直流电动机工作原理
直流电机的工作原理

直流电机的工作原理
1、直流电动机的工作原理:
在图中,线圈连着换向片,换向片固定于转轴上,随电机轴一起旋转,换向片之间及换向片与转轴之间均相互绝缘,它们构成的整体称为换向器。
电刷A、B在空间上固定不动。
在电机的两电刷端加上直流电压,由于电刷和换向器的作用将电能引入电枢线圈中,并保证了同一个极下线圈边中的电流始终是一个方向,继而保证了该极下线圈边所受的电磁力方向不变,保证了电动机能连续地旋转,以实现将电能转换成机械能以拖动生产机械,这就是直流电动机的工作原理。
留意:每个线圈边中的电流方向是交变的。
2、直流发电机的工作原理:
如图,当用原动机拖动电枢逆时针方向旋转,线圈边将切割磁力线感应出电势,电势方向可据右手定则确定。
由于电枢连续旋转,线圈边ab、cd将交替地切割N极、S极下的磁力线,每个线圈边和整个线圈中的感应电动势的方向是交变的,线圈内的感应电动势是交变电动势,但由于电刷和换向器的作用,使流过负载的电流是单方向的直流电流,这始终流电流一般是脉动的。
在图中,电刷A所引出的电动势始终是切割N极磁力线的线圈边中的电动势,它始终具有正极性;电刷B始终具有负极性。
这就是直流发电机的工作原理。
3、电机理论的可逆性原理:
从基本电磁过程看,一台直流电机既可作为电动机运行,也可作为发电机运行,只是外界条件不同而已。
当外加直流电压,可作为拖动生产机械的电动机运行,将电能变换为机械能。
若用原动机拖动电枢旋转,可输出电能,为发电机运行,将机械能变换为电能。
直流电机工作原理

直流电机工作原理直流电机是一种将直流电能转化为机械能的装置。
它是由一个固定部分(定子)和一个旋转部分(转子)组成的。
当电流通过定子线圈时,会在定子中产生一个磁场。
而当磁场与转子上的磁场相互作用时,就会产生一个电力矩,推动转子旋转。
直流电机的工作原理可以分为以下几个方面来说明:1.磁场产生:当直流电流通过定子线圈时,会在定子内部产生一个磁场。
这是因为电流通过线圈时,会在线圈周围产生一个磁场。
而由于定子线圈是直接与电源相连的,因此它会持续地产生磁场。
2.磁场与转子相互作用:转子上有一个磁场。
当转子与定子中的磁场相互作用时,就会产生一个电力矩。
这是因为两个磁场之间会相互吸引或排斥,从而产生一个力矩作用在转子上。
3.反向作用力:当转子开始转动时,它会产生一个逆向的电动势,也就是所谓的自感电势。
这个电动势会抵消部分输入电流,从而减少了电流在定子线圈上的流动,进而减小了定子产生的磁场。
4.固定磁场方向:为了确保转子始终朝向磁场运动,直流电机在定子中使用了一个永久磁体。
这个永久磁体在定子中产生一个固定的磁场,确保转子在该磁场方向上运动。
5.制动和调速:直流电机可以通过改变输入电流来调节转速。
当增加电流时,定子内部的磁场将会变强,从而增大了电力矩。
反之,当降低电流时,定子内部的磁场将会变弱,进而减小了电力矩。
通过这种方式,可以实现对直流电机的调速。
直流电机的工作原理可以通过施加电流和控制磁场来实现。
通过改变电流的大小和方向,可以控制转子的转动方向和速度。
这使得直流电机在许多应用中非常有用,例如在电动汽车和工业机械等领域。
直流电动机工作原理的简述

直流电动机工作原理的简述
直流电动机是利用直流电流通过电枢产生磁场,与永磁场相互作用而产生旋转力矩。
其工作原理可以分为电磁感应原理和电磁力原理两个方面。
1. 电磁感应原理:当直流电流通过电枢绕组时,在电枢绕组中产生磁场,这个磁场与永磁体的磁场相互作用。
