七年级数学常见易错题

合集下载

初一数学易错题100道

初一数学易错题100道

七年级数学易错题汇总7年级上期末易错题复习1.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为__________.2.已知A、B、C三点在同一直线上,若AB=20,AC=30,则BC的长为__________.3.在数轴上,A表示的数为-2,AB长为5,则B表示的数为___________.4.有一个三位数,百位数字为a,个位数是十位数字的2倍少3,十位数比百位数字的3 倍少4,则这个三位数应表示为:____________(用含a的代数式表示)5.学校组织一次篮球比赛,比赛要求每两个队只比赛一场,一共有8支球队参赛,则共需要安排_________场比赛。

6.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于__________.7.对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=__________;②若[x+3]=﹣15,且x是整数,则x=__________.8.若∠AOB=50°,∠BOC=20°,则∠AOC=_______________.9.观察下面一列数:﹣,,﹣,,﹣,,…探求其规律.得到第2012个数是__________.第n个数应该表示为____________________.10.若a的绝对值等于5,b=﹣2,且ab>0,则a+b=__________.11.若(m﹣2)2+|n+3|=0,则m﹣n=__________.m n=________________.12.a、b在数轴上得位置如图所示,化简:|a+b|﹣2|b﹣a|=__________.13.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=__________.14.在有理数范围内定义运算“∠”,其规则为a∠b=ab+1,则方程(3∠4)∠x=2的解应为x=__________.15.用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍__________根,拼成第n个图形(n为正整数)需要火柴棍__________根(用含n的代数式表示).16.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m ﹣2;②40m ﹣10=43m+2;③=;④=;⑤43m=n+2.其中正确的是__________(只填序号).17.在数学兴趣小组活动中,小明为了求…+的值,在边长为1的正方形中,设计了如图所示的几何图形.则…+的值为__________(结果用n 表示).18.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.9 ∠ ∠ x ﹣6 2 …(1)可求得x=__________,第2014个格子中的数为__________;(2)若前m 个格子中所填整数之和p=2015,则m=__________,若p=2014,则m=__________;(3)若取前3个格子中的任意两个数记作a 、b ,且a ≥b ,那么所有的|a ﹣b|的和可以通过计算|9﹣∠|+|9﹣∠|+|∠﹣∠|得到,其结果为__________;若取前9个格子,则所有的|a ﹣b|的和为__________.19.三个有理数a、b、c之积是负数,其和是正数,当x =c cb ba a++时,则______29219=+-x x 。

七年级下册数学易错题50道

七年级下册数学易错题50道

七年级下册数学易错题50道一、相交线与平行线1. 判断题:不相交的两条直线叫做平行线。

(错误)解析:必须是在同一平面内不相交的两条直线才叫做平行线,如果不在同一平面内,不相交的直线不一定平行。

2. 若∠1与∠2是同旁内角,∠1 = 50°,则∠2的度数是()A.50°B.130°C.50°或130°D.不能确定答案:D解析:两直线平行,同旁内角互补;两直线不平行,同旁内角的关系不确定,只知道∠1 = 50°,不知道两直线的位置关系,所以∠2的度数不能确定。

3. 如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1 = 72°,求∠2的度数。

解:因为AB∥CD,∠1 = 72°,所以∠BEF = 180°∠1 = 180°-72° = 108°。

因为EG平分∠BEF,所以∠BEG=公式∠BEF=公式。

又因为AB∥CD,所以∠2 = ∠BEG = 54°。

二、实数4. 公式的平方根是()A.2B.±2C.4D.±4答案:B解析:先计算公式,然后求4的平方根,因为公式,所以4的平方根是±2。

5. 下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数和负实数答案:C解析:无限循环小数是有理数,A错误;公式是有理数,B错误;无理数是无限不循环小数,C正确;实数包括正实数、0和负实数,D错误。

6. 计算:公式解:公式,公式,公式。

则原式公式。

三、平面直角坐标系7. 点P(m + 3,m + 1)在x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B解析:因为点P在x轴上,所以P点的纵坐标为0,即m + 1 = 0,解得m=-1。

初一数学易错题带答案

初一数学易错题带答案

初一代数易错练习1.已知数轴上的A 点到原点的距离为2,那么数轴上到A 点距离是3的点表示的数为1、-1、5、-52.一个数的立方等于它本身,这个数是 1 。

3.用代数式表示:每间上衣a 元,涨价10%后再降价10%以后的售价 变低 ( 变低,变高,不变 )4.一艘轮船从A 港到B 港的速度为a,从B 港到A 港的速度为b,则此轮船全程的平均速度为 二分之a 加b 。

