Eviews时间序列分析实例

合集下载

EVIEWS时间序列实验指导(上机操作说明)

EVIEWS时间序列实验指导(上机操作说明)
⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可
⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量
进行预测:打开对应的方程窗口,点forecast按纽,将出现对话框,修改对话框 sample range for forecast中的时间期限的截止日期为预测期.
相对误差的计算公式为:(实际值-预测值)/实际值
二、单参数和双参数指数平滑法进行预测的操作练习
2、某地区1996~2003年的人口数据如表1.2,运用二次指数平滑法预测该镇2004年底的人口数(单位:人)。
掌握确定性时间序列建立模型的几种常用方法。
【实验内容】
一、多项式模型和加权最小二乘法的建立;
二、单参数和双参数指数平滑法进行预测的操作练习;
三、二次曲线和对数曲线趋势模型建立及预测;
【实验步骤】
一、多项式模型和加权最小二乘法的建立;
1、我国1974—1994年的发电量资料列于表中,已知1995年的发电量为10077.26亿千瓦小时,试以表1.1中的资料为样本:
建立系列方程:smpl 1974 1994
ls y c t
ls y c t t^2
ls y c t t^2 t^3
通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。
首先生成权数序列:genr m=sqr(0.6^(21-t))
加权最小二乘法的命令方式:ls(w=m) y c t
普通最小二乘法命令方式:ls y c t
步骤:(1)打开该文件。

Eviews 应用实例

Eviews 应用实例

指数平滑对话框中包含五个部分的选项:平滑方法 (Smoothing Method)、平滑系数(Smoothing Method)、平滑系数(Smoothing Parameters)、平滑后生成序列的名称(Smoothed Parameters)、平滑后生成序列的名称(Smoothed Series)、预测样本范围(Estimation Sample)和季节变动 Series)、预测样本范围(Estimation Sample)和季节变动 周期(Cycle 周期(Cycle for Seasonal)。 Seasonal)。 对话框左上部分的平滑方法(Smoothing Method)包括: 对话框左上部分的平滑方法(Smoothing Method)包括: Single 一次指数平滑 Double 二次指数平滑 Holt-Winters- Holt-Winters-No seasonal Holt-Winters无 Holt-Winters无 季节模型 Holt-Winters- Holt-Winters-Additive Holt-Winters季节 Holt-Winters季节 迭加模型 Holt-Winters- Holt-Winters-Multiplicative Holt-Winters季 Holt-Winters季 节乘积模型 平滑系数(Smoothing Parameters)包括Alpha,Beta, 平滑系数(Smoothing Parameters)包括Alpha,Beta, Gamma。平滑系数可由系统自动给定,也可以由用户指定。 Gamma。平滑系数可由系统自动给定,也可以由用户指定。 缺省状态是由系统自动给定。如果用户需要指定,只需在对应 参数的位置填入指定的数值。
出于预测的考虑,有时系统给定的系数不是很 理想,用户需要自己指定平滑系数值。平滑系数取 什么值比较合适呢?一般来说,如果序列变化比较 平缓,平滑系数值应该比较小,比如小于0.l;如果 平缓,平滑系数值应该比较小,比如小于0.l;如果 序列变化比较剧烈,平滑系数值可以取得大一些, 如0.3~0.5。若平滑系数值大于0.5才能跟上序列 0.3~0.5。若平滑系数值大于0.5才能跟上序列 的变化,表明序列有很强的趋势,不能采用一次指 数平滑进行预测。 [例1 [例1]某企业食盐销售量预测。现在拥有最近 连续30个月份的历史资料(见表l 连续30个月份的历史资料(见表l),试预测下一 月份销售量。