根据左手定则,两个磁场的相互作用会产生一个力矩,使电枢转动。
当电枢转动时,可以通过电刷和换向器的作用,让直流电流的方向始终保持一致,从而保持转动。
2. 电磁力原理:当电枢绕组中的电流通过电枢绕组的导线时,在导线内部产生一个磁场。
在永磁场的作用下,这个磁场和永磁场相互作用,产生一个输出力,使电枢转动。
根据洛伦兹力定律,导线中的电流与磁场相互作用产生力的方向垂直于两者之间的夹角。
综上所述,直流电动机的工作原理是通过电流和磁场之间的相互作用产生力矩,从而使电枢转动。
同时通过合适的电刷和换向器的作用,保持直流电流的方向始终一致,使电机能够持续运转。
直流电动机工作原理

直流电动机工作原理
直流电动机工作原理其实是利用了电磁力的作用。
它由定子和转子组成。
定子是由一个或多个线圈组成的,通过外界直流电源供电,形成一个恒定的磁场。
转子则是由一组永磁体或电磁铁组成,它与定子的磁场相互作用,从而产生电磁力。
当转子处于初动阶段时,因为永磁体受到磁场的作用,转子会受到励磁力的作用而开始旋转。
但是在开始阶段,因为电动机的转动还不稳定,所以需要某种方式来控制电流,以保持电动机的稳定工作。
通常情况下,人们会采用直流电机的可变电压控制,通过调节电源的电压来使电动机在不同的负载下保持稳定的旋转速度。
直流电动机的旋转速度与电动机的电压成正比,也与电磁力的大小成正比。
通过改变电流的方向和大小,可以改变磁场的方向和大小,从而控制电动机的速度和转向。
这也是为什么直流电动机可以实现正反转的原因。
总结来说,直流电动机的工作原理是通过利用定子和转子之间的相互作用,以及通过控制电流和磁场的方向和大小来实现旋转运动。
这种工作原理使得直流电动机在许多领域中被广泛应用,如工业生产、交通工具等。
直流电机 工作原理

直流电机工作原理直流电机是一种能够将电能转化为机械能的电动机。
它的工作原理是利用直流电流在电枢和磁极之间产生的磁场相互作用,使得电机转动。
下面将详细介绍直流电机的结构和工作原理。
一、直流电机的结构直流电机主要由以下几个部分组成:1. 电枢:电枢是直流电机的旋转部分,通常由导体绕成的线圈组成。
当电流通过电枢时,电枢会在磁场中旋转。
2. 磁极:磁极是直流电机的静止部分,通常由永磁体或者电磁铁组成。
磁极的作用是产生磁场,使得电枢在其中旋转。
3. 制动器:制动器可以控制电机的转速和停止。
当制动器接通时,它会对电枢产生阻力,减慢电机的转速或者停止电机运转。
4. 机壳:机壳是直流电机的外壳,通常由金属材料制成。
它的作用是保护电机内部的零件,同时也可以散热。
二、直流电机的工作原理直流电机的工作原理可以分为两个部分:电枢和磁极之间的相互作用和直流电源对电枢产生的作用力。
1. 电枢和磁极之间的相互作用当直流电源接通时,电流会通过电枢,使得电枢在磁场中旋转。
在旋转的过程中,电枢会不断地与磁极相互作用,产生一个力矩。
这个力矩会使得电枢继续旋转,直到力矩与制动器对电枢的阻力平衡。
2. 直流电源对电枢产生的作用力当直流电源接通时,它会对电枢产生一个作用力。
这个作用力可以通过洛仑兹力定律来计算。
洛仑兹力定律表明,当导体在磁场中运动时,会受到一个垂直于导体和磁场方向的力。
这个力就是洛仑兹力。
洛仑兹力的大小和方向取决于导体和磁场之间的夹角以及导体所携带的电荷量。
当导体与磁场平行时,洛仑兹力为零;当导体与磁场垂直时,洛仑兹力最大。
在直流电机中,当电枢旋转时,它会不断地与磁场相互作用,产生一个垂直于导体和磁场方向的力。