5. 青山镇水泥厂以每年产量增长10%的速度发展,如果第一年的产量为a,则第三年的产量为 一加百分之十乘a 再加百分之十再乘a 。

6.已知a b =43,x y =12,则代数式374by ax ay by +-的值为 57.若|x|= -x,且x=1x,则x= -1 8.若||x|-1|+|y+2|=0,则xy= 二分之一或负二分之一 。

9.已知a+b+c=0,abc ≠0,则x=||a a +||b b +||c c +||abc abc,根据a,b,c 不同取值,x 的值为 0 。

10.如果a+b<0,且b>0,那么a,b,-a,-b 的大小关系为 负A 大于B 大于负B 大于A 。

11.已知m 、x 、y 满足:(1)0)5(2=+-m x , (2)12+-y ab与34ab 是同类项.求代数式:)93()632(2222y xy x m y xy x +--+-的值 44 .12.化简-{-[-(+2.4)]}= -24 ;-{+[-(-2.4)]}= -2.413.如果|a-3|-3+a=0,则a 的取值范围是 小于等于三 14.已知-2<x<3,化简|x+2|-|x -3|= 2x-115.一个数的相反数的绝对值与这个数的绝对值的相反数的关系式 0 在有理数,绝对值最小的数是 -1 ,在负整数中,绝对值最小的数是 -1 16. 由四舍五入得到的近似数17.0,其真值不可能是( D ) A 17.02 B 16.99 C 17.0499 D16.4917.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标准的80%)优惠卖出,结果每作服装仍可获利15元,则这种服装每件的成本是 12518.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝 矿泉水 519.观察下面的每列数,按某种规律在横线上填上适当的数,并说明你的理由。

7年级数学易错题

7年级数学易错题

7年级数学易错题一、有理数运算类。

1. 计算:(-2)^3 - (-3)^2 ÷ (-1)^2023。

- 解析:- 先计算乘方运算。

(-2)^3=-8,(-3)^2 = 9,(-1)^2023=-1。

- 然后进行除法运算,9÷(-1)= - 9。

- 最后进行减法运算,-8-(-9)=-8 + 9 = 1。

2. 计算:(1)/(2)-<=ft(1)/(3)right+<=ft(-(1)/(4))。

- 解析:- 先计算绝对值,<=ft(1)/(3)right=(1)/(3)。

- 然后进行通分计算,(1)/(2)-(1)/(3)-(1)/(4)=(6 - 4 - 3)/(12)=-(1)/(12)。

二、整式加减类。

3. 化简:3a + 2b - 5a - b。

- 解析:- 合并同类项,将含有相同字母的项合并。

- 对于a的项,3a-5a=-2a;对于b的项,2b - b = b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1。

- 解析:- 先去括号,2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。

- 再合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 - 5y^2)=-x^2 - y^2。

- 当x = - 2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程类。

5. 解方程:3x+5 = 2x - 1。

- 解析:- 移项,将含有x的项移到等号一边,常数项移到等号另一边。

- 得到3x - 2x=-1 - 5。

- 合并同类项得x=-6。

6. 解方程:(x + 1)/(2)-(2x - 1)/(3)=1。

- 解析:- 先去分母,方程两边同时乘以6,得到3(x + 1)-2(2x - 1)=6。

人教版七年级数学易错题(含解析)

人教版七年级数学易错题(含解析)

