基于Labview的声音信息采集与处理

合集下载

LabVIEW与声音处理实现声音信号的分析与处理

LabVIEW与声音处理实现声音信号的分析与处理

LabVIEW与声音处理实现声音信号的分析与处理声音信号的分析与处理在音频领域中起着重要的作用,它涉及到音频信号的获取、分析和处理过程。

为了实现对声音信号的准确分析与处理,许多技术和工具被应用于实际场景中。

本文将重点介绍LabVIEW在声音处理方面的应用,探讨其在声音信号的分析与处理中的优势和应用实例。

一、LabVIEW简介LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款基于图形化编程语言的系统设计平台,由美国国家仪器公司(National Instruments)开发。

它通过图形化的编程环境,使工程师和科学家能够快速搭建测试、测量和控制系统,为各个领域的工程应用提供了强大的支持。

二、声音信号的获取与分析声音信号的获取一般通过麦克风或其他音频输入设备获取,然后传输到计算机进行进一步的处理。

在LabVIEW中,使用音频输入/输出(Audio Input/Output)模块可以方便地进行声音信号的采集与输出。

通过该模块,我们可以选择音频设备、设置采样率和位深度等参数,以适应不同的声音信号源。

在声音信号的分析中,LabVIEW提供了多种功能模块和工具箱,例如信号滤波、频谱分析等。

通过这些工具,我们可以对声音信号进行时域和频域的分析。

比如,可以用快速傅里叶变换(FFT)模块将时域的声音信号转换为频域信号,进而获取频率谱和频谱图。

同时,LabVIEW还支持波形显示、数据记录和保存等功能,方便我们对声音信号进行进一步的研究和处理。

三、声音信号的处理与应用声音信号的处理主要包括去噪、均衡、混响等处理技术。

通过LabVIEW的虚拟仪器和函数模块,我们可以灵活地设计和实现这些处理算法。

下面将介绍一些常见的声音信号处理技术及其应用。

1. 去噪处理:声音信号中常常包含噪声,在实际应用中需要将噪声进行抑制以提高声音质量。

LabVIEW中可以使用滤波器等信号处理模块来实现噪声的去除,从而使得声音信号更加清晰。

LabVIEW中的声音和音频信号处理技术

LabVIEW中的声音和音频信号处理技术

LabVIEW中的声音和音频信号处理技术LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种流行的图形化编程语言和集成开发环境(IDE),主要用于实验室设备的自动化控制和数据采集。