这个力会使得电枢继续旋转,直到力矩与制动器对电枢的阻力平衡。
三、总结直流电机是一种将电能转化为机械能的电动机。
它的工作原理是利用直流电流在电枢和磁极之间产生的磁场相互作用,使得电机转动。
直流电机主要由电枢、磁极、制动器和机壳等部分组成。
直流电动机工作原理

直流电动机工作原理直流电动机是一种将电能转换为机械能的装置,是现代工业中广泛应用的重要设备。
它的工作原理是利用电流在磁场中产生力矩,从而驱动电动机转动。
下面将详细介绍直流电动机的工作原理。
1. 磁场产生直流电动机通常由定子和转子两部分组成。
定子上设置有永久磁铁或电磁铁产生的磁场,而转子则由电枢和换向器组成。
当电流通过电枢时,电枢周围也会产生磁场。
这两个磁场之间会相互作用,从而产生力矩使电动机转动。
2. 电流作用当直流电源施加在电动机的电枢上时,电流会通过电枢产生磁场。
这个磁场会与定子上的磁场相互作用,产生力矩使转子开始转动。
根据洛伦兹力的原理,当电流通过导体时,导体会受到磁场力的作用,从而产生力矩。
这个力矩会使转子转动,驱动电动机的工作。
3. 换向器的作用在直流电动机中,为了使电流的方向与转子的位置相适应,通常需要使用换向器。
换向器可以改变电流的方向,使得转子在不同位置时,能够产生持续的力矩驱动转动。
换向器的设计和工作原理对于直流电动机的性能和效率有着重要的影响。
4. 转子的运动当电流通过电枢产生力矩使转子开始转动时,转子上的换向器会不断地改变电流的方向,从而使得转子能够持续地转动。
这种连续的转动使得电动机能够持续地输出机械能,从而完成各种工业生产中的任务。
5. 调速和控制直流电动机可以通过改变电枢上的电流大小来实现调速和控制。
通过改变电流的大小,可以改变电动机输出的力矩和转速,从而适应不同的工作要求。
这种调速和控制的特性使得直流电动机在工业生产中具有很大的灵活性和适用性。
总结直流电动机的工作原理是利用电流在磁场中产生力矩,从而驱动电动机转动。
通过永磁体或电磁体产生的磁场和电枢产生的磁场相互作用,使得电动机能够输出持续的机械能。
换向器的作用是使得电流的方向与转子的位置相适应,从而实现持续的转动。
直流电动机具有调速和控制的特性,适用于各种不同的工业生产需求。
电动机的工作原理

电动机的工作原理
电动机的工作原理是利用电能产生磁场,然后通过磁场间的相互作用来实现机械运动。
电动机主要有直流电动机和交流电动机两种类型。
1. 直流电动机的工作原理:
直流电动机分为定子绕组和转子绕组。
定子绕组产生磁场,当通直流电时,定子绕组产生固定极性的磁场。
转子通直流电在磁场中受力,于是转子在磁场中受力就旋转起来。
直流电机的构造复杂,造价高。
2. 交流电动机的工作原理:
交流电机是磁场旋转运动,而导体不动。
通入交流电后,定子绕组产生旋转磁场,转子导体在磁场中切割磁力线产生感应电动势,根据右手定则,转子导体受到电磁力作用而旋转。
交流电机的功率范围大,可以做到很大的功率和惯量,最高转动速度低,适合做低速平稳运行的应用。
总之,电动机的工作原理是利用电磁感应和磁场相互作用来实现机械运动,从而将电能转化为机械能。
不同类型的电动机在具体实现上有所不同,但本质都是通过磁场和电流的相互作用来完成能量转换。
直流电动机工作原理

直流电动机工作原理
直流电动机是一种将直流电能转化为机械能的设备。
其工作原理基于由电流在磁场中产生力的基本物理原理以及楞次定律。
直流电动机主要由两部分构成:定子和转子。