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

eviews案例分析作业

eviews案例分析作业

eviews案例分析作业Eviews案例分析作业。

本次作业将使用Eviews软件进行一个实际案例的分析,以展示Eviews在实际经济数据分析中的应用。

我们选取了美国GDP(国内生产总值)和失业率的数据,来进行相关性分析和趋势预测。

首先,我们导入美国GDP和失业率的时间序列数据,并进行数据的初步观察和描述性统计分析。

通过Eviews的数据视图功能,我们可以直观地看到这两个变量的变化趋势和波动情况,从而为后续的分析提供基础。

接下来,我们将利用Eviews进行相关性分析,探讨美国GDP与失业率之间的关系。

通过Eviews的相关性分析功能,我们可以得到它们之间的相关系数,并利用散点图和回归分析来观察它们之间的线性关系。

通过这些分析,我们可以初步了解到美国GDP和失业率之间的关联程度,为后续的预测分析提供参考。

在完成相关性分析后,我们将利用Eviews进行趋势预测。

通过Eviews的时间序列分析功能,我们可以选择合适的模型对美国GDP和失业率的未来趋势进行预测。

在选择模型的过程中,我们将充分考虑数据的平稳性、季节性等特点,以确保模型的准确性和可靠性。

最终,我们将得到美国GDP和失业率未来的预测值,并进行可视化展示,以便更直观地观察它们的趋势变化。

通过本次Eviews案例分析作业,我们不仅对Eviews软件的使用有了更深入的了解,同时也对实际经济数据的分析方法有了更加清晰的认识。

Eviews作为一款专业的计量经济学软件,具有强大的数据分析和建模功能,可以帮助我们更好地理解和预测经济现象,为经济决策提供科学依据。

总之,Eviews案例分析作业不仅是对所学知识的巩固和实践,更是对实际问题的解决和预测。

通过本次作业,我们不仅提升了对Eviews软件的熟练度,更深入了解了经济数据分析的方法和技巧,为今后的学习和工作打下了坚实的基础。

希望通过这次作业的学习,能够更好地应用Eviews软件进行实际经济数据的分析和预测,为经济决策提供更加科学的支持。

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。

Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。

本文将介绍如何使用Eviews进行时间序列分析。

首先,打开Eviews软件,并导入需要分析的时间序列数据。

在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。

导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。

接下来,对时间序列数据进行初步的观察和描述分析。

在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。

然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。

可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。

接下来,进行时间序列模型的构建和估计。

在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。

在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。

然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。

在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。

点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。

估计完成后,可以查看估计结果。

在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。

可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (9)第三章平稳时间序列建模实验教程 (10)一、模型识别 (10)二、模型参数估计(如何判断拟合的模型以及结果写法) (14)三、模型的显著性检验 (17)四、模型优化 (18)第四章非平稳时间序列的确定性分析 (19)一、趋势分析 (19)二、季节效应分析 (34)三、综合分析 (38)第五章非平稳序列的随机分析 (44)一、差分法提取确定性信息 (44)二、ARIMA模型 (57)三、季节模型 (62)第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.) 有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

在Eviews中对时间序列进行预测的详细步骤

在Eviews中对时间序列进行预测的详细步骤

在Eviews中对时间序列进行预测的详细步骤一、输入数据1.1打开Eviews6.0,按照如图所示打开工作表创建框。

1.2在右上角的data specification框中输入起止年份(start data和end data)1.3输入数据:在输入框中输入data gdp(本文采用的数据为1990—2012年的GDP值)。

当然,data后面可以输入任何你想要定义的“英文名字”输入data gdp后注意按回车键,弹出表格窗口后在其中输入数据(也可复制进去数据:ctrl+v键)二、平稳性检验2.1在打开的数据窗口中点击View→Correlogram(1)在弹出的窗口中直接点OK即可↓2.2自相关图和偏相关图进行分析:最简单粗暴的方法就是看最右边的Prob值(即P值),当这列数据有多数都大于0.05(置信水平)时为白噪声序列=序列是平稳的。