在LabVIEW中,声音和音频信号处理技术广泛应用于各种领域,如音乐、通信、医学和声学。

本文将介绍LabVIEW中的声音和音频信号处理技术,并探讨其在实际应用中的优势和挑战。

一、声音和音频信号处理的基础知识在深入研究LabVIEW中的声音和音频信号处理技术之前,我们先了解一些基础知识。

声音是由声波引起的机械振动传播产生的,而音频信号是声音的电信号表示。

声音和音频信号都是波形信号,可以通过数学方法进行分析和处理。

二、LabVIEW中的声音和音频信号处理模块LabVIEW提供了丰富的声音和音频信号处理模块,使工程师和研究人员能够方便地实现各种处理任务。

以下是其中几个重要的模块:1. 声音的录制和播放模块:LabVIEW可以通过声音卡或其他音频输入设备录制声音,并实时播放或保存为文件。

用户可以自定义采样率、位深和数据格式等参数,以满足不同应用场景的需求。

2. 频谱分析模块:频谱分析是音频信号处理中的重要任务,可以帮助我们理解信号的频率成分和特性。

LabVIEW提供了一系列的频谱分析函数和工具,如傅里叶变换、快速傅里叶变换(FFT)和功率谱密度等,可用于提取频谱信息并进行频域分析。

3. 滤波器设计模块:滤波器是声音和音频信号处理中常用的工具,用于去除噪声、调节音量和频率响应等。

LabVIEW提供了滤波器设计工具箱,包括常见的低通、高通、带通和带阻滤波器等。

用户可以根据需求选择不同的滤波器类型,并进行参数调整和性能评估。

4. 声音合成和修改模块:LabVIEW支持声音的合成和修改,用户可以通过算法生成新的声音信号,如音乐合成和语音合成。

此外,LabVIEW还提供了一些音频效果处理函数,如混响、相位变换和声音变速等,可用于实现声音的特殊效果和调整。

LabVIEW与声音信号处理实现音频识别

LabVIEW与声音信号处理实现音频识别

LabVIEW与声音信号处理实现音频识别一、引言音频识别是一种重要的信号处理技术,广泛应用于语音识别、音乐分析等领域。

LabVIEW作为一种数据流编程语言和开发环境,可以提供丰富的工具和函数库,实现声音信号的采集、处理和分析。

本文将介绍如何使用LabVIEW进行声音信号处理,实现音频识别的功能。

二、LabVIEW的基本概念1. 虚拟仪器(VI)LabVIEW中的基本编程单元为虚拟仪器(Virtual Instrument, VI),即用图形化编程方式构建的程序块。