定子是固定在机壳里的一组电磁线圈,称为励磁线圈。
转子则是通过轴承连接到电机轴上的一个线圈。
当直流电流通过励磁线圈时,它会产生一个恒定的磁场。
这个磁场被称为励磁磁场。
在转子的线圈中,也就是电枢,也施加了直流电流。
根据洛伦兹力的作用,电枢中的电流会与励磁磁场产生交互作用,从而产生力矩。
这个力矩会使转子开始旋转。
为了保持转子旋转的连续性,电枢的电流需要不断改变方向。
为了实现这一点,通常使用一个称为换向器或者电刷的装置。
电刷是一对导电材料制成的碳刷,通过机械摩擦与电枢的连续金属环接触。
当电枢的线圈旋转到一个特定的位置时,电刷会改变电路的连接,使电流方向改变,从而保持电枢的旋转。
直流电动机的转速与电压、电流以及负载之间有一定的关系。
当电压或电流增加时,转速也会增加。
而当负载增加时,转速则会下降。
这是由于负载的存在给电枢施加了额外的力矩,导致需要更多的电能来维持转速。
综上所述,直流电动机的工作原理是基于电流在磁场中产生力的原理。
通过在转子的电枢上施加直流电流,在与励磁磁场相互作用的力的作用下,实现了转子的旋转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1 直流电机的电枢电动势
产生:电枢旋转时,主磁场在电枢绕组中感应的电动势简称为电
枢电动势。
大小:
Ea
pN Φn 60 a
CeΦn
其中Ce
pN 60a
为电机的结构常数
(电动势常数
)
可见,直流电机的感应电动势与电机结构、气隙磁通及转速有关。
性质: 发电机——电源电势(与电枢电流同方向);
电动机——反电势(与电枢电流反方向).
为了感应电动势或产生电磁转
矩,直流电机气隙中需要有一定量
的每极磁通 0,空载时,气隙磁通
0
与空载0 磁动势 或空F载f 0 励磁电流
的关系I f 0,称为直流电机的空载磁化 特性。如右图所示。
N
为了经济、合理地利用材料,
一般直流电机额定运行时,额定磁
通 N设定在图中 A点,即在磁化特
性曲线开始进入饱和区的位置。
1.5 直流电机的换向
1.6 直流发电机 1.7 直流电动机
思考题与习题
1.1 直流电机的基本工作原理和结构
1.1.1 直流电机的主要结构
主磁极:产生恒定的气隙磁通,由铁心和励磁绕组构成 换向磁极:改善换向。 定子 电刷装置:与换向片配合,完成直流与交流的互换
机座和端盖:起支撑和固定作用。
转子
电枢铁心:主磁路的一部分,放置电枢绕组。
y y1 y2 y y1 y2
换向节距 yk :同一元件首末端连接的换向片之间的距离。
1.2.2. 单叠绕组
单叠绕组的特点是相邻元件(线圈)相互叠压,合成节距与换向节
距均为1,即: y yk 1。
单叠绕组的展开图是把放在铁心槽里、构成绕组的所有元件取出 来画在一张图里,展示元件相互间的电气连接关系及主磁极、换向片、 电刷间的相对位置关系。
电刷从几何中性线偏移
角,电枢磁动势轴线也随
之移动 角,如图(a)(b)
所示。 电枢磁动势可以分解
为两个垂直分量:交轴电 枢磁动势 和直Fa轴q 电枢磁 动势 。 Fad
电刷顺转向偏移
发电机 交轴和直轴去磁
电动机 交轴和直轴助磁
电刷逆转向偏移 交轴和直轴助磁 交轴和直轴去磁
1.4 直流电机的电枢电动势和电磁转矩
1.1.3 直流电机的铭牌数据
指轴上输出 的机械功率
电动机
额定功率PN
额定条件下电机
发电机
指电刷间输出的 额定电功率
所能提供的功率
额定电压U N 在额定工况下,电机
