2.1.1平面及其表示法1
高中数学 2.1.1 平面 课件 新人教A版必修2

变式训练3:如图,已知平面α、β相交于l,设梯形ABCD中,AD∥BC,
且AB
α,CD β.
求证:AB、CD、l相交于一点.
第三十一页,共55页。
证明:∵梯形ABCD中,AD∥BC,AB、DC是梯形ABCD的两腰,∴AB
、DC必相交于一点,设AB∩DC=M,又∵AB α,CD
第十页,共55页。
3.准确理解公理的含义 公理1是判定直线在平面内的依据.证明一条直线在某一平面内,只
需证明这条直线上有两个不同的点在该平面内.“直线在平 面内”是指“直线上的所有点都在平面内”. 公理2的作用是确定平面,是把空间问题化归成平面问题的重要 依据.并可用来证“两个平面重合”.特别要注意公理2中“不在 一条直线上的三个点”这一条件.
∴P在平面ABC与平面α的交线上. 同理可证Q和R均在这条交线上. ∴P\,