核糖体合成蛋白质过程作用部位

合集下载

细胞内蛋白质的合成部位和去向

细胞内蛋白质的合成部位和去向

Thank you for your attention & concern!!
糙面内质网
图为内质网,其中的颗粒状物质为核糖体
光面内质网
• 表面没有核糖体结合的内质网称为光面 内质网。光面内质网常为分支管状,形 成较为复杂的立体结构。光面内质网是 脂质合成的重要场所,细胞中几乎不含 有纯的光面内质网,它们只是作为内质 网这一连续结构的一部分。光面内质网 所占的区域通常较小,往往作为出芽的 位点,将内质网上合成的蛋白质或脂质 转移到高尔基体内。
蛋白质的修饰与加工
包括糖基化、羟基化、酰基化、二硫键形成等,其 中最主要的是糖基化,几乎所有内质网上合成的蛋白质 最终被糖基化。糖基化的作用是: ①使蛋白质能够抵抗 消化酶的作用;②赋予蛋白质传导信号的功能;③某些 蛋白只有在糖基化之后才能正确折叠 内质网上进行的为N-连接的糖基化。糖的供体为核 苷糖(nucleotide sugar),如CMP-唾液酸、GDP-甘露糖、 UDP-N-乙酰葡糖胺等。糖分子首先被糖基转移酶转移到 膜上的磷酸长醇(dolichol phosphate)分子上,装配成寡 糖链。再被寡糖转移酶转到新合成肽链特定序列(AsnX-Ser或Asn-X-Thr)的天冬酰胺残基上.
rER的形态(右 图)
sER的形态(左图)
信号肽指导蛋白质转移到内质网合成
• C. Milstein(1972)发现从骨髓瘤细胞提 取的免疫球蛋白分子N端要比分泌到细胞 外的N端多出一段。G. Blobel和D. Sabatini等根据进一步的实验,提出了信 号假说(Signal hypothesis),认为蛋白 质上的信号肽,指导蛋白质转至内质网 上合成。Blobel因此项发现获1999年诺贝 尔生理医学奖。

核糖体和蛋白质合成

核糖体和蛋白质合成

❖在电镜下,核糖体具有一定的三维形态,且每一核糖体均由 大、小两个亚单位构成。
❖大亚单位略呈半圆形,直径约为23纳米,在一侧伸出三个突 起,中央为一凹陷;
❖小亚单位呈长条形,在约 1/3长度处有一细的缢痕,将小亚 单位分为大小两个区域。
❖当大小亚单位结合在一起成核糖体时,其凹陷部位彼此对应, 从而形成一个隧道,为蛋白质翻译时mRNA的穿行通路。
13
肽链的延伸
❖ 生成起始复合物,第一个氨基酸(fMet/Met-tRNA)与核糖 体结合以后,肽链开始伸长。按照mRNA模板密码子的排列, 氨基酸通过新生肽键的方式被有序地结合上去。肽链延伸由 许多循环组成,每加一个氨基酸就是一个循环,每个循环包 括AA-tRNA与核糖体结合、肽键的生成和移位。
6
核糖体上具有一系列与蛋白质 合成有关的结合位点与催化位点
与mRNA的结合位点 与新掺入的氨酰-tRNA的结合位点——氨酰基位点,又称A位
点 与延伸中的肽酰-tRNA的结合位点——肽酰基位点,又称P位点 肽酰转移后与即将释放的tRNA的结合位点——E位点(exit site) 与肽酰tRNA从A位点转移到P位点有关的转移酶 (即延伸因子
EF-G)的结合位点 肽酰转移酶的催化位点 与蛋白质合成有关的其它起始因子、延伸因子和终止因子的
结合位点
7
在核糖体中rRNA是起主要作用的结构成分
具有肽酰转移酶的活性; 为tRNA提供结合位点(A位点、P位点和E位点);
在蛋白质合成起始时参与同mRNA选择性地结合
以及在肽链的延伸中与mRNA结合; 核糖体大小亚单位的结合、校正阅读(proofreading)、
第七章 核糖体和蛋白质合成
核糖体(ribosome)是合成蛋白质的细胞器,其唯一的功能 是按照mRNA的指令由氨基酸高效且精确地合成多肽链。