额定电流I N
出线端的平均电压
额定转速nN
发电机:是指输出额定电压;
在额定电压下,运行于 额定功率时对应的电流Biblioteka 在额定电压、额定电流下,运
当电枢旋转到右图所示位置时
原N极性下导体ab转到S极下, 受力方向从左向右,原S 极下 导体cd转到N极下,受力方向 从右向左。该电磁力形成逆时 针方向的电磁转矩。线圈在该 电磁力形成的电磁转矩作用下 继续逆时针方向旋转。
与直流发电机相同,实际的 直流电动机的电枢并非单一线圈, 磁极也并非一对。
直流电 动机的 工作原 理示意 图:
1.2 直流电机的电枢绕组简介
1.2.1 直流枢绕组基本知识
元件:构成绕组的线圈称为绕组元件,分单匝和多匝两种。
元件的首末端:每一个元件均引出两根线与换向片相连,其中 一根称为首端,另一根称为末端。
极距:相邻两个主磁极轴线沿电枢表面之间的距离,用 表示。
t=D
2p
叠绕组:指串联的两个元件总是后一个元件的端接部分紧叠在前 一个元件端接部分,整个绕组成折叠式前进。
波绕组:指把相隔约为一对极距的同极性磁场下的相应元件串 联起来,象波浪式的前进。
第一节距 y1 :一个元件的两个有效边在电枢表面跨过的距离。
第二节距 y2 :连至同一换向片上的两个元件中第一个元件的下
层边与第二个元件的上层边间的距离。
y 合成节距 :连接同一换向片上的两个元件对应边之间的距离。
单叠绕组 单波绕组
直流电动机
基本结构与工作原理
本章主要讨论直流电机的基本结构和工作原理,讨论直流电 机的磁场分布、感应电动势、电磁转矩、电枢反应及影响、换向 及改善换向方法,从应用角度分析直流发电机的运行特性和直流 电动机的工作特性。
1.1 直流电机的基本工作原理与结构 1.2 直流电机电枢绕组简介 1.3 直流电机的电枢反应 1.4 直流电机的电枢电动势和电磁转矩
1.3.1直流电机的空载磁场
右图为一台四极直流电机空载时的磁场示意图。
当励磁绕组的串联匝数 为N ,f 流过电流 ,I f每极 的励磁磁动势为:
Ff I f N f
漏磁通
磁力线不进入电枢铁心, 直接经过气隙、相邻磁极 或定子铁轭形成闭合回路
漏磁路
主磁通
磁力线由N极出来,经气隙、 电枢齿部、电枢铁心的铁轭、 电枢齿部、气隙进入S极,再 经定子铁轭回到N极
当励磁绕组中有励磁电流,电 机带上负载后,气隙中的磁场是励 磁磁动势与电枢磁动势共同作用的 结果。电枢磁场对气隙磁场的影响 称为电枢反应。电枢反应与电刷的 位置有关。
1、当电刷在几何中性线上时,将 主磁场分布和电枢磁场分布叠加, 可得到负载后电机的磁场分布情况, 如图(a)所示。
电枢磁场磁通 密度分布曲线
单叠绕组的展开图
根据单叠绕组的展开图可以得到绕组的并联支路电路图:
单叠绕组的的特点:
1)同一主磁极下的元件 串联成一条支路,主磁极 数与支路数相同。 2)电刷数等于主磁极数, 电刷位置应使感应电动势 最大,电刷间电动势等于 并联支路电动势。
3)电枢电流等于各支路 电流之和。
1.2.3 单波绕组
时不同。
2)、对主磁场起去磁作用
磁路不饱和时,主磁场被削弱的数量等于加强的数量,因此 每极量的磁通量与空载时相同。电机正常运行于磁化曲线的膝部, 主磁极增磁部分因磁密增加使饱和程度提高,铁心磁阻增大,增 加的磁通少些,因此负载时每极磁通略为减少。即电刷在几何中 性线时的电枢反应为交轴去磁性质。
2、当电刷不在几何中性线上时
电枢绕组:由带绝缘的导线绕制而成,是电路部分。