七年级数学易错题1、a -一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a 是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定, a -可能是正数,0,负数 分析:若a 是正数,则a -就是负数, 若a =0则a -=0若a 是负数,则a -就是正数.2、在数轴上点A 表示的数是7.点B ,C 表示的两个数互为相反数且C 与A 之间的距离为2,求点B ,C 对应的数. 错解: 点C 与点A 之间的距离为2, ∴点C 表示的数为5.点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.剖析:点C 与点A 之间的距离为2,则点C 有可能在点A 的左侧也有可能在点A 右侧.故要分情况讨论.正解: 点C 与点A 之间的距离为2,∴点C 在点A 的左侧2个单位长度或点C 在点A 的右侧2个单位长度. ①点C 在点A 的左侧2个单位长度,则点C 表示的数为5. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-5.②点C 在点A 的右侧2个单位长度,则点C 表示的数为9. 点B 和点C 表示的数互为相反数, ∴B 表示的数为-9.3、.计算:200520011171311391951511⨯+⨯+⨯+⨯+⨯错解:原式=2005120011171131131919151511--+-+-+- =200511-=20052004 剖析:由于学生在长期的学习中形成的思维定式,用类似于解200520041200420031431321211⨯+⨯++⨯+⨯+⨯ 方法直接去求解.而忽视本题54511=-, 4549151=-结果中分子是4而不是1.故这样做是错的.正解:原式=41⎪⎭⎫ ⎝⎛--+-+-+-⨯2005120011171131131919151511=41)200511(-⨯ =2005501.4、计算: 17391326-⨯.【错解】原式17391313261750721515.2=-⨯+⨯=-+=-【错解剖析】本题错误原因是把173926-看成173926-与的和,而它应是39-与1726-的和. 【正确解答】原式171713913135075152622=-⨯-⨯=--=-. 5、计算:(1)[]24)3(2611--⨯--; 【错解】错解一:原式=1-16×(2-9)=1-16×(-7)=1+76=136. 错解二:原式=-1-16×(2-9)=-1-16×(-7)=-1-76=-136. 【错解剖析】错解一中是将41-计算成1得到136,错解二中是去括号符号出错得到136-.【正确答案】原式=-1-16×(2-9)=-1-16×(-7)=-1+76=-16(2)42221(1)32()2--÷⨯-.【错解】原式=1-9÷1=-8.【错解剖析】没有按照运算顺序计算,而是先计算2212()2⨯-.【正确答案】原式=1-9×14×14=1-916 =716. 6、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 7、用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数;(2)a 的2倍与b 的31的差除以a 与b 的差的立方.错解:(1)()()y x y x +-+22 (2)()3312b a b a -÷⎪⎭⎫ ⎝⎛-.剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是()()y x y x +-+22.(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --. 正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 8、已知方程24)3(2-=+--m x m m 是关于x 的一元一次方程.求:(1)m 的值;(2)写出这个关于x 的一元一次方程. 【错解】m =±3.【剖析】忘记m -3≠0这个条件.【正解】(1)由⎩⎨⎧≠-=-0312m m 得m =-3.(2)-6x +4=-5.9、解方程7x -112(1)(1)223x x x ⎡⎤--=-⎢⎥⎣⎦. 【错解】 7x -)1(32)1(2121-=--x x x .)1(4)1(3342-=---x x x x . 4433342-=+--x x x x . 32x =-7.x =327- .【剖析】 去中括号时)1(21--x 漏乘系数21,另外,同样在这一步去括号时忘记了考虑符号问题.【正解】第一次去分母,得42x -13(1)4(1)2x x x ⎡⎤--=-⎢⎥⎣⎦.第一次去括号,得 42x -44)1(233-=-+x x x .第二次去分母,得 84x -6x +3x -3=8x -8. 移项,合并同类项,得 73x =-5.把系数化为1,得 x =735-. 10. 解方程1-x =5.【错解】由1-x =5得到x -1=5.∴x =6.【剖析】去绝对值符号必须考虑正负性x -1=5或x -1=-5. 【正解】由1-x =5得到x -1=5或x -1=-5. ∴x =6或x =-4.11、某水果批发市场香蕉的价格如下表:强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264, 解得:x =32.∴第一次购买32千克香蕉,第二次购买18千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +5(50-x )=264, 解得:x =14.50-14=36(千克).∴第一次购买14千克香蕉,第二次购买36千克香蕉.⑵当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x )千克香蕉,根据题意,得:6x +4(50-x )=264,解得:x =32(不符合题意,舍去).答:第一次购买14千克香蕉,第二次购买36千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体.错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为C 、D 也是柱体.图形C 因为上下底面不平行,所以不是柱体;图形D 上下底面大小不等,所以也不是柱体.正确答案:A 和B 是柱体(A 是圆柱,B 是棱柱).13、已知点B 在直线AC 上,AB =6,AC =10,P 、Q 分别是AB 、AC 的中点,求PQ 的长.错解: PQ =2.错解分析:这是一道典型的数形结合题,用几何的思想,代数的方法进行计算,重点要画出符合条件的两种图形,注重分类的完备性.正确答案:本题B 点有在线段AC 上或在射线CA 上两种可能.由P 、Q 分别为AB 、AC 的中点可知AP=21AB =3,AQ =21AC =5,所以PQ =AQ -AP =2或PQ =AQ +AP =8.所以PQ 的长为2或8.14、(1)计算14°41′25″×5;(2)把26.29°转化为度、分、秒表示的形式. 错解一:(1)14°41′25″×5=70°205′125″=72°6′25″; (2)26.29°=26°29′.错解二:(1)14°41′25″×5=70°205′125″=91°7′5″; (2)26.29°=26°2′9″.剖析:角的度量单位度、分、秒之间是六十进制(即满60进1),而不是百进制或十进制,在由大单位化成下一级小单位时应乘以60,由小单位化成上一级大单位时应除以60,上述错解均因单位间的进制关系不清而致错.正解:(1)14°41′25″×5=70°205′125″=73°27′5″; (2)26.29°=26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+17′+0.4×60″=26°17′24″.15、如图,已知∠AOC =∠BOC =∠DOE =90°,问图中是否有与∠COE 互补的角?A BC PQ APQCB错解:观察图形可知,图中没有与∠COE互补的角.剖析:图中真的没有与∠COE互补的角吗?还是让我们分析后再下结论吧!由∠AOC =90°可知:∠AOD与∠COD互为余角;由∠DOE=90°可知:∠COE与∠COD互为余角,根据“同角的余角相等”得∠COE=∠AOD.可见,要找与∠COE互补的角,可转化为找与∠AOD互补的角,观察图形知:∠BOD与∠AOD互为补角,因此与∠COE互补的角是∠BOD.由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠COE互补的角,它是∠BOD.思考:图中有没有与∠COD互补的角?。