本文中GDP数据P值均小于0.05,则为非白噪声。

需对序列进行差分。

三、取一阶差分3.1在输入框中输入第二列代码,这代表将数据gdp进行一阶差分,一阶差分后的值命名为dgdp.按回车键3.2在dgdp数据的窗口中重复2.1的操作,对序列的平稳性进行检验得到结果如下:惨!还是非白噪声,只能进行二阶差分了!四、取二阶差分4.1如第三列代码所示(记得不能重复命名)4.2对新的序列dgdp2进行平稳性检验,步骤同上,结果如下:MY GOD! 看见了木有,这回是白噪声了,P值多数都大于0.05!五、用最小二乘法对模型进行估计:输入ls dgdp2 c ar(2)(探索性建模)5.1AR(2)模型结果(准确的说这个模型应该是ARIMA的疏系数模型,本文重点不在这!如有需要请私信我!)5.2MA(2)模型结果5.3优化模型:根据AIC和SBC准则选择模型,值越小的拟合效果越好,本文的选择MA(2)模型。

5.4对模型进行检验:View→Residual Tests→Correlogram Q statistics检验结果如下:P值大于0.05,为白噪声序列,则平稳。

Eviews时间序列分析报告实例

Eviews时间序列分析报告实例

Eviews时间序列分析实例时间序列是市场中经常涉与的一类数据形式,本书第七章对它进展了比拟详细的介绍。

通过第七章的学习,读者了解了是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。

本节的主要内容是说明如何使用Eviews软件进展分析。

一、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。

它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期。

由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列中仍然占据着相当重要的位置。

〔-〕一次指数平滑一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到结果。

一次指数平滑的特点是:能够跟踪数据变化。

这一特点所有指数都具有。

过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。

这样,值总是反映最新的数据结构。

一次指数平滑有局限性。

第一,值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期,而不适合作中长期的;第三,由于值是历史数据的均值,因此与实际序列的变化相比有滞后现象。

指数平滑是否理想,很大程度上取决于平滑系数。

Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。

选择自动给定,系统将按照误差平方和最小原如此自动确定系数。

如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的值。

出于的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。

平滑系数取值比拟适宜呢?一般来说,如果序列变化比拟平缓,平滑系数值应该比拟小,比如小于0.l;如果序列变化比拟剧烈,平滑系数值可以取得大一些,如0.3~0.5。

假如平滑系数值大于0.5才能跟上序列的变化,明确序列有很强的趋势,不能采用一次指数平滑进展。

[例1]某企业食盐销售量。

现在拥有最近连续30个月份的历史资料〔见表l〕,试下一月份销售量。

表1 某企业食盐销售量单位:吨解:使用Eviews对数据进展分析,第一步是建立工作文件和录入数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Eviews 时间序列分析实例时间序列是市场预测中经常涉及的一类数据形式, 绍。

通过第七章的学习,读者了解了什么是时间序列,、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。

它可以用于任何一种没有明显函数规 律,但确实存在某种前后关联的时间序列的短期预测。

由于其他很多分析方法都不具有这种 特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。

(―)一次指数平滑一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单, 甚至只要样本末期的平滑值,就可以得到预测结果。

一次指数平滑的特点是: 能够跟踪数据变化。

这一特点所有指数都具有。

预测过程中添 加最新的样本数据后, 新数据应取代老数据的地位, 老数据会逐渐居于次要的地位, 直至被 淘汰。

这样,预测值总是反映最新的数据结构。

一次指数平滑有局限性。

第一,预测值不能反映趋势变动、季节波动等有规律的变动; 第二,这种方法多适用于短期预测, 而不适合作中长期的预测;第三, 由于预测值是历史数 据的均值,因此与实际序列的变化相比有滞后现象。

指数平滑预测是否理想,很大程度上取决于平滑系数。

Eviews 提供两种确定指数平滑系数的方法:自动给定和人工确定。

选择自动给定,系统将按照预测误差平方和最小原则自 动确定系数。

如果系数接近 1,说明该序列近似纯随机序列,这时最新的观测值就是最理想 的预测值。

出于预测的考虑,有时系统给定的系数不是很理想, 用户需要自己指定平滑系数值。

平滑系数取什么值比较合适呢? 一般来说,如果序列变化比较平缓,平滑系数值应该比较小, 比如小于0.1;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3〜0.5。