蛋白质的生物合成习题与参考答案

蛋白质的生物合成习题与参考答案

第十五章蛋白质生物合成一、填空题:1.三联体密码子共有64 个,其中终止密码子共有 3 个,分别为UAA 、UAG 、UGA ; 2.密码子的基本特点有四个分别为从5′→3′无间断性、简并性、变偶性、通用性; 3.次黄嘌呤具有广泛的配对能力,它可与U 、 C 、 A 三个碱基配对,因此当它出现在反密码子中时,会使反密码子具有最大限度的阅读能力;4.原核生物核糖体为70 S,其中大亚基为50 S,小亚基为30 S;而真核生物核糖体为80 S,大亚基为60 S,小亚基为40 S;5.原核起始tRNA,可表示为tRNA f甲硫,而起始氨酰tRNA表示为f Met-tRNA f甲硫;真核生物起始tRNA可表示为tRNA I甲硫,-tRNA表示为Met-tRNA f甲硫;6.肽链延伸过程需要进位、转肽、移位三步循环往复,每循环一次肽链延长 1 个氨基酸残基,原核生物中循环的第一步需要EF-Tu 和EF-Ts 延伸因子;第三步需要EF-G 延伸因子;7.原核生物mRNA分子中在距起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤碱基的序列称为Shine-Dalgrano序列,它可与16S-rRNA 3′-端核苷酸序列互补;8.氨酰-tRNA的结构通式可表示为:OtRNA-O-C-CH-RNH2,与氨基酸键联的核苷酸是A腺嘌呤核苷酸;9.氨酰-tRNA合成酶对氨基酸和相应tRNA都具有较高专一性,此酶促反应过程中由ATP 水解提供能量;10.肽链合成的终止阶段, RF1因子和RF2因子能识别终止密码子,以终止肽链延伸,而RF3因子虽不能识别任何终止密码子,但能协助肽链释放;11.蛋白质合成后加工常见的方式有磷酸化、糖基化、脱甲基化、信号肽切除; 12.真核生物细胞合成多肽的起始氨基酸为甲硫氨酸,起始tRNA为tRNA I甲硫,此tRNA 分子中不含T C 序列;这是tRNA家庭中十分特殊的;二、选择题只有一个最佳答案:1.下列有关mRAN的论述,正确的一项是 CA、mRNA是基因表达的最终产物B、mRNA遗传密码的阅读方向是3′→5′C、mRNA遗传密码的阅读方向是5′→3′D、mRNA密码子与tRNA反密码子通过A-T,G-C配对结合E、每分子mRNA有3个终止密码子2.下列反密码子中能与密码子UAC配对的是 DA、AUGB、AUIC、ACUD、GUA3.下列密码子中,终止密码子是 BA、UUAB、UGAC、UGUD、UAU4.下列密码子中,属于起始密码子的是 AA、AUGB、AUUC、AUCD、GAG5.下列有关密码子的叙述,错误的一项是 CA 、密码子阅读是有特定起始位点的B 、密码子阅读无间断性C 、密码子都具有简并性D 、密码子对生物界具有通用性6.密码子变偶性叙述中,不恰当的一项是 AA 、密码子中的第三位碱基专一性较小,所以密码子的专一性完全由前两位决定B 、第三位碱基如果发生了突变如A G 、C U,由于密码子的简并性与变偶性特点,使之仍能翻译出正确的氨基酸来,从而使蛋白质的生物学功能不变C 、次黄嘌呤经常出现在反密码子的第三位,使之具有更广泛的阅读能力,I-U 、I-C 、I-A 从而可减少由于点突变引起的误差D 、几乎有密码子可用U C XY 或U C XY 表示,其意义为密码子专一性主要由头两个碱基决定7.关于核糖体叙述不恰当的一项是 BA 、核糖体是由多种酶缔合而成的能够协调活动共同完成翻译工作的多酶复合体B 、核糖体中的各种酶单独存在解聚体时,同样具有相应的功能C 、在核糖体的大亚基上存在着肽酰基P 位点和氨酰基A 位点D 、在核糖体大亚基上含有肽酰转移酶及能与各种起始因子,延伸因子,释放因子和各种酶相结合的位点8.tRNA 的叙述中,哪一项不恰当 DA 、tRNA 在蛋白质合成中转运活化了的氨基酸B 、起始tRNA 在真核原核生物中仅用于蛋白质合成的起始作用C 、除起始tRNA 外,其余tRNA 是蛋白质合成延伸中起作用,统称为延伸tRNAD 、原核与真核生物中的起始tRNA 均为fMet-tRNA9.tRNA 结构与功能紧密相关,下列叙述哪一项不恰当 DA 、tRNA 的二级结构均为“三叶草形”B 、tRNA3′-末端为受体臂的功能部位,均有CCA 的结构末端C 、T C 环的序列比较保守,它对识别核糖体并与核糖体结合有关D 、D 环也具有保守性,它在被氨酰-tRNA 合成酶识别时,是与酶接触的区域之一10.蛋白质生物合成中多肽的氨基酸排列顺序取决于 CA 、相应tRNA 的专一性B 、相应氨酰tRNA 合成酶的专一性C 、相应mRNA 中核苷酸排列顺序D 、相应tRNA 上的反密码子11.