频谱。
在本实验中只研究信号振幅频谱。
周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。
测量时利用了这些性质。
从振幅频谱图上,可以直观地看出各频率分量所占的比重。
测量方法有同时分析法和顺序分析法。
同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。
信号分解与合成实验报告

信号分解与合成实验报告实验报告实验目的:1.了解信号分解与合成的基本概念和原理;2.掌握信号分解与合成的具体方法;3.能够利用信号分解与合成技术分析和合成简单信号。
实验仪器:信号发生器、示波器、频谱分析仪。
实验原理:信号分解是指将一个复杂信号分解成一组频率、振幅和相位不同的简单信号。
信号合成是指根据给定的频率、振幅和相位信息,将多个简单信号合成为一个复杂信号。
实验步骤:1.将信号发生器的输出接入示波器的输入端,并调整信号发生器的频率、振幅和相位设置。
2.调节示波器以及频谱分析仪的参数,观察信号在示波器上的波形和幅频特性。
实验结果与分析:在实验中,我们选择了一个周期为1s,频率为1Hz,振幅为5V,相位为0的方波信号作为实验对象。
将该方波信号输入示波器中,观察到了方波的周期性波形。
接着,我们使用频谱分析仪对方波信号进行频谱分析。
观察到频谱图中只存在基频和其奇次谐波(3Hz,5Hz,7Hz,...),并且振幅逐渐衰减。
这说明方波信号可以被分解为一组频率不同、振幅逐渐衰减的简单信号。
然后,我们选择了多个简单信号(如正弦波、方波、三角波等)并分别输入到示波器中,调整其频率、振幅和相位,观察到了不同波形的复杂信号。
这表明信号分解与合成技术可以通过调节简单信号的频率、振幅和相位,实现对复杂信号的合成。
结论:通过本实验,我们了解了信号分解与合成的基本概念和原理,掌握了信号分解与合成的具体方法。
我们可以根据需要,对复杂信号进行分解,并利用合适的简单信号进行合成,从而实现对信号的分析和合成。
这对于信号处理和通信领域具有重要意义。
实验一波形合成与分解

实验一波形合成与分解实验目的在理论学习的根底上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。
实验原理根据傅里叶分析的原理,任何周期信号都可以用一组三角函数{sin(n 0t);cos(n0t)}的组合表示,即:x(t) a0a1cos(0t) b1sin( 0t) a2cos(20t) b2sin(20t)即可以用一组正弦波和余弦波来合成任意形状的周期信号。
实验内容〔1〕方波的合成图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量合成的,本实验用图形的方式来表示它的合成。
方波信号可以分解为:x (t)2Asin(2nf0t)1,n1,3,5,7,9, n1n用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。
a.只考察从t0s到t10s这段时间内的信号。
b.画出基波分量y(t) sin(t)。
c.将三次谐波加到基波之上,并画出结果,并显示。
y(t) sin(t) sin(3*t)/3再将一次、三次、五次、七次和九次谐波加在一起。
y(t) sin(t) sin(3*t)/3 sin(5*t)/5 sin(7*t)/7 sin(9*t)/9(2)合并从基波到十九次谐波的各奇次谐波分量。
将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。
注意“吉布斯现象〞。
周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。
如果我们用周期信号傅里叶级数的局部和来近似周期信号,在不连续点附近将会出现起伏和超量。
在实际中,如果应用这种近似,就应该选择足够大的N,以保证这些起伏拥有的能量可以忽略。
设计谐波合成三角波的实验,写出实验步骤,并完成实验。
设计分析方波、三角波频谱的分析实验,写出实验步骤,并完成实验〔并比拟二者频谱的特点〕。
实验报告要求简述实验目的及原理,按实验步骤附上相应的信号波形曲线,总结实验得出的主要结论。
方波信号的分解与合成实验报告