若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预 测。

[例1]某企业食盐销售量预测。

现在拥有最近连续30个月份的历史资料(见表 I ),试预测下一月份销售量。

表某企业食盐销售量单位:吨解:使用对数据进行分析,第一步是建立工作文件和录入数据。

有关操作在本理和一些分析实例。

本节的主要内容是说明如何使用Eviews 软件进行分析。

本书第七章对它进行了比较详细的介 并接触到有关时间序列分析方法的原章第一节中已经阐明,这里不再赘述。

假设已经建立工作文件,并生成了一个样本期为I〜30的序列,命名为SALES。

序列SALES中包含例1中需要分析的数据。

第二步,绘制序列图形。

在序列对象窗口中,点击View T Line Graph。

屏幕显示图1fa.Ui ■ID ? A«Ju 怔豐*vk■山图1某企业近30个月的销售量动态图从图1中可以看出,这个企业近30个月的销售量并不存在明显的趋势,并且没有明显的季节趋势。

因此,从直观上判断可以采用一次指数平滑法对企业下个月的销售量进行预测。

第三步,扩大样本期。

本例要求对下一个月的销售量进行预测,而工作文件的样本期是1〜30,在Eviews中要求先更改样本期。

更改样本期的操作在本章第一节已经讲过,这里将样本期改为I〜31。

第四步,进行指数平滑。

指数平滑的菜单操作方法有两种:一是在主工作文件窗口打开的情况下,点击主窗口的Quick T Series Statistics T Exponential Smoothing ;二是在序列对象窗口中点击Procs T Exponential Smoothing。

点击后屏幕出现如图2所示的指数平滑对话框。

指数平滑对话框中包含五个部分的选项:平滑方法( Smoothing Method )、平滑系数(Smoothing Parameters)、平滑后生成序列的名称( Smoothed Series)、预测样本范围(Estimation Sample )和季节变动周期(Cycle for Seasonal)。

对话框左上部分的平滑方法( Smoothing Method )包括:Sin gle 一次指数平滑Double 二次指数平滑Holt —Winters —No seasonal Holt —Winters 无季节模型Holt —Winters —Additive Holt —Winters 季节迭加模型Holt —Winters —Multiplicative Holt —Winters 季节乘积模型平滑系数(Smoothing Parameters)包括Alpha , Beta, Gamma。

平滑系数可由系统自动给定,也可以由用户指定。

缺省状态是由系统自动给定。

如果用户需要指定,只需在对应参数的位置填入指定的数值。

本例中,分别指定Alpha的值为0.3和0.5。

当指定平滑系数为0.3时,预测的残差平方和为137.2978;当平滑系数为0.5时,预测的残差平方和为165.0685。

因此这里选择平滑系数为0.3时的预测结果。

根据一次指数平滑方法的预测,该企业下个月的销售量应为29.2图 2指数平滑对话框(二)二次指数平滑二次指数平滑又称双重指数平滑。

相对于一次指数平滑, 二次指数平滑可以预测有一定线性趋势的序列,其预测期也长一些。

[例2]某公司1990 — 2001年的实际销售额如表 2所示。

请根据此资料预测 2002年和2003 年企业销售额。

表2某公司销售额单位:万元 年份 销售额 年份 销售颛1W0「 33 1996 44199! 36 1997 48 (992 32 1998 461㈱34 1999 50 1994422000154199540 |2001 58解:第一步,建立工作文件,样本期为1990 — 2001的年度数据。