下列有关氨酰- tRNA 合成酶叙述中,哪一项有误 CA 、氨酰-tRNA 合成酶促反应中由ATP 提供能量,推动合成正向进行B 、每种氨基酸活化均需要专一的氨基酰- tRNA 合成酶催化C 、氨酰-tRNA 合成酶活性中心对氨基酸及tRNA 都具有绝对专一性OD 、该类酶促反应终产物中氨基酸的活化形式为R -CH -C -O -ACC -tRNANH 212.原核生物中肽链合的起始过程叙述中,不恰当的一项是 DA 、mRNA 起始密码多数为AUG,少数情况也为GUGB 、起始密码子往往在5′-端第25个核苷酸以后,而不是从mRNA5′-端的第一个苷酸开始的C 、在距起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤的序列,它能与16SrRNA3′-端碱基形成互补D、70S起始复合物的形成过程,是50S大亚基及30S小亚基与mRNA自动组装的13.有关大肠杆菌肽链延伸叙述中,不恰当的一项是 CA、进位是氨酰-tRNA进入大亚基空差的A位点B、进位过程需要延伸因子EFTu及EFTs协助完成C、甲酰甲硫氨酰-tRNA f进入70S核糖体A位同样需要EFTu-EFTs延伸因子作用D、进位过程中消耗能量由GTP水解释放自由能提供14.移位的叙述中哪一项不恰当 CA、移位是指核糖体沿mRNA5′→3′作相对移动,每次移动的距离为一个密码子B、移位反应需要一种蛋白质因子EFG参加,该因子也称移位酶C、EFG是核糖体组成因子D、移位过程需要消耗的能量形式是GTP水解释放的自由能15.蛋白质生物合成的方向是: BA、从C端到N端B、从N端到C端C、定点双向进行D、从C端、N端同时进行16.在蛋白质合成过程中,下列哪些说法是正确的 CA、氨基酸随机地连接到tRNA上去B、新生多肽链的合成都是从C-端向N-端方向延伸的C、通过核糖核蛋白体的收缩,mRNA不断移动D、肽键形成是由肽酰转移酶作用下完成的,此种酶不属于核糖体的组成成分17.70S起始复合物的形成过程的叙述,哪项是正确的 DA、mRNA与30S亚基结合过程需要超始因子IF1B、mRNA与30S亚基结合过程需要超始因子IF2C、mRNA与30S亚基结合过程需要超始因子IF3D、mRNA与30S亚基结合过程需要超始因子IF1、IF2和IF318.mRNA与30S亚基复合物与甲酰甲硫氨酰-tRNA f结合过程中起始因子为 AA、IF1及IF2B、IF2及IF3C、IF1及IF3D、IF1、IF2及IF319.原核细胞中氨基酸掺入多肽链的第一步反应是: DA、甲酰蛋氨酸-tRNA与核蛋白体结合B、核蛋白体30S亚基与50S亚基结合C、mRNA与核蛋白体30S亚基结合D、氨酰tRNA合成酶催化氨基酸活化20.假设翻译时可从任一核苷酸起始读码,人工合成的AACnn为任意整数多聚核苷酸,能够翻译出几种多聚氨基酸 CA、一种B、二种C、三种D、四种21.绝大多数真核生物mRNA5’端有 AA、帽子结构B、PolyAC、起始密码D、终止密码22.能与密码子ACU相识别的反密码子是DA、UGAB、IGAC、AGID、AGU23.原核细胞中新生肽链的N-末端氨基酸是CA、甲硫氨酸B、蛋氨酸C、甲酰甲硫氨酸D、任何氨基酸24.tRNA的作用是 DA、把一个氨基酸连到另一个氨基酸上B、将mRNA连到rRNA上C、增加氨基酸的有效浓度D、把氨基酸带到mRNA的特定位置上25.细胞内编码20种氨基酸的密码子总数为: DA、16B、64C、20D、6126.下列关于遗传密码的描述哪一项是错误的CA、密码阅读有方向性,5'-端开始,3'-端终止B、密码第3位即3′-端碱基与反密码子的第1位即5′-端碱基配对具有一定自由度,有时会出现多对一的情况C、一种氨基酸只能有一种密码子D、一种密码子只代表一种氨基酸27.蛋白质合成所需的能量来自CA、ATPB、GTPC、ATP和GTPD、CTP28.下列关于氨基酸密码的描述哪一项是错误的 AA、密码有种属特异性,所以不同生物合成不同的蛋白质B、密码阅读有方向性,5′-端起始,3′-端终止C、一种氨基酸可有一组以上的密码D、一组密码只代表一种氨基酸29.mRNA的5′-ACG-3′密码子相应的反密码子是 CA、5′-UGC-3′B、5′-TGC-3′C、5′-CGU-3′D、5′-CGT-3′30.