每个VI由前台面板和后台代码构成,前台面板提供用户界面,后台代码实现具体功能。

2. 数据流程编程LabVIEW采用数据流程编程模型,即数据的流动决定了程序的执行顺序。

数据从输入端口流向输出端口,通过数据线连接各个函数模块,形成一个数据流程图。

三、声音信号的采集与处理1. 声音的采集使用LabVIEW的音频输入模块,可以方便地实现对声音信号的采集。

通过选取合适的硬件设备,设置采样率和位深度等参数,将声音信号输入到LabVIEW中进行处理。

2. 声音信号的预处理在进行音频识别之前,需要对声音信号进行预处理,主要包括去除噪声、增强语音特征等步骤。

LabVIEW提供了多种滤波器、频谱分析和时频转换等函数模块,可以方便地实现这些功能。

四、音频识别算法1. 基于时域的音频识别算法基于时域的音频识别算法主要利用声音信号在时间域上的特征进行分析。

例如,短时傅里叶变换(STFT)可以将声音信号转换到时频域,得到声谱图。

LabVIEW提供了相应的函数模块,实现了STFT的计算和显示。

2. 基于频域的音频识别算法基于频域的音频识别算法则通过对声音信号在频域上的特征进行分析来实现识别。

常用的方法包括梅尔频率倒谱系数(MFCC)和高阶累积量(HAR)等。

LabVIEW提供了计算MFCC和HAR等函数模块,可以方便地进行音频特征提取。

3. 机器学习算法的应用除了传统的音频识别算法,还可以利用机器学习算法进行音频识别。

LabVIEW与音频处理实时音频特征提取与识别

LabVIEW与音频处理实时音频特征提取与识别

LabVIEW与音频处理实时音频特征提取与识别随着数字信号处理和机器学习的迅猛发展,音频处理技术在各个领域得到了广泛的应用。

其中,实时音频特征提取与识别是一项重要的任务,它可以用于语音识别、音乐分析、情感分析等应用场景。

在这篇文章中,我们将介绍如何使用LabVIEW进行实时音频特征提取与识别。

1. LabVIEW简介LabVIEW是一种图形化编程环境,它以数据流的方式进行程序设计。

用户可以通过将各种模块进行连接,构建出复杂的数据流图。

在音频处理领域,LabVIEW提供了诸多强大的工具和函数,可以方便地进行音频信号的处理与分析。

2. 实时音频特征提取实时音频特征提取是指从连续的音频流中提取出有用的特征信息。

常用的音频特征包括时域特征和频域特征。

时域特征包括音频的时长、能量、过零率等;频域特征包括音频的频谱、谱熵、梅尔频谱等。

利用这些特征,我们可以对音频进行更高级的分析与处理。

在LabVIEW中,我们可以使用Waveform Graph模块进行实时音频信号的显示和分析。

通过将音频输入与Waveform Graph相连,可以实时显示音频的波形,并且可以提取出各种特征信息。

在提取特征的过程中,我们可以使用LabVIEW提供的音频处理工具箱,例如Fast Fourier Transform(FFT)模块,用于计算音频的频谱。

3. 实时音频特征识别实时音频特征识别是指根据提取到的音频特征,将音频分为不同的类别或进行进一步的分析。

常见的应用包括语音识别、音乐分类和情感分析等。

在LabVIEW中,我们可以利用机器学习的方法进行音频特征识别。

首先,我们需要构建一个训练集,其中包含已知标签的音频样本和其对应的特征。

然后,我们可以使用LabVIEW的模式识别工具箱,例如支持向量机(SVM)模块,对音频特征进行训练和分类。

4. 实时性能优化对于实时音频处理,实时性是一个关键的性能指标。

为了保证系统能够及时响应,我们需要优化算法和硬件设备。

LabVIEW与声音处理实时音频数据分析与处理

LabVIEW与声音处理实时音频数据分析与处理

LabVIEW与声音处理实时音频数据分析与处理声音处理是数字信号处理中的一个重要领域,它可以通过对音频信号进行采集、分析和处理,实现各种音频应用。

LabVIEW作为一款强大的图形化编程软件,为声音处理提供了丰富的功能和工具。

本文将介绍如何利用LabVIEW进行实时音频数据的分析与处理。

1. 实时音频数据采集在声音处理中,首先需要将音频信号进行采集。

LabVIEW提供了丰富的数据采集模块和工具,可以通过音频输入设备(如麦克风)对声音进行采集。

使用LabVIEW的数据采集模块,我们可以选择合适的采样率、采样位数和采样通道数,以满足不同应用场景的需求。

2. 实时音频数据分析在音频数据采集之后,我们可以利用LabVIEW进行实时音频数据的分析。

LabVIEW提供了丰富的信号处理工具和算法,可以对音频信号进行频谱分析、时域分析、频域分析等操作。

通过这些分析工具,我们可以获取到音频信号的频率、音量、音调等特征信息,为后续的处理提供数据支持。

3. 实时音频数据处理在获取到音频信号的特征信息之后,我们可以利用LabVIEW进行实时音频数据的处理。

LabVIEW提供了各种音频处理模块和算法,包括滤波、均衡器、音量调节、混响等。

通过这些处理工具,我们可以对音频信号进行去噪、修复、增强等操作,以实现不同的音频效果。

4. 实时音频数据展示在音频数据处理之后,我们可以利用LabVIEW进行实时音频数据的展示。

LabVIEW具有强大的图形化界面设计功能,可以通过创建图表、波形图、频谱图等界面元素,直观地展示音频数据的处理结果。

通过这些展示工具,我们可以实时观察音频信号的变化,验证音频处理效果。

总结:LabVIEW作为一款强大的图形化编程软件,为声音处理提供了便捷和强大的工具和功能。

通过LabVIEW,我们可以实现对实时音频数据的采集、分析、处理和展示,从而满足不同场景下的音频应用需求。

无论是音乐制作、语音识别还是声音特效设计,LabVIEW都能帮助我们更高效地进行声音处理。

LabVIEW的声音与音频处理实现优质音频应用

LabVIEW的声音与音频处理实现优质音频应用

LabVIEW的声音与音频处理实现优质音频应用音频处理是现代科技中不可或缺的一部分,它在各种领域中扮演着重要的角色。

LabVIEW(Laboratory Virtual Instrument Engineering Workbench)作为一种流行的图形化编程语言和开发环境,在声音与音频处理方面展现出强大的能力。