七年级数学试卷错题集

七年级数学试卷错题集

一、选择题1. 错题:3 + 2 × 4 = 20正确答案:3 + 2 × 4 = 11错误原因:未正确运用乘法优先级原则。

2. 错题:8 ÷ 2 + 2 = 7正确答案:8 ÷ 2 + 2 = 6错误原因:未正确运用除法和加法的顺序。

3. 错题:5 × (3 + 2) = 25正确答案:5 × (3 + 2) = 25错误原因:题目本身正确,但误以为题目有误。

4. 错题:0.5 × 0.5 = 0.25正确答案:0.5 × 0.5 = 0.25错误原因:题目本身正确,但误以为题目有误。

5. 错题:(-2) × (-3) = 6正确答案:(-2) × (-3) = 6错误原因:题目本身正确,但误以为题目有误。

二、填空题1. 错题:一个数的3倍加上4等于24,这个数是()正确答案:8错误原因:未正确运用代数方法解方程。

2. 错题:如果a = 5,那么a - 2 =()正确答案:3错误原因:未正确进行变量替换。

3. 错题:一个长方形的长是6厘米,宽是3厘米,它的面积是()正确答案:18平方厘米错误原因:未正确运用长方形面积公式。

4. 错题:一个数的平方根是5,那么这个数是()正确答案:±5错误原因:未考虑平方根的正负。

5. 错题:一个数的倒数是2,那么这个数是()正确答案:1/2错误原因:未正确理解倒数的概念。

三、解答题1. 错题:解方程:2x - 5 = 11正确答案:x = 8错误原因:未正确运用等式性质解方程。

2. 错题:计算:(-3) × 4 + 2 × (-5)正确答案:-14错误原因:未正确运用有理数混合运算规则。

3. 错题:求长方体的体积,长是8厘米,宽是4厘米,高是6厘米。

正确答案:192立方厘米错误原因:未正确运用长方体体积公式。

4. 错题:计算三角形面积,底是10厘米,高是6厘米。

数学初一上学期期末易错题(附答案)

数学初一上学期期末易错题(附答案)