下列哪一个不是终止密码 BA、UAAB、UACC、UAGD、UGA三、是非题在题后括号内打√或×:1、蛋白质生物合成所需的能量都由ATP直接供给; ×2、反密码子GAA只能辨认密码子UUC; ×3、生物遗传信息的流向,只能由DNA—→RNA而不能由RNA—→DNA; ×4、原核细胞新生肽链N端第一个残基为fMet,真核细胞新生肽链肽链N端第一个氨基酸残基为Met; √5、DNA复制与转录的共同点在于都是以双链DNA为模板,以半保留方式进行,最后形成链状产物; ×6、依赖DNA的RNA聚合酶叫转录酶,依赖于RNA的DNA聚合酶即反转录酶; √7、密码子从5’-端至3’-端读码,而反密码子则从3’-端至5’-端读码; ×8、一般讲,从DNA的三联体密码子中可以推定氨基酸的顺序,相反从氨基酸的顺序也可毫无疑问地推定DNA顺序; ×9、DNA半不连续复制是指复制时一条链的合成方向是5′→3′而另一条链方向是3′→5′; ×10、真核生物蛋白质合成起始氨基酸是N-甲酰甲硫氨酸; ×11、原核细胞的DNA聚合酶一般都不具有核酸外切酶的活性; ×12、在具备转录的条件下,DNA分子中的两条链在体内都可能被转录成RNA; ×13、核糖体是细胞内进行蛋白质生物合成的部位; √14、mRNA与携带有氨基酸的tRNA是通过核糖体结合的; √15、核酸是遗传信息的携带者和传递者; √16、RNA的合成和DNA的合成一样,在起始合成前亦需要有RNA引物参加; ×17、真核生物mRNA多数为多顺反子,而原核生物mRNA多数为单顺反子; ×18、合成RNA时,DNA两条链同时都具有转录作用; ×19、在蛋白质生物过程中mRNA是由3’-端向5’-端进行翻译的; ×20、蛋白质分子中天冬酰胺,谷氨酰胺和羟脯氨酸都是生物合成时直接从模板中译读而来的; ×21、逆转录病毒RNA并不需要插入寄主细胞的染色体也可完成其生命循环; ×四、问答题:1.氨酰-tRNA合成酶在多肽合成中的作用特点和意义;答:氨基酰-tRNA合成酶具有高度的专一性:一是对氨基酸有极高的专一性,每种氨基酸都有一种专一的酶,它仅作用于L-氨基酸,不作用于D-氨基酸,有的氨基酸-tRNA合成酶对氨基酸的专一性虽然不很高,但对tRNA仍具有极高专一性;这种高度专一性会大大减少多肽合成中的差错;2.原核细胞与真核细胞蛋白质合成起始氨基酸起始氨基酰—tRNA及起始复合物的异同点有那些答:为了便于比较列表如下3.原核生物与真核生物mRNA的信息量及起始信号区结构上有何主要差异;答:为了便于比较列表如下:4.简述三种RNA在蛋白质生物合成中的作用;答:1 mRNA:DNA的遗传信息通过转录作用传递给mRNA,mRNA作为蛋白质合成模板,传递遗传信息,指导蛋白质合成;2 tRNA:蛋白质合成中氨基酸运载工具,tRNA的反密码子与mRNA上的密码子相互作用,使分子中的遗传信息转换成蛋白质的氨基酸顺序是遗传信息的转换器;3 rRNA:核糖体的组分,在形成核糖体的结构和功能上起重要作用,它与核糖体中蛋白质以及其它辅助因子一起提供了翻译过程所需的全部酶活性;五、名词解释:1.遗传密码与密码子多肽链中氨基酸的排列次序mRNA分子编码区核苷酸的排列次序对应方式称为遗传密码;而mRNA分子编码区中每三个相邻的核苷酸构成一个密码子;由四种核苷酸构成的密码子共64个,其中有三个不代表任何氨基酸,而是蛋白质合成中的终止密码子;2.起始密码子与终止密码子蛋白质合成中决定起始氨基酸的密码子称为起始密码子,真核与原核生物中的起始密码子为代表甲硫氨酸的密码子AUG和代表缬氨酸的密码子GUG;3.密码的简并性和变偶性一种氨基酸可以具有好几组密码子,其中第三位碱基比前两位碱基具有较小的专一性,即密码子的专一性主要由前两位碱基决定的特性称为变偶性;4.核糖体与多核糖体生物系统中合成蛋白质的部侠,称为核糖体;多聚核糖体:一条mRNA模板链可附着10-100个核糖体,这些核糖体依次结合起始密码子,沿5-3方向读码移动,同时进行肽链合成,这种mRNA与多个核糖体形成的聚合物称为多聚核糖体;5.同功tRNA、起始tRNA、延伸tRNA用于携带或运送同一种氨基酸的不同tRNA称同功tRNA,能特异识别mRNA上起始密码子的tRNA,称为起始tRNA;在肽链延伸过程中,用于转运氨基酸的tRNA称为延伸tRNA;6.EFTu-EFTs循环,移位,转肽肽键形成EF-Tu与EF-T S称为延伸因子,参与氨基酰-tRNA进位,每完成一次进位需要EF-Ts-EF-Tu循环一周,其过程如下:移位:就是核糖体沿着mRNA从5′向3′-端移动一个密码子的距离:转肽则是位于核糖体大亚基P 位点的肽酰基在转肽酶的作用下,被转移到A位点,氨在酰-tRNA的氨基上形成肽键的过程;7.信号肽几乎所有跨膜运送的蛋白质结构中,多数存在于N-末端的肽片段称为信号肽,其长度一般为15—35个氨基酸残基;它在蛋白质跨膜运送中起重要作用;少数信号肽位于多肽中间某个部位,称为“内含信号肽;”8.移码突变在mRNA分子编码区内插入一个或删除一个碱基,就会使这点以后的读码发生错误,这称为移码;由于移码引起的突变称为移码突变;。