本文将介绍如何使用LabVIEW来实现优质音频应用。

一、LabVIEW简介LabVIEW是由美国国家仪器公司(National Instruments)开发的一种基于图形化编程的软件平台。

它提供了丰富的工具箱和函数库,使得声音与音频处理变得简单而直观。

二、声音与音频处理基础在进一步讨论LabVIEW的声音与音频处理之前,我们需要了解一些基本概念。

1. 声音信号:声音是通过空气中的波动传递的压力和振动。

在数字领域中,声音信号是模拟声音信号经过采样、量化和编码转换成数字形式的结果。

2. 采样率:采样率是指每秒钟对声音信号进行采样的次数,通常以赫兹(Hz)为单位。

较高的采样率可以更准确地还原原始声音信号。

3. 量化位数:量化位数表示对原始声音信号进行量化的精度。

常用的量化位数有8位、16位和24位,位数越高,声音的细节还原度越高。

4. 声道:声道用于区分声音信号的通道数量。

单声道表示只有一个通道,而立体声表示由左右两个通道组成。

三、利用LabVIEW进行声音与音频处理LabVIEW提供了丰富的工具与函数库,使得声音与音频处理变得简单而高效。

下面是一些常用的LabVIEW功能模块:1. 数据采集模块:LabVIEW允许用户选择合适的硬件设备,并通过数据采集模块获取声音信号。

一些常用的硬件设备包括声音卡和麦克风。

2. 数据预处理模块:在对声音信号进行后续处理之前,我们通常需要对其进行一些预处理操作,例如降噪、滤波和均衡。

LabVIEW提供了各种用于预处理的函数库,可以根据实际需求选择适当的函数进行处理。

使用LabVIEW进行声音处理实现音频信号的处理和分析

使用LabVIEW进行声音处理实现音频信号的处理和分析

使用LabVIEW进行声音处理实现音频信号的处理和分析音频信号的处理和分析,在现代音频技术领域中占据重要地位。

而LabVIEW作为一种流行的图形化编程工具,为开发人员提供了丰富的功能和工具,可以方便地进行声音处理。

本文将介绍如何使用LabVIEW进行声音处理,实现音频信号的处理和分析。

一、引言随着数字音频技术的迅速发展,声音处理在多个领域中发挥着重要作用。

从音频处理到语音识别,从音乐合成到噪声降低,人们对声音信号的处理需求越来越高。

LabVIEW作为一种强大而友好的声音处理工具,已经被广泛应用于音频领域。

二、LabVIEW的基本概念1. LabVIEW是一种基于图形化编程的软件开发工具,由美国国家仪器公司(National Instruments)开发。

它以数据流图的形式表示程序逻辑,使得用户可以通过拖拽和连接图标来设计程序。

2. LabVIEW具有丰富的声音处理函数库,可以方便地进行声音的录制、播放和分析等操作。

通过使用这些函数库,开发人员可以快速实现复杂的声音处理算法。

三、LabVIEW中的声音处理应用1. 声音录制和播放:LabVIEW提供了一系列函数来实现声音的录制和播放。

开发人员可以通过调用这些函数并设置相应参数,实现对声音信号的采集和回放。

2. 声音滤波:在声音处理过程中,滤波是一个常用的操作。

LabVIEW中可以通过调用滤波函数,实现常见的低通、高通、带通和带阻滤波等操作。

3. 声音频谱分析:频谱分析是声音处理中的重要技术之一。

LabVIEW提供了多种频谱分析函数,可以实现对声音信号频谱的分析和显示,方便开发人员进行音频特征提取和声音分析。

4. 声音合成:除了对声音信号的处理和分析,LabVIEW还支持声音合成功能。

通过调用相应的合成函数,开发人员可以实现音乐合成、语音合成等应用。

四、LabVIEW声音处理实例为了更好地展示LabVIEW在声音处理中的应用,下面以录制和播放声音为例,进行简单的实例演示。

利用LabVIEW进行声音信号处理与分析

利用LabVIEW进行声音信号处理与分析

利用LabVIEW进行声音信号处理与分析在现代科技的发展中,声音信号处理与分析在各个领域都起着重要的作用。

而LabVIEW作为一种强大而灵活的开发环境,为声音信号处理与分析提供了丰富的工具和功能。

本文将介绍如何利用LabVIEW进行声音信号处理与分析。

一、LabVIEW介绍LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款由美国国家仪器公司(National Instruments)开发的集成开发环境。