方波信号的分解与合成实验报告一、实验目的1.了解方波信号的特点和性质;2.学习使用傅里叶级数分解和合成方波信号;3.掌握实验仪器的使用方法和实验操作技巧。
二、实验原理1.方波信号的特点和性质方波信号是一种周期性的信号,其波形为矩形,即在一个周期内,信号的幅值在一段时间内为正,另一段时间内为负,且幅值大小相等。
方波信号的频率是指信号在一个周期内重复的次数,单位为赫兹(Hz)。
2.傅里叶级数分解和合成方波信号傅里叶级数是将一个周期性信号分解成一系列正弦和余弦函数的和的方法。
对于一个周期为T的周期性信号f(t),其傅里叶级数表示为:f(t)=a0/2+Σ(an*cos(nωt)+bn*sin(nωt))其中,a0/2为信号的直流分量,an和bn为信号的交流分量,ω=2π/T为信号的角频率,n为正整数。
傅里叶级数合成是将一系列正弦和余弦函数的和合成为一个周期性信号的方法。
对于一个周期为T的周期性信号f(t),其傅里叶级数合成表示为:f(t)=Σ(cncos(nωt)+dnsin(nωt))其中,cn和dn为信号的傅里叶系数,n为正整数。
三、实验器材和仪器1.示波器2.函数信号发生器3.万用表4.电阻箱5.电容箱四、实验步骤1.将函数信号发生器的输出设置为方波信号,频率为1kHz,幅值为5V。
2.将示波器的输入连接到函数信号发生器的输出端口。
3.调节示波器的水平和垂直控制,使得方波信号的波形清晰可见。
4.使用万用表测量方波信号的频率和幅值,并记录数据。
5.使用电阻箱和电容箱分别改变方波信号的频率和幅值,并记录数据。
6.使用傅里叶级数分解方法,将方波信号分解成一系列正弦和余弦函数的和,并记录数据。
7.使用傅里叶级数合成方法,将一系列正弦和余弦函数的和合成为一个周期性信号,并记录数据。
五、实验结果与分析1.方波信号的特点和性质通过示波器观察方波信号的波形,可以发现其具有矩形的特点,即在一个周期内,信号的幅值在一段时间内为正,另一段时间内为负,且幅值大小相等。
信号的分解与合成实验报告总结

信号的分解与合成实验报告总结
一、实验目的
本次实验的目的是:
1. 掌握信号的分解与合成原理;
2. 了解信号的合成生成方法;
3. 掌握合成信号的基本特性。
二、实验内容
本次实验的内容包括:
1. 利用MATLAB编程实现信号合成程序;
2. 信号合成程序的调试;
3. 利用合成信号产生平坦的信号;
4. 利用合成信号产生任意波形;
5. 记录下合成信号的波形并作出比较;
6. 对合成信号的结果进行分析与评价。
三、实验结果
1. 利用MATLAB编程实现信号合成程序:通过本次实验,我们可以用MATLAB编程实现一个信号合成程序,以满足任意一种信号的所需。
2. 平坦信号:利用本次实验,通过对直线段和曲线段的组合,我们可以得到一个看上去是弧形的信号,它是一个平坦信号,我们可以通过改变曲线段的个数来调整这个信号的过程。
3. 任意波形:在本次实验中,我们可以利用合成信号来得到任
意波形。
通过改变曲线段的弯曲度和曲线段的个数,我们可以得到不同波形。
4. 记录下合成信号的波形:在本次实验中,我们可以将波形记录下来,并作出比较,以确认合成出的波形的情况。
5. 对合成信号的结果进行分析与评价:本次实验中,我们可以对合成的信号进行分析与评价,以看出是否符合要求,并能够作出准确评价。
四、总结
本次实验主要是学习信号的分解和合成,及其相关原理。
信号的分解和合成主要是通过程序来实现的,在程序的帮助下,可以很容易地实现信号的分解和合成。
本次实验通过实现信号合成程序的调试,发现、记录合成的信号并作出评价的方法,让我们能够更好地了解信号的分解和合成。
信号分解与合成实验报告