原核生物核糖体中的a、p两个点位的功能

原核生物核糖体中的a、p两个点位的功能

原核生物是一类不能生成任何组织多胞生物体的生物,也就是指无真核细胞核的生物,这类生物的细胞器官较简化复杂生物。

核糖体是一类细胞质中的固有颗粒,由RNA和蛋白质组成,是蛋白质合成的场所,存在于所有细胞中,由大、小两个亚基构成。

a、p两个位点是核糖体中的两个功能位点,分别对应tRNA上的两个部分。

1. a位点的功能a位点是核糖体上的一个位点,是tRNA分子结合到核糖体上的位置,它与tRNA上的氨基酸结合部位相互作用,保证了氨基酸的顺序正确地加入正在合成的蛋白质链中。

a位点的存在,使得tRNA上携带的氨基酸能够被适当地加到正在生长的肽链上,这是蛋白质合成不可或缺的一部分。

2. p位点的功能p位点是核糖体上的另一个位点,是tRNA分子上的蛋白链的结合位点。

在蛋白质合成过程中,p位点与tRNA上的肽链结合部位发生相互作用,保证肽链的正确加入和延伸。

p位点的存在,使得tRNA携带的肽链能够正确地加入正在生长的蛋白质链上,从而完成蛋白质的合成过程。

3. a、p两个位点的协同作用a、p两个位点在核糖体中起着协同作用,保证了蛋白质合成的顺利进行。

在蛋白质合成过程中,tRNA分子首先通过a位点与核糖体结合,随后肽链被转移到p位点,最终完成蛋白质的合成。

4. 对生物学研究的意义a、p两个位点在核糖体中的功能对生物学研究具有重要意义。

研究人员通过对这两个位点的深入研究,可以更好地理解核糖体在蛋白质合成中的作用机制,为生物学领域的发展做出更大的贡献。

5. 结语a、p两个位点在原核生物核糖体中起着重要的功能作用,是蛋白质合成过程中不可或缺的一部分。

对这两个位点的深入研究,对于揭示生物体内蛋白质合成的机制,以及相关疾病的治疗和预防,具有重要的意义。

希望未来能够有更多的科学家投身其中,共同探索这一领域的奥秘。

a、p两个位点在原核生物核糖体中的功能是蛋白质合成的关键步骤,而这一过程对生物学研究有着重要的意义。

通过对这些功能位点的深入研究,科学家们不仅可以更好地理解细胞内蛋白质合成的机制,还可以为相关药物的研发和相关疾病的治疗提供重要依据。

细胞内蛋白质的合成部位和去向

细胞内蛋白质的合成部位和去向

糙面内质网
图为内质网,其中的颗粒状物质为核糖体
光面内质网
• 表面没有核糖体结合的内质网称为光面 内质网。光面内质网常为分支管状,形 成较为复杂的立体结构。光面内质网是 脂质合成的重要场所,细胞中几乎不含 有纯的光面内质网,它们只是作为内质 网这一连续结构的一部分。光面内质网 所占的区域通常较小,往往作为出芽的 位点,将内质网上合成的蛋白质或脂质 转移到高尔基体内。
蛋白质合成部位 ---内质网简介
由于内质网的存在,大大增加了细胞内膜 的表面积,为多种酶特别是多酶体系提 供了大面积的结合位点。同时内质网形 成的完整封闭体系,将内质网上合成的 物质与细胞质基质中合成的物质分隔开 来,更有利于它们的加工和运输。
内质网的功能
• ER主要功能是合成蛋白质和脂类,分泌性蛋白和跨 膜蛋白都是在ER中合成的。ER合成的脂类除满足自身 需要外,还提供给高尔基体、溶酶体、内体、质膜、 线粒体、叶绿体等膜性细胞结构。 • ER膜中含大约60%的蛋白和40%的脂类,脂类主 要成分为磷脂,磷脂酰胆碱含量较高,鞘磷脂含量较 少,没有或很少含胆固醇。ER约有30多种膜结合蛋白, 另有30多种位于内质网腔,这些蛋白的分布具有异质 性,如:葡糖-6-磷酸酶,普遍存在于内质网,被认为 是标志酶,核糖体结合糖蛋白(ribophorin)只分布在 RER,P450酶系只分布在SER。
一些信号肽序列
• 蛋白质信号序列 • • Preproalbumin: • Met-Lys-Trp-Val-Thr-Phe-Leu-Leu-Leu-Leu-Phe-Ile-Ser- Gly-SerAla-Phe-Ser↓Arg Ala-Phe-Ser↓Arg... • • Pre-IgG light chain: • Met-Asp-Met-Arg-Ala-Pro-Ala-Gln-Ile-Phe-Gly-Phe-Leu- Leu-LeuLeu-Phe-Pro-Gly- Thr-Arg-Cys↓Asp... • • Prelysozyme: • Met-Arg-Ser-Leu-Leu-Ile-Leu-Val-Leu-Cys-Phe-Leu- Pro-Leu-AlaAla-Leu-Gly↓Lys...