它基于图形化编程语言G,通过图形化的编程界面使得开发人员可以更加直观地进行程序设计。

LabVIEW的强大之处在于其模块化的设计,可以根据不同的需求进行灵活的组合,从而满足各种复杂的应用场景。

二、声音信号处理与分析概述声音信号处理与分析是指对声音信号进行各种操作和分析,以获得具体的信息或实现特定的效果。

声音信号处理与分析在音频处理、语音识别、音频编解码等方面具有广泛的应用。

常见的声音信号处理与分析任务包括滤波、频谱分析、特征提取等。

三、LabVIEW在声音信号处理与分析中的应用1. 声音信号的采集与播放在LabVIEW中,可以利用音频输入输出设备进行声音信号的采集与播放。

通过使用LabVIEW提供的音频输入输出模块,可以轻松地实现声音信号的录制和回放功能。

同时,LabVIEW还支持多种音频格式的处理,如WAV、MP3等。

2. 声音信号的滤波处理滤波是声音信号处理中常用的操作之一。

LabVIEW提供了丰富的滤波器设计工具,包括低通滤波器、高通滤波器、带通滤波器等。

通过使用这些工具,可以对声音信号进行滤波处理,去除噪音或调整频率响应。

3. 声音信号的频谱分析频谱分析是声音信号处理与分析的重要手段之一。

LabVIEW提供了多种频谱分析工具,包括傅里叶变换、功率谱分析等。

通过使用这些工具,可以对声音信号进行频谱分析,了解声音信号的频率特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四基于LabVIEW的声音数据采集一、背景知识在虚拟仪器系统中,信号的输入环节一般采用数据采集卡实现。

商用的数据采集卡具有完整的数据采集电路和计算机借口电路,但一般比较昂贵,计算机自带声卡是一个优秀的数据采集系统,它具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、通用性强,软件特别是驱动程序升级方便。

如被测对象的频率在音频范围内,同时对采样频率要求不是太高,则可考虑利用声卡构建一个数据采集系统。

1.从数据采集的角度看声卡1.1声卡的作用从数据采集的角度来看,声卡是一种音频范围内的数据采集卡,是计算机与外部的模拟量环境联系的重要途径。

声卡的主要功能包括录制与播放、编辑和处理、MIDI接口三个部分。

1.2声卡的硬件结构图1是一个声卡的硬件结构示意图。

一般声卡有4~5个对外接口。

图1 声卡的硬件结构示意图声卡一般有Line In 和Mic In 两个信号输入,其中Line In为双通道输入,Mic In仅作为单通道输入。

后者可以接入较弱信号,幅值大约为0.02~0.2V。

声音传感器(采用通用的麦克风)信号可通过这个插孔连接到声卡。

若由Mic In 输入,由于有前置放大器,容易引入噪声且会导致信号过负荷,故推荐使用Line In ,其噪声干扰小且动态特性良好,可接入幅值约不超过1.5V的信号。

另外,输出接口有2个,分别是Wave Out和SPK Out。

Wave Out(或LineOut)给出的信号没有经过放大,需要外接功率放大器,例如可以接到有源音箱;SPK Out给出的信号是通过功率放大的信号,可以直接接到喇叭上。

这些接口可以用来作为双通道信号发生器的输出。

1.3声卡的工作原理声音的本质是一种波,表现为振幅、频率、相位等物理量的连续性变化。

声卡作为语音信号与计算机的通用接口,其主要功能就是将所获取的模拟音频信号转换为数字信号,经过DSP音效芯片的处理,将该数字信号转换为模拟信号输出。

输入时,麦克风或线路输入(Line In)获取的音频信号通过A/D 转换器转换成数字信号,送到计算机进行播放、录音等各种处理;输出时,计算机通过总线将数字化的声音信号以PCM(脉冲编码调制)方式送到D/A 转换器,变成模拟的音频信号,进而通过功率放大器或线路输出(Line Out)送到音箱等设备转换为声波。

