EVIEWS时间序列实验指导(上机操作说明)

合集下载

Eviews上机手册

Eviews上机手册

《计量经济学》上机指导手册统计学院数量经济教研室2004年3月目录第一部分 Eviews基本操作_____________________________________________________1第一章预备知识____________________________________________________________1第二章 Eviews的基本操作____________________________________________________6第二部分上机实习操作_______________________________________________________17第三章简单线性回归模型与多元线性回归模型________________________________17第四章多重共线性________________________________________________________23第五章异方差性__________________________________________________________32第六章自相关性__________________________________________________________35第七章分布滞后模型与自回归模型_________________________________________38第八章虚拟变量_________________________________________________________42第九章联立方程模型______________________________________________________44第一部分Eviews基本操作第一章预备知识一、什么是EviewsEviews (Econometric Views)软件是QMS(Quantitative Micro Software)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

Eviews 实验操作手册(部分)

Eviews 实验操作手册(部分)

Eviews实验操作记录(慢慢整理)相关系数检验:W AGE ED SEXW 1.000000 0.210152 0.495856 -0.260906AGE 0.210152 1.000000 -0.038637 0.144689ED 0.495856 -0.038637 1.000000 -0.084487SEX -0.260906 0.144689 -0.084487 1.000000①可以在命令窗口键入命令:cor x y z……,就会输出相关系数矩阵。

②假设你的样本数据序列:x1 x2从主菜单选择Quick/Group Statistics/Correlations之后会弹出个对话框,在对话框选择你的目标序列x1 x2说明:序列相关好像只有正相关、负相关、完全相关、完全不相关、强相关、弱相关等概念。

相关系数为1是完全正相关,-1是完全负相关,0是完全不相关。

个人感觉0.5左右的相关关系(趋势)就比较弱了。

eviews提供的相关计算是指序列之间的线性相关关系。

如果序列之间不存在线性相关,也有可能存在其他类型的相关关系,如对数相关、指数相关等等。

通常显著性是和建设检验关联的。

统计假设检验也称为显著性检验,即指样本统计量和假设的总体参数之间的显著性差异。

显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。

显著性差异就是实际样本统计量的取值和假设的总体参数的差异超过了通常的偶然因素的作用范围,说明还有系统性的因素发生作用,因而就可以否定某种条件不起作用的假设。

假设检验时提出的假设称为原假设或无效假设,就是假定样本统计量与总体参数的差异都是由随机因素引起,不存在条件变动因素。

假设检验运用了小概率原理,事先确定的作为判断的界限,即允许的小概率的标准,称为显著性水平。

如果根据命题的原假设所计算出来的概率小于这个标准,就拒绝原假设;大于这个标准则接受原假设。

这样显著性水平把概率分布分为两个区间:拒绝区间,接受区间。

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。

Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。

本文将介绍如何使用Eviews进行时间序列分析。

首先,打开Eviews软件,并导入需要分析的时间序列数据。

在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。

导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。

接下来,对时间序列数据进行初步的观察和描述分析。

在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。

然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。

可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。

接下来,进行时间序列模型的构建和估计。

在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。

在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。

然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。

在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。

点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。

估计完成后,可以查看估计结果。

在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。

可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。

eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测) eviews实验指导(ARIMA模型建模与预测)ARIMA模型是一种常用的时间序列分析方法,可以用于建模和预测时间序列数据。

在eviews软件中,我们可以利用其强大的功能进行ARIMA模型的建模和预测分析。

一、数据准备与导入在进行ARIMA模型建模之前,首先需要准备好相关的时间序列数据,并导入eviews软件中。

可以通过以下步骤进行操作:1. 创建一个新的工作文件,点击"File" -> "New" -> "Workfile",选择合适的时间范围和频率。

2. 在eviews软件中,点击"Quick" -> "Read Text",导入包含时间序列数据的文本文件。

确保文本文件中的数据格式正确,并根据需要设置导入选项。

3. 确认数据已经成功导入,可以通过在工作文件窗口中查看和编辑数据。

二、ARIMA模型建模在eviews中,建立ARIMA模型需要进行以下步骤:1. 点击"Quick" -> "Estimate Equation",打开方程估计对话框。

2. 在对话框中,选择要建模的时间序列变量,并选择ARIMA模型。

根据数据的特点,可以选择不同的AR、MA和差分阶数。

3. 设置其他参数,如是否包含常数项、是否进行季节性调整等。

根据具体分析需求进行选取。

4. 点击"OK",进行模型估计。

eviews将自动计算出ARIMA模型的系数估计和相应的统计指标。

5. 检查模型的拟合优度,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断模型是否合适。

三、模型诊断与改进建立ARIMA模型后,需要对模型进行诊断,以确保其满足建模的基本假设。

常见的诊断方法包括:1. 检查模型的残差序列是否为白噪声,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断。