核糖体

核糖体
IF1,IF2,IF3,GDP
70S 70S起始复合物
3.肽链的延伸过程 3.肽链的延伸过程
需肽酰转移酶,GTP,EF(延伸因子) 需肽酰转移酶,GTP,EF(延伸因子) 延伸因子 (1)进位 (1)进位 新的氨酰 tRNA进入 tRNA进入 核糖体A 核糖体A 位
(2)肽键的形成 (2)肽键的形成 位上的aa aa与 位上的fMet之间形成肽键。 fMet之间形成肽键 A位上的aa与P位上的fMet之间形成肽键。
氨基酸+ATP 氨基酸
氨酰氨酰 tRNA合成酶 合成酶
氨基酸+PPi 酶-AMP-氨基酸 氨基酸
氨酰- tRNA合成酶 氨酰 合成酶
氨基酸+tRNA 酶-AMP-氨基酸 氨基酸
氨基酸-tRNA+AMP 氨基酸
肽链起始的第一个活化氨基酸是 甲酰甲硫氨酰-tRNA。 甲酰甲硫氨酰 。
• 2.肽链合成的起始(需起始因子IF) 2.肽链合成的起始 需起始因子IF) 肽链合成的起始(
实验 在含有tRNA、核糖体、AA-tRNA合成酶及其它蛋 、核糖体、 在含有 合成酶及其它蛋 白质因子的细胞抽提物中加入mRNA或人工合成的 白质因子的细胞抽提物中加入 或人工合成的 均聚物作为模板以及ATP、GTP、氨基酸等成分时 均聚物作为模板以及 、 、 能合成新的肽链, 能合成新的肽链,新生肽链的氨基酸顺序由外加的 模板来决定。 模板来决定。 1961年,Nirenberg等以 等以polyU作模板时发现合成了 年 等以 作模板时发现合成了 多聚苯丙氨酸,从而推出UUU代表苯丙氨酸 代表苯丙氨酸(Phe)。 多聚苯丙氨酸,从而推出UUU代表苯丙氨酸(Phe)。 做模板分别得到多聚脯氨酸和多聚 以polyC及polyA做模板分别得到多聚脯氨酸和多聚 及 做模板分别得到 赖氨酸。 赖氨酸。 以多聚二核苷酸polyUG作模板可合成由 个氨基酸 作模板可合成由2个氨基酸 以多聚二核苷酸 作模板可合成由 (半胱氨酸和缬氨酸 组成的多肽 半胱氨酸和缬氨酸)组成的多肽 半胱氨酸和缬氨酸 组成的多肽. 5'…UGU GUG UGU GUG UGU GUG…3',不管读码 不管读码 开始还是从G开始 从U开始还是从 开始,都只能有 开始还是从 开始,都只能有UGU(Cys)及 ( ) GUG(Val)两种密码子。 ( )两种密码子。

核糖体的形态结构和类型

1.当Mg2+ 为1~10mmol/L时,大、小亚基 聚合成单核糖体。 2.当Mg2+ 小于1mmol/L时,单核糖体解离 为大、小亚基。 3.当Mg2+ 大于10mmol/L时,两个单核糖 体结合成二聚体。
三.原核细胞(Prokaryotic )和真核细胞 (Eukaryotic)核糖体 化学组成比较

RNA主要构成核糖体的骨架,将核糖体串联起来, 并决定其定位

多聚核糖体的作用:一条mRNA上可有多个核 糖体进行蛋白合成,提高了蛋白合成效率。
3.核糖体的结构与组成:大亚基+小亚基
大小亚基一般以游离 状态存在,只有当小 亚基和mRNA结合后大 小亚基才结合,形成 完整的核糖体 核糖体是一种动态结 构,当参与翻译过程 时,大小亚基结合, 蛋白质合成结束,大 小亚基解体
rRNA分子内部碱基配对形成许多短的双链区, 并形成螺旋状,非配对区形成环状或泡状;共 同折叠成复杂的三维结构,组成核糖体骨架。
几十种蛋白质(每种一份)通过与rRNA相互识别结 合在rRNA骨架上,构成一个严格有序的超分子结构。
蛋白质
示蛋白质与rRNA的结合
50
32
原核生物与真核生物核糖体成分的比较
酸到肽链上
移位:核糖体 沿mRNA5’-3’ 方向移动一个 密码子 A位上的肽基 酰-tRNA移位 到 P位