信号分解与合成实验报告本次实验主要涉及信号分解和合成的过程和方法。
其中,我们研究了信号分解和合成的基本概念和原理,利用 MATLAB 软件进行信号分解和合成实验,通过实验数据和实验结果验证了信号分解和合成的正确性和实用性。
一、信号分解信号分解,是指将一个信号分解成若干个简单的成分。
常用的信号分解方法有傅里叶变换、小波变换等。
本次实验我们采用了小波变换对信号进行分解。
小波变换是一种时频分析方法,具有良好的适应性、时间分解精度高、尤其适合非平稳信号的分析。
在小波分析中,我们通过选择适当的小波函数和选取不同的分解层数,可以将信号分解为越来越细节和越来越精确的小波成分,对信号的各种特征和结构有较好的拟合和表示,从而更为深入地了解信号的内在特性。
在 MATLAB 环境下,我们通过调用 Wavelet Toolbox 中的相关函数,实现了信号分解的实验。
具体步骤为:1.加载待处理信号,使用 load 命令将信号载入 MATLAB 环境中。
2.选择所需的小波函数。
在 Wavelet Toolbox 中,提供了多种不同形态的小波函数,可根据实际需求进行选择。
3.调用 wfilters 函数进行小波滤波器设计。
该函数根据所选小波函数的性质,生成对应的离散小波滤波器系数(低通和高通滤波器系数)。
4.使用 wmulticfs 函数对信号进行小波分解。
该函数将信号分解为多个不同尺度和不同频带的小波系数,可用于分析信号中的不同成分。
5.可视化分解结果,通过图像展示各个小波系数的分布和特征,可以更直观地了解信号的结构和组成成分。
二、信号合成信号合成,是指将多个简单的信号成分重新组合起来,形成新的信号。
信号合成常用的方法有基本波形叠加法、线性组合法、窄带带通滤波法等。
在本次实验中,我们采用了基本波形叠加法为例,对信号进行合成。
基本波形叠加法,是指将一系列基本波形(如正弦波、三角波)按照一定比例组合,形成新的波形。
该方法简单易行,对于周期信号的分析具有良好的适应性。
【最新资料】实验二-方波信号的分解与合成及相位、幅度对波形合成的影响

实验二 方波信号的分解与合成及相位、幅度对波形合成的影响(4学时)一 、实验目的1 、通过观察方波信号的分解与合成过程,理解利用傅利叶级数进行信号频谱分析的方法。
2 、了解频率失真和相位失真对方波信号合成波形的影响。
3、 加深理解相位对波形合成中的作用。
4、 加深理解幅值对波形合成的作用。
二 、实验内容1、通过观察方波信号的分解与合成过程,进一步理解信号的频谱分析方法。
2、了解频率失真和相位失真对方波信号合成波形的影响。
3、加深理解相位对波形合成中的作用。
4、加深理解幅值对波形合成的作用。
三、实验原理说明2.1电信号的分解任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。
对周期信号由它的傅里叶级数展开可知,各次谐波为基波频率的整数倍。
而非周期信号包含了从零到无穷大的所有频率成分,每一频率成分的幅度均趋向无限小。
如图4-1所示方波信号的傅里叶级数展开式为)5sin 513sin 31(sin 4)( +++=t t t At f ωωωπ (2-1)其中Tπω2=为方波信号的角频率。
图2-1 方波信号由式(2-1)可知,方波信号中只含奇次谐波的正弦分量。
通过一选频网络可以将方波信号中所包含的各次谐波分量提取出来。
本实验采用有源带通滤波器作为选频网络,共5路。
各带通滤波器的B W =2Hz ,如图2-2所示。
图2-2带通滤波器将被测信号加到选频网络上,从每一带通滤波器的输出端可以用示波器观察到相应频率的谐波分量。
本实验采用的被测信号为100Hz 的方波,通过各滤波器后,可观察到1、3、5次谐波,如图2-3。
而2、4次谐波在理想情况下应该无输出信号,但实际上方波可能有少量失真以及受滤波器本身滤波特性的限制而使偶次谐波分量未能达到理想的情况。
方波激励方波基波u iu 5 u 4 u 3 u 2 u 1200Hz 300Hz 400Hz 500Hz100Hz方波三次谐波方波五次谐波图2-3 方波的1、2、3次谐波实验电路图2.2.1电路框图图2-4电路框图由双运放LM324组成带通滤波电路(B W 约2Hz )和射随器;三极管9013组成移相电路,起到相位补偿的作用。
5实验五 方波信号的分解与合成