在新建立的工作文件中,生成一个名为 SALES 的新序列。

打开 SALES 序列对话框,将表 2中的数据录入。

第二步,绘制序列图形。

从图中可以看到,该企业的销售额存在明显的增长趋势(见图3)。

序列的波动并不是很剧烈。

由此判断,使用二次指数平滑法进行预测比较合适。

第三步,扩大样本期。

由于本例需要预测下两年的销售额, 因此将工作文件的样本期更改为 1990— 2003 年。

吨。

Exponential SmoothingSmooth 购 M&Jhod:tt ParametersSir flic 1 Double1* ;Hcl:-V/intets - No seasonaE 2■ ■■■■■VII ■■ ■«■■ IRH ■■■■!»■ ■■■■*■■■ IRH ■ IIKMIBI ■■WlIBmBllllrf 1H cl :'Winters-Additive 3H ol:-V/inters 亠 Multjplieafr/e Smoolhsd Series: |SALES£MSeries name foi smoothed and fof6c :astsd values.Alphitmean]Bela:LtrendJ旦&個沁nol)Cycle for Seasonal:S^CancelSmoothing Parameteis:E riter nunnbeibetwen 0 ondE 9 estin^ate.Estimation >am(jle:Fotec^sts begin in period fallowing eshmatior endpoinl.图3 某企业1990 —2001年销售额变动情况第四步,指数平滑。

根据前例中的方法,用户可以进入如图2的指数平滑对话框。

本例中,选择二次指数平滑的方法,并让系统自动确定系数。

结果如表3所示。

原序列SALES中共有12个观测值,即1990 —2001年的企业销售额。

在进行二次指数平滑时,系统根据这12个数值自动确定了最优的平滑系数a= 0.244。

此时,对序列进行二次指数平滑预测的残差平方和为101.3594,均方根误差为2.906306。

在Eviews给出指数平滑结果统计表(见表 3 )时,并没有直接给出对2002年和2003 年销售额的预测值。

这两个数值保存在系统生成的平滑序列SALESSM中,用户只需打开该序列就可以看到二次指数平滑方法预测的结果。

结果显示,该企业在2002年和2003年的销售额,分别预计为56. 6万元和59. 4万元。

Dat$ 06/01/04 Time. 12:13Sample 199-0 2001Included obse^atiflns 12Meihod Dojble Exponentnal 0 ngin a I Series. SALESSeries SALESSMParameters Alpha0.2440Sum of Squared Residuals101.3594R QQ t Mean Squared Error 2.906306End of Period Le\els Mean56.00084Trend2 263825表3二次指数平滑结果如果将二次指数平滑的预测结果和原观测值共同显示在同一张图上,可以使用户看起来更清楚。

首先在工作文件菜单中同时选中两个序列SALES和SALESSM,方法是先点击一个序列,之后按住键盘上的Shift键再点击另外一个序列。

然后点击工作文件菜单工具栏中的Show,在弹出的对话框中点击0K。

此时,系统将弹出一个类似序列对象窗口的群窗口(见图4),窗口中以Excel表格的形式同时显示出SALES和SALESSM。

最后点击该窗口上方的View T Graph s Line (见图5)。

图5实际销售额与平滑值序列对比图、趋势延伸法实例时间序列的趋势即序列随时间变化的基本规律和特点。

选取适当的模型进行分析和预测。

(―)直线趋势直线趋势模型是一种最常用,也是最成熟的方法。

模型的基本结构为:Y t= a+ bt式中,a, b是模型的参数。

这种模型的结构比较简单,估计方法非常成熟,是很多其他趋势模型估计的基础。

下面结合实例说明如何使用该软件进行直线趋势模型的预测。

[例3]设某市1992 —2002年市场鸡蛋销售量如表4所示。

试预测2003年该市鸡蛋销售量。

强EViews - TSeries: SALES ^orkfile: LEASTSQCARES31口Eile £di t Objects Yiew Era匸n Q:L2i ck Opt 3 tau n.dow Qclpr92 93 94 95 96 97 98 99 00 01 02SALESt B!U I "L ' i¥ii JI AjjJivhi 111 " h ■ i«i 11' "u.图6序列散点图Eviews中没有直接绘制散点图的菜单选项。

相关文档
最新文档