(四)肽链合成的终止及核糖体的释放
核糖体移行 至终止密码, 即终止密码 出现于A位, 肽链合成终 止; 大小 亚基解 离

蛋白质合成过程:
原核细胞和真核细胞核糖体上蛋白质的合成
游离核糖体游离核糖体合成细胞结构蛋白合成细胞结构蛋白分化低细胞内发达分化低细胞内发达和附着核糖体和附着核糖体合成分泌蛋白合成分泌蛋白膜受体溶酶体蛋白分泌功能旺盛分化程度高的膜受体溶酶体蛋白分泌功能旺盛分化程度高的细胞内发达细胞内发达rna主要构成核糖体的骨架将核糖体串联起来并决定其定位多聚核糖体的作用

细胞生物学(第五版)-第10章 核糖体

结合部位是mRNA的起始密码 子(initiation codon)AUG。
在细菌mRNA起始密码子AUG上 游5~10个碱基处有一段特殊的序 列,即SD序列。
SD序列能与核糖体小亚基 16SrRNA 3,端的碱基序列互补 结合,从而保证30S小亚基能准确 识别起始密码子AUG,并结合到 mRNA。
三、核糖体蛋白质与rRNA的功能
核糖体上具有一系列与蛋白质合成有关的结合位 点与催化位点
①mRNA的结合位点— mRNA与小亚基结合
原核生物:核糖体与mRNA的结合位 点 位 于 16SrRNA 的 3’ 端 , 位 于 起 始 密码子上游5~10bp处 ( SD 序 列 ——mRNA 有 一 段 特 殊 的 Shine-Dalgarno序列)。
•尽管任何形成复合物的氨酰-tRNA都能够进入A位点,但只有其 反密码子能与A位点的mRNA密码子匹配的氨酰—tRNA才能被核 糖体牢牢捕捉并定位在A位点,从而保证正确识别 tRNA。
•到位后,结合在EF-Tu上的GTP水解,EF-Tu 连同结合在一起的 GDP离开核糖体,被另一个因子 EF-Ts介导生成EF-Tu·GTP。
⑤肽酰tRNA从A位点转移到P位点相关 转移酶(即延伸因子EF-G)的结合位点。 EF-Tu、EF-G 的一部分结合位点位于 A位点和P 位点的底部。
⑥肽酰转移酶的催化位点,跨过A 位点 和P位点
⑦蛋白质合成相关的其他起始因子、延 伸因子和终止因子的结合位点 。
EF-Tu-GTP的功能是与氨 酰-tRNA结合,将其带到A 位点
此时,P位点的tRNA分子已经如释重负,没有携带任何 氨基酸。
3、转位:即核糖体沿着mRNA分子的5,→3,方向移动3个核苷 酸(一个密码子)。 在转位过程中,携带二肽的tRNA从A位点移位到P位点,而没有 携带任何氨基酸的tRNA从P位点移位到E位点。

蛋白质分选


细菌的蛋白质转运
细菌的蛋白质分泌机制同真核细胞极为相似。 转运从细菌的胞质穿过内膜到达周质空间, 接着(有时)穿过外膜到达外界的环境。共转运 在E. coli中很普遍,但并不是通用的。一些 蛋白质既可用共转运的方式转运又可用翻译 后转运的方式转运。在通过膜的分泌过程中, 转运的相对动力学决定了这个平衡。
ห้องสมุดไป่ตู้ 游离核糖体上合成的蛋白质
定位于胞质溶胶中的蛋白质:合成后留在 胞质溶胶中,就地成为不同催化中心,参 加胞质溶胶中的各种代谢活动。 核定位蛋白:由游离核糖体合成,通过核 孔运送到核中。 半自主性细胞器组分蛋白:半自主性细胞 器线粒体和叶绿体所需蛋白质大部分由核 基因编码,在细胞质中。合成,然后运入 细胞器
线粒体和叶绿体蛋白质的运转与装配
1)线粒体蛋白质的转运与装配 ) 导肽( ):N端引导蛋白质转运的一 导肽(leader peptide): 端引导蛋白质转运的一 ): 段氨基酸序列。 个氨基酸序列。 段氨基酸序列。20~80个氨基酸序列。特点: 个氨基酸序列 特点: (1)含有丰富的碱性氨基酸,特别是 含有丰富的碱性氨基酸, 含有丰富的碱性氨基酸 特别是Arg; (2)羟基氨基酸如 的含量很高; 羟基氨基酸如ser的含量很高 羟基氨基酸如 的含量很高; (3)几乎不含酸性氨基酸; 几乎不含酸性氨基酸; 几乎不含酸性氨基酸 (4)可形成亲水性和疏水性的 螺旋结构; 可形成亲水性和疏水性的α螺旋结构 可形成亲水性和疏水性的 螺旋结构;
肽链继续延伸,直至完成整个多肽链的合成, 蛋白质进入腔内并折叠,核糖体释放,易位 子关闭。
信号肽跨膜的能量来源
研究证明SRP受体和SRP都是G 研究证明SRP受体和SRP都是G蛋白, 它们不仅将合成蛋白质的核糖体引导到内 质网, 而且通过GTP-GDP的交换, 将内 而且通过GTP-GDP的交换, 质网膜中的易位子(translocon)通道打 质网膜中的易位子(translocon)通道打 开, 让信号序列与之结合(图9-20)。 让信号序列与之结合(图9 20)。 GTP 水解作为信号序列转运的能量来源