实验一EVIEWS中时间的序列相关函数操作

实验一EVIEWS中时间的序列相关函数操作

实验一EVIEWS中时间的序列相关函数操作
1、单变量时间序列相关函数
(1)AutoReg(自回归):自回归模型(也称为自动过程)是一种统计模型,可以用来研究一个变量与它自身以前的值之间的关系。

它可以被用来描述任何由这种类型的非平稳的随机过程生成的数据。

(2)CrossCorr(互相关):互相关函数是对两个时间序列之间的相关性进行评估的方式。

它采用两个时间序列中的观测,计算它们之间的相关性,并返回一个相关系数值,表明它们之间的相关关系。

(4)MA:移动平均函数是一种从一组数据中提取出其基本趋势的有效方法。

它通过计算一组数据的平均值来应用,然后根据当前值来计算其他值。

在EViews中,移动平均函数可以使用MA函数来计算。

2、多变量时间序列相关函数
(1)VAR:VAR是短期预测的一种重要方法。

它的主要思想是,未来的值可以由当前的值以及过去的值来预测。

它可以用来检测多个变量之间的相关性,反应不同变量间的影响关系。

在EViews中,可以使用VAR函数来计算多变量时间序列之间的相关性。

eviews时间序列分析实验Word版

eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。

学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。

如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。

2 AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。

具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。

⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。

4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。

具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。

112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

Eviews软件实习操作

Eviews软件实习操作

Eviews软件实习操作一、预备知识:(见上机手册)二、时间序列模型的建立:1、数据的录入:a、创建Workfile:点击File/New/Workfile,输入起止日期。

b、建立object输入数据:点击object/new object,定义数据文件名ex4_2并输入数据。

c、将Workfile保存:点击File/save,而store只存储对象object。

2、画时序数据图:点击Workfile中的View/line graph。

3、时序数据的平稳化:a、用单位根法检验平稳性:点击View/Unit Root Test,比较ADF 值。

结果为:由图知:ADF_T=0.0722>-3.4946,则X序列非平稳。

b、用差分法平稳化:在Procs/Generate by Equation中输入y=x-x(-12) 作一次季节差分,然后零均值化,再作ADF检验。

季节差分:Y序列图:ADF检验由此,ADF_T=-4.0938<-3.5015,则y是平稳序列。

4、模型识别:点击View/correlogram 画自相关系数(AC )和偏自相 关系数(PAC )图。

则当K>2时,则^0.204kk ϕ<≈,即^kk ϕ呈现2步截尾现象,而^k ρ序列被负指数函数控制收敛于零,呈拖尾现象,故可初步判定序列Y 适合AR(2)模型。

5、模型定阶:点击Quick/Estimate equation 输入类似Y AR(1) AR(2) AR(3)形式的各种不同模型,利用AIC 准则或F 检验选择最合适的模 型,也可利用Pandit-wu 法。