1.4声卡的配置及硬件连接使用声卡采集数据之前,首先要检查Line In 和Mic In的设置。

如图2,打开“音量控制”面板,在“选项”的下拉菜单中选择“属性”,得到如图3的对话框,在此对话框上选择“录音”,并配置列表中的选项即可。

可以通过控制线路输入的音量来调节输入的信号的幅度。

图2 音量控制面板图3 音量控制面板属性更改及录音控制面板声卡测量信号的引入应采用音频电缆或屏蔽电缆以降低噪声干扰。

若输入信号电平高于声卡所规定的最大输入电平,则应该在声卡输入插孔和被测信号之间配置一个衰减器,将被测信号衰减至不大于声卡最大允许输入电平。

一般采用两种连接线:a.一条一头是3.5mm的插孔,另一头是鳄鱼夹的连接线;b.一条双头为3.5mm插孔的音频连接线。

我们也可以使用坏的立体耳机做一个双通道的输入线,剪去耳机,保留线和插头即可。

2.声卡的主要技术参数2.1采样位数采样位数可以理解为声卡处理声音的解析度。

这个数值越大,解析度就越高,录制和回放的声音就越真实。

我们首先要知道:电脑中的声音文件是用数字0和1来表示的。

所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。

反之,在播放时则是把数字信号还原成模拟声音信号输出。

声卡的位是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。

声卡的位客观地反映了数字声音信号对输入声音信号描述的准确程度。

8位代表2的8次方——256,16位则代表2的16次方——643⨯。

比10较一下,一段相同的音乐信息,16位声卡能把它分为643⨯个精度单位进10行处理,而8位声卡只能处理256个精度单位,造成了较大的信号损失,最终的采样效果自然是无法相提并论的。

位数越高,在定域内能表示的声波振幅的数目越多,记录的音质也就越高。

2.2采样频率每秒钟采集声音样本的数量。

采集频率越高,记录的声音波形就越准确,保真度就越高。

但采样数据量相应变大,要求的存储空间也越多。

目前,声卡的最高采样频率是44.1KHz,有些能达96KHz。

一般将采样频率设为4挡,分别是44.1KHz、22.05KHz、11.025KHz、8KHz。

2.3缓冲区与一般数据采集卡不同,声卡面临的D/A和A/D任务通常是连续的。

为了在一个简洁的结构下较好地完成某个任务,声卡缓冲区的设计有其独到之处。

为了节省CPU资源,计算机的CPU采用了缓冲区的工作方式。

在这种工作方式下,声卡的A/D、D/A都是对某一缓冲区进行操作。

一般声卡使用的缓冲区长度的默认值是8192字节,也可以设置成8192字节或其整数倍大小的缓冲区,这样可以较好地保证声卡与CPU的协调工作。

声卡一般只对20Hz~20KHz的音频信号有较好的响应,这个频率响应范围已经满足了音频信号测量的要求。

2.4基准电压声卡不提供基准电压,因此无论是A/D还是D/A,在使用时,都需要用户参照基准电压进行标定。

目前一般的声卡最高采样频率可达96KHz;采样位数可达13位甚至32位;声道数为2,即立体声双声道,可同时采集两路信号;每路输入信号的最高频率可达22.05KHz,输出16为的数字音频信号,而16位数字系统的信噪比可达96dB。

bVIEW中有关声卡的控件介绍利用声卡作为声音信号的DAQ卡,可以方便快捷地穿件一个采集声音信号的VI。

与声音信号相关的函数节点位于程序框图下【函数】选版下【编程】函数选版的【图形与声音】函数子选版的【声音】函数选版的各子选版,如图4所示图 4 LabVIEW中声卡控件下面主要介绍【声音】/【输入】控件选板中相关控件的作用。