换向器:与电刷装置配合,完成直流与交流的互换 转轴 轴承
1.1 直流电机的基本工作原理和结构
1.1.2 直流电机的工作原理
一、直流发电机工作原理
直流发电机是将机械能转变成电能的旋转机械。
右图为直流发电机的物理模型, N、S为定子磁极,abcd是固定在 可旋转导磁圆柱体上的线圈,线圈 连同导磁圆柱体称为电机的转子或 电枢。线圈的首末端a、d连接到两 个相互绝缘并可随线圈一同旋转的 换向片上。转子线圈与外电路的连 接是通过放置在换向片上固定不动 的电刷进行的。
换向问题很复杂,换向不良会在电刷与换向片之间产生 火花。当火花大到一定程度,可能损坏电刷和换向器表面, 使电机不能正常工作。
磁极中心及附近的气 隙小且均匀,磁通密度较 大且基本为常数,靠近极 尖处,气隙逐渐变大,磁 通密度减小;极尖以外, 气隙明显增大,磁通密度 显著减少,在磁极之间的 几何中性线处,气隙磁通 密度为零。
极身
极靴 几何中性线
(a)气隙形状
空载时的气隙磁通密度为 一平顶波,如下图(b) 所示。
空载时主磁极磁通的分 布情况,如右图(c) 所示。
如果认为直流电机电枢上 有无穷多整距元件分布,则电 枢磁动势在气隙圆周方向空间
分布呈三角波,如图中 Fa所x 示。
由于主磁极下气隙长度基 本不变,而两个主磁极之间, 气隙长度增加得很快,致使电 枢磁动势产生的气隙磁通密度
为对称的马鞍型,如图中Bax
所示。
Bax Fax
1.3.3 直流电机的电枢反应
二、直流电动机工作原理
在磁场作用下,N极性下导体
直流电动机是将电能转变 ab受力方向从右向左,S 极下导
成机械能的旋转机械。
体cd受力方向从左向右。该电磁
把电刷A、B接到直流电源 力形成逆时针方向的电磁转矩。
上,电刷A接正极,电刷B接负 当电磁转矩大于阻转矩时,电机
极。此时电枢线圈中将电流流过。转子逆时针方向旋转。
1.4.2 直流电机的电磁转矩 产生:电枢绕组中有电枢电流流过时,在磁场内受电磁力的作用,该
力与电枢铁心半径之积称为电磁转矩。
大小:
Tem
pN 2 πa
ΦIa
CTΦIa
其中CT
pN为电机的转矩常数,有 2 πa
CT
9.55Ce
可见,制造好的直流电机其电磁转矩与气隙磁通及电枢电 流成正比
性质: 发电机——制动(与转速方向相反);
0
A
If0 If
I fN F f 0 IN
1.3.2 直流电机负载时的负载磁场
直流电机带上负载后,电枢绕组 中有电流,电枢电流产生的磁动势称 为电枢磁动势。电枢磁动势的出现使 电机的磁场发生变化。
右图为一台电刷放在几何中性 线的两极直流电机的电枢磁场分布 情况。
假设励磁电流为零,只有电枢电 流。由图可见电枢磁动势产生的气隙 磁场在空间的分布情况,电枢磁动势 为交轴磁动势。
元件1
电枢移到电刷与换向片2接触时,元
件1的被短路,电流被分流。
ii11 i2
12
电刷仅与换向片2接触时,元件1 中
的电流方向如图所示,大小为 i ia
2i2a2iaia
元件从开始换向到换向终了所经历的时间,称为换向周 期。换向周期通常只有千分之几秒。直流电机在运行中,电 枢绕组每个元件在经过电刷时都要经历换向过程。
与电刷A接触的导体总是位于N 极下,与电刷B接触的导体总是位 于S极下,电刷A的极性总是正的, 电刷B的极性总是负的,在电刷A、 B两端可获得直流电动势。
实际直流发电机的电枢是根据实际需要有多个线圈。线圈分 布在电枢铁心表面的不同位置,按照一定的规律连接起来,构成 电机的电枢绕组。磁极也是根据需要N、S极交替旋转多对。