a 、先拟合AR(3)模型:结果为:不显著,且AIC=2.8352,SC=2.9169,SSE=86.95。

得知,参数3再拟合AR(2)模型:AIC=2.8329,SC=2.8870,SSE=89.64再拟合AR(1)模型:SSE =91.32,AIC=2.8194,SC =2.8463。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可
⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.
相对误差的计算公式为:(实际值-预测值)/实际值
二、单参数和双参数指数平滑法进行预测的操作练习
2、某地区1996~2003年的人口数据如表1.2,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。
掌握确定性时间序列建立模型的几种常用方法。
【实验内容】
一、多项式模型和加权最小二乘法的建立;
二、单参数和双参数指数平滑法进行预测的操作练习;
三、二次曲线和对数曲线趋势模型建立及预测;
【实验步骤】
一、多项式模型和加权最小二乘法的建立;
1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:
建立系列方程:smpl 1974 1994
ls y c t
ls y c t t^2
ls y c t t^2 t^3
通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))
加权最小二乘法的命令方式:ls(w=m) y c t
普通最小二乘法命令方式:ls y c t
步骤:(1)打开该文件。
(2)观察序列usagdp的趋势图的特征,自相关图的特征。
(3)对该序列取一阶差分,生新的序列dgdp:Genr dgdp=d(usagdp)。观察其趋势图,自相关图。
(4)对该序列的自然对数取一阶差分,生成新的序列dlngdp:Genr dlngdp=dlog(gdp)。观察其趋势图,自相关图。
1、在命令窗口中键入:genrdx=D(x),则生成的新序列为序列x的一阶差分序列
2、在命令窗口中键入:genr dxn=D(x,n),则生成的新序列为序列x的n阶差分。
3、在命令窗口中键入:genr dxs=D(x,0,s),则生成的新序列为序列x的对周期长度为s一阶季节差分。
4、在命令窗口中键入:genr dxsn=D(x,n,s),则生成的新序列为对周期长度为s的时间序列x取一阶季节差分后的序列再取n阶差分。
1
112
115
145
171
196
204
242
284
315
340
360
417
2
118
126
150
180
196
188
233
277
301
318
342
391
3
132
141
178
193
236
235
267
317
356
362
406
419
4
129
135
163
181
235
227
269
313
348
348
396
461
5
121
(二)练习:观察一些文件中的序列自相关函数Autocorrelation,偏自相关函数Partial autocorrelation的特征
练习1:操作文件:Stpoor~1.wf1(美国S&P500工业股票价格指数1980年1月~1996年2月)
步骤:(1)打开该文件。
(2)观察序列stpoorr的趋势图,自相关图(自相关函数,偏自相关函数)的特征。
3770
5848
9281
1958
3006
4107
6212
10077.26
2031
3093
4495
6775
2234
3277
4973
7539
2566
3514
5452
8395
操作过程:建立WORKFILE:CREATE A 19741995
生成新序列Y:data y
生成新的时间趋势序列t :genr t=@trend(1973)
3、某地区1996—2003年农村用电量数据见表1.3,试利用Holt双参数指数平滑法预测该地区2004年该地区农村用电量(单位:千瓦时)。
1996
1997
1998
1999
2000
2001
2002
2003
844.5
963.2
1106.9
1244.8
1473.9
1655.7
1812.7
1980.1
建立WORKFILE:createU 1996 2004
㈡输入Y、X的数据
⒈DATA命令方式
在EViews软件的命令窗口键入DATA命令,命令格式为:
DATA<序列名1><序列名2>…<序列名n>
本例中可在命令窗口键入如下命令:
DATA Y X
⒉鼠标图形界面方式
在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。
5、在命令窗口中键入:genr dlx=Dlog(x),则生成的新序列为x取自然对数后,再取一阶差分。
6、在命令窗口中键入:genr dlxsn=Dlog(x,n,s),则生成的新序列为周期长度为s的时间序列x先取自然对数,再取一阶季节差分,然后再对序列取n阶差分。
在EVIEWS中操作的图形分别为:
1996
1997
1998
1999
2000
2001
2002
2003
114333
115823
117171
118517
119850
121121
122389
123626
建立WORKFILE:create U 1996 2004
建立新序列Y和T:data y然后输入数值。
genrt=@trend(1995)
打开y序列,点击exponential smoothing按纽,出现如图所示对话框按照图示选项点击确定即可。
(1)据拟合优度和外推检验的结果建立最合适的多项式模型。
(2)采用加权最小二乘法估计我国工业发电量的线性趋势,并与普通最小二乘法估计的线性模型进行比较,列出OLS方法预测值和W=0.6,W=0.7时1992到1995年预测值以及相对误差。
74-78
79-83
84-88
89-93
94-95
1668
2820
建立新序列Y和T:data y然后输入数值。
genrt=@trend(1995)
打开y序列,点击exponential smoothing按纽,出现如图所示对话框按照图示选项点击确定即可。
三、二次曲线和对数曲线趋势模型建立及预测;
4、我国民航客运量数据的季节调整。有关数据如表1.4,对序列进行季节调整。(1指1993年10月,54指1998年3月)并对调整后序列建立二次曲线和对数曲线趋势模型,得到两个方程的民航客运量趋势估计值,并进行季节调整,求出两个趋势方程建立的季节模型预测值。(选做)
125
172
183
229
234
270
318
355
363
420
472
6
135
149
178
218
243
264
315
374
422
435
472
535
7
148
170
199
230
264
302
364
413
465
491
548
622
8
148
170
199
242
272
293
347
405
467
505
559
606
9
136
158
三、时间序列的自相关和偏自相关图与函数;
(一)观察时间序列的自相关图。
命令方式:(1)在命令行输入命令:Ident x (x为序列名称);
(2)然后在出现的对话框中输入滞后时期数。(可取默认数)
菜单方式:(1)双击序列图标。
菜单操作方式:View—>Correlogram,
在出现的对话框中输入滞后数。(可取默认数)
1
2
3
4
5
6
7
328
263
ห้องสมุดไป่ตู้251
241
249
316
344
11
12
13
14
15
16
17
384
368
401
363
336
366
331
21
22
23
24
25
26
27
397.31
463
509
474
508
458.94
412
31
32
33
34
35
36
37
447
483
439
514
550
489
534
41
42
43
44
45
46
相关文档
最新文档