数学初一上学期期末易错题一、计算题1.解方程:(1)0.1−0.2x 0.3−1=0.7−x 0.4(2)3x ﹣7(x ﹣1)=3+2(x+3)2.解方程(1)0.1x+0.030.2−0.2x−0.030.3+34=0 (2)2014−x 2013+2016−x 2015=2018−x 2017+2020−x20193.若有理数a 、b 、c 在数轴上对应的点A 、B 、C 位置如图 化简 |c|−|c −b|+|a +b|+|b|4.已知2x m y 2与-3xy n 是同类项 试计算下面代数式的值:m -(m 2n +3m -4n)+(2nm 2-3n). 5.解关于x 的方程mx-1=nx6.计算: −12016×[(−2)5−32−514÷(−17)]−2.57.计算 |13−12|+|14−13|+|15−14|+⋯|12002−12001| |8.−(−3)2−[3+0.4×(−112)]÷(−2)9.如果1<x <2 求代数式 |x−2|x−2−|x−1|1−x +|x|x 的值.10.化简 | |x−1|−2|+|x+1| 11. 解下列方程:(1)3x+2=2x-5 (2)3(2x+1)=4(x-3)(3)13(4−3x)=12(5x −6)(4)313x +123=511x +17(5)2x −23(x −2)=13[x −12(3x +1)](6)12{12[12(12x −2)−2]−2}−2=2 12. 计算下列各式(1)(3x 2+2x −3)(2x −1)(2)(4x 4−6x 2+2)(5x 3−2x 2+x −1) (3)(a +b)2−(a −b)2 (4)(a +b)3−3ab(a +b)(5)(a +b +c)(a 2+b 2+c 2−ab −bc −ca) (6)(3x 3−4x 2+5x −1)÷(x 2+3x −1) (7)(5x 3−7x +1)÷(2x +1) (8)(x 3+1)÷(x +1)(9)(a 2−b 2)÷(a 2+2ab +b 2)×(a 3+b 3) (10)(7x 2+3x)÷(2x +1)×(6x +3)÷(7x +3)13.观察 11×2 + 12×3 =(1- 12 )+( 12 - 13 )=1- 13 = 23(1)计算:11×2 + 12×3 + 13×4 +……+ 12013×2014 = (2)计算: 11×3+13×5+15×7+⋯…+199×10114.先化简 再求值.(1)2−(3x −2)−x 2 其中 x =1(2)2(12x 2−3xy −y 2)−2(−2x 2−7xy +3y 2) 其中 x y 满足 |x −2|=−√y −2x15.已知 |a|a + |b|b+ |c|c =-1 试求 ab |ab| + bc |bc| + ca |ca| + abc|abc| 的值. 16.试证明: (x +y −2z)3+(y +z −2x)3+(z +x −2y)3 = 3(x +y −2z)(y +z −2x)(z +x −2y)17.若 a <0 试化简 2a−|3a|||3a|−a|18.已知 |a|=523,|b|=113求a-b 的值19.解关于x 的方程 x−a b −x−b a =b a 其中 a ≠0,b ≠0,a ≠b20.若 x <0 化简 ||x|−2x||x−3|−|x|二、解答题21.已知关于x 的方程3a(x+2)=(2b-1)x+5有无数多个解 求a 与b 的值.22.数字1、2、3、4、5及6可组成不同组合的三个两位数 且每个数字恰好用一次.把每组合的三个两位数相加 写出全部由此得到的和.(例如 因为12+34+56=102 所以102是其中一个得到的和.)23.已知a 、b 、c 为有理数 且满足a=8-b c 2=ab-16.求a 、b 、c 的值.24.已知线段AB=10cm 直线AB上有一点C 且BC=4cm M是线段AC的中点求AM的长.25.一项工程甲单独做15天完工乙单独做20天完工丙单独做24天完工.现在先让甲、乙合做5天剩下工程由丙一个人完成.丙需做多少天?26.设(ax3−x+6)(3x2+5x+b)=6x5+10x4−7x3+13x2+32x−12求a与b的值27.8点20分时针与分针所成的角是多少度?28.已知A B C三点在同一条直线上AB=16.D是BC中点并且AD=12 求BC。

初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)

初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)

精心整理初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.(3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学常见易错题包括但不限于:
计算问题:例如,(-2)^2=4(√)或-2^2=-4(√)等,学生在进行乘方运算时,常常因为运算符号、指数及运算顺序的错误而产生结果偏差。

绝对值问题:学生在处理绝对值时,可能未能正确理解绝对值的代数意义,导致运算结果出错。

例如,在求解“ |x-1|+5=6 ”时,有些学生可能会得出x=1或x=-2两个解,但实际上,由于绝对值的性质,x的解应该是x=1/2。

方程问题:学生在解方程时,可能会因为运算顺序、移项、去括号等步骤出错,导致结果不正确。

例如,解方程“3x-2=5”时,有些学生可能会得出x=3,但实际上,正确的解应该是x=7/3。

应用题:学生在解决实际应用问题时,可能未能正确理解题意,或者在建立数学模型、设置未知数、列方程等步骤中出现错误,导致最终答案不准确。

概念理解问题:学生对某些数学概念的理解不够深入,导致在解题过程中出现偏差。

例如,对于“相反数”的概念,学生可能会认为只有正数才有相反数,但实际上,任何数都有相反数。

以上仅是七年级数学中部分常见易错题类型,学生在学习过程中应多做练习,加深对数学概念、运算法则和公式的理解,提高解题的准确性和速度。

相关文档
最新文档