配置声音输入配置声音输入设备(声卡)参数,用于获取数据并且将数据传送至缓冲区。

启动声音输入采集开始从设备上采集数据,只有停止声音输入采集已经被调用时,才需要使用该VIs。

声音输入清零停止声音采集,清除缓冲区,返回到任务的默认状态,并且释放与任务有关的资源。

配置声音输出用于配置声音输出设备的参数,使用“写入声音输出”VI将声音写入设备。

写入声音输出将数据写入声音输出设备,如要连续写入,必须使用配置声音输出VI配置设备,必须手动选择所需多态实例。

声音输出清零将任务返回到默认的未配置状态,并清空与任务相关的资源,任务变为无效。

此外,还有众多的声音文件的打开和关闭等函数节点,在此不一一介绍,读者可参考LabVIEW帮助窗口进行了解。

另外在程序框图下【Express】下【输入】下的【声音采集】及【输出】下的【播放波形】也是与声音信号相关的函数节点,如图5所示。

图 5 LabVIEW中Express下的声卡控件4.应用程序举例4.1声音的基本采集利用声卡采集声音信号,其程序的基本实现过程如图6所示。

图6 声卡采集程序流程图4.1.1 VIs声音采集本案例通过采集由Line In 输入的声音信号,练习声音采集的过程。

操作步骤[1] 执行【开始】/【程序】/National Instruments LabVIEW8.5】命令,进入LabVIEW8.5的启动界面。

[2] 在启动界面下,执行【文件】/【新建VI】菜单命令,创建一个新的VI,切换到前面板设计窗口下,移动光标到前面板设计区,打开【空间】/【新式】/【图形显示控件】控件选板,选择一个“波形图”控件,放置到前面板设计区,编辑其标签为“声音信号波形”并调整它的大小,如图7所示。

图7 波形图标签编辑[3] 切换到程序框图设计窗口下,打开【函数】/【编程】/【图形与声音】/【声音】/【输入】函数选板,在程序框图设计区放置一个“配置声音输入”节点、一个“启动声音输入采集”节点、一个“读取声音输入”节点、一个“停止声音输入采集”节点、一个“声音输入清零”节点,如图8所示。

图8 声音输入控件[4] 移动光标到各节点上。

可以在“即时帮助”窗口中看到各节点的端口及解释。

如“配置声音输入”节点,如图9所示。

图9 “配置声音输入”节点[5] 分别移动光标到“配置声音输入”节点的“设备ID”、“声音格式”、“采样模式”的输入端口上,单击鼠标右键,从弹出右键快捷菜单中,执行【创建】/【输入控件】菜单命令,通过端口创建相应的输入节点,如图10所示。

图10 “配置声音输入”节点设置[6] 移动光标到“声音输入清零”节点的“错误输出”端口上,单击鼠标右键,从弹出的右键快捷菜单中执行【创建】/【显示控件】菜单命令,创建相应的显示节点,如图11所示图11 “声音输入清零”节点设置[7] 打开【函数】/【编程】/【结构】函数选板,选择“While循环”节点,放置到程序框图设计区,在“While循环”的循环条件端口创建一个输入控件,移动光标到“While循环”的循环条件节点的输入端,单击鼠标右键,从弹出的右键快捷菜单中执行【创建】/【输入控件】菜单命令,创建相应的输入节点,并按图12所示,完成程序框图的设计。

图12 程序框图的设计[8] 切换设计界面到前面板,可以看到与程序框图设计区节点相对应的控件对象,调整它们的大小和位置,美化界面。

[9] 单击工具栏上程序运行按钮,并对着传声器输入语音或一段音乐,即可在波形图空间中查看声音信号的波形,其中的一个运行界面如图13所示。

图13 程序运行界面二、实验内容1、基于LabVIEW,用声卡采集声音信号,并显示出来,计算并显示声音信号的幅度谱。

2、对声音信号添加频率为20KHz,幅度为0.01V的噪声(采样频率为44.1KHz,采样数:10000个点),将加噪后的信号波形及其幅度谱显示出来。

3、对加噪后的信号滤波,采用低通滤波器,截止频率为15KHz,Butterworth 型,阶数为10,将滤波后的信号波形及其幅度谱显示出来。

4、比较以上3个步骤的波形和幅度谱。

5、采用同样的方法可以测量信号的相位谱、功率谱等信息,实验前面板如图14所示图14 实验程序的前面板实验程序框图如图15所示图15 实验程序框图11 / 1111 / 11。

相关文档
最新文档