详解分泌蛋白的合成和运输

详解分泌蛋⽩的合成和运输在⽣物体内,蛋⽩质的合成位点和功能位点常常被⼀层或多层⽣物膜所隔开,这样就产⽣了蛋⽩质运转的问题。

核糖体是真核⽣物细胞内合成蛋⽩质的场所,⼏乎在任何时候,都有数以百计或千计的蛋⽩质离开核糖体并被输送到细胞质、细胞核、线粒体、内质⽹和溶酶体、叶绿体等各个部分,补充和更新细胞功能。

那么这些蛋⽩质是怎样准确⽆误的被送到特定部位的?我们都知道蛋⽩质由内质⽹向⾼尔基体再向细胞膜转运时是由囊泡膜包裹着的,⽽从核糖体向内质⽹中转运时是怎样转运的呢?为什么说分泌蛋⽩的转运穿越了“0层膜”呢?分泌蛋⽩在内质⽹和⾼尔基体⼜上分别进⾏什么样的加⼯?加⼯过程中如何保证肽链折叠即空间结构的准确性,如果有折叠错误的畸形肽链怎么办?这些都是⼗分有趣的问题,在此做⼀简要的阐述。

⼀、蛋⽩质在核糖体上的合成及转运核糖体是蛋⽩质的合成场所毫⽆异议,核糖体在细胞中有两种存在形式游离核糖体和附着核糖体,之前我们认为参与细胞组成的结构蛋⽩在游离核糖体上合成,⽽分泌蛋⽩在附着核糖体上合成。

通过查阅资料发现其实⽆论是结构蛋⽩还是分泌蛋⽩在开始合成时都是在游离核糖体上的,只是当分泌蛋⽩合成起始后便逐渐转移⾄粗⾯内质⽹上,并且肽链边合成边转⼊粗⾯内质⽹腔中(即边翻译边转运),随后经⾼尔基体分泌到细胞外,以这种⽅式进⾏合成和转运的除分泌蛋⽩外还包括溶酶体、细胞膜蛋⽩以及内质⽹和⾼尔基体本⾝的蛋⽩成分。

其他结构蛋⽩在游离核糖体上合成后直接转运⾄功能部位,如线粒体、叶绿体、过氧化物酶体、细胞核及细胞质基质的蛋⽩质,最近发现有些还可转运⾄内质⽹中,但与分泌蛋⽩不同的是在游离核糖体上合成多肽链以后再转运⾄内质⽹中(即翻译完成后在转运)。

那么多肽链是以什么⽅式进⼊内质⽹腔中的呢?⼀般认为蛋⽩质跨膜运转信号也是由mRNA 编码的。

在起始密码⼦后,有⼀段编码疏⽔性氨基酸序列的RNA区域,这个氨基酸序列被称为信号肽(即有些练习题上出现的“P肽段”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多肽链的起始:mRNA从核到胞质,在起始因子和Mg的作用下,小亚基与mRNA的起始部位结合,甲硫氨酰(蛋氨酸)-tRNA的反密码子,识别mRNA上的起始密码AuG(mRNA)互补结合,接着大亚基也结合上去,核糖体上一次可容纳二个密码子。
多肽链的延长:第二个密码对应的氨酰基-tRNA进入核糖体的A位,也称受位,密码与反密码的氢键,互补结合。在大亚基上的多肽链转移酶(转肽酶)作用下,供位(P位)的tRNA携带的氨基酸转移到A位的氨基酸后并与之形成肽键(-CO-NH-),tRNA脱离P位并离开P位,重新进入胞质,同时,核糖体沿mRNA往前移动,新的密码又处于核糖体的A肽,ribosome又往前移动,由此渐进渐进,如此反复循环,就使mRNA上的核苷酸顺序转变为氨基酸的排列顺序。
相关文档
最新文档