实验五 方波信号的分解与合成一、实验目的和要求1、了解和掌握方波信号的产生、方波信号的谐波分解和合成的电路原理和方法;2、了解和掌握电路原理图和PCB 设计的一般方法;3、了解和掌握电路焊接和调试的一般方法;4、制作出方波的分解和合成的电路实物并调试成功。
二、实验仪器1、台式电脑;2、双踪示波器1台;3、数字万用表;4、电路板制作工具。
三、实验原理1、方波信号的分解和合成原理任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。
从周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。
图11-1中所示的方波信号)(t f 可以分解为奇次谐波相加的形式,如公式(5-1)所示。
]])12sin[(121)3sin(31)[sin(4)( +Ω++++Ω+Ω=t k k t t U t f d π, ,3,2,1,0=k , (5-1) 其中T π2=Ω,T 为方波信号的周期。
图5-1 方波及方波信号的分解和合成原理框图图5-1中所示为方波信号的分解与合成电路的电路原理框图。
将被测方波信号加到分别调谐于基波和各次奇谐波频率的一系列有源带通滤波器电路上,从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。
实验所用的被测信号)(t f 是50Hz 的方波,用作选频网络的5种有源带通滤波器的输出分别是1(基波)、2、3、4、5次谐波,频率分别是50Hz 、100Hz 、150Hz 、200Hz 、250Hz 。
在理想情况下,偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中的1、3、5、7、9次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9),但实际上输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性都会使是偶次谐波分量不能达到理想零的情况,因此非理想的方波信号包含一定的偶次谐波分量。
2、方波信号的产生、分解和合成的电路实现原理总体方案如下所述:使用集成函数信号发生器模块(ICL8038)产生一个幅值在5V ,占空比为50%,频率为50Hz 的双极性的周期性的方波信号;方波信号分别通过3路二阶有源RC 带通滤波电路,分别取得方波信号的基波(50Hz )、3次谐波(150Hz )和5次谐波(250Hz )信号,这3路谐波信号分别通过RC 有源移相放大电路,分别将其相位和幅值调整到基本满足公式(5-1)所示的要求的谐波信号,最后通过同相有源加法器电路将其相加,还原出一个近似的方波信号,还原出的近似方波信号幅值为5V,频率为50Hz,占空比为50%,波峰部分波形尽量平坦,在半个周期内有5个波头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实
验
要
求
1.简述实验目的和原理,画出扩展频谱功能后的虚拟仪器装配图。
2.拷贝实验系统运行界面,插入到Word格式的实验报告中,并附上所设计的虚拟仪器脚本文件,用Winzip压缩后通过Email上交实验报告。
实
验
原
理
实
验
仪
器
1.计算机 1 台
1.正弦波信号与正弦波信号的合成:
2.正弦波信号与方波信号的合成:
3.正弦波信号与三角波信号的合成:
4.方波信号与三角波信号的合成:
实
验
总
结
指
导
教
师
意
见
签名:年 月 日
图5波形合成与分解实验环境
下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线号,6015、6029、6040、6043为定义的四片脚本芯片的名字
图6波形合成与分解实验装配图
3.按公式迭加正弦波信号,观察合成信号波形的变化。
4.对实验进行扩展,增加幅值谱分析功能,观察波形变化过程中的信号频谱变化
贵 州 大 学 实 验 ห้องสมุดไป่ตู้ 告
学 院: 专 业: 班 级:
姓 名
学 号
实验组
实验时间
指导教师
成 绩
实验项目名称
实
验
目
的
1.加深了解信号分析手段之一的傅立叶变换的基本思想和物理意义。
2.观察和分析由多个频率、幅值和相位成一定关系的正弦波叠加的合成波形。
3.观察和分析频率、幅值相同,相位角不同的正弦波叠加的合成波形。
2. DRVI快速可重组虚拟仪器平台 1 套
3.打印机 1 台
实
验
步
骤
1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI采集仪主卡检测”或“网络在线注册”进行软件注册。
2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,如“http://服务器IP地址/GccsLAB/index.htm”,在实验目录中选择“波形合成与分解实验”,建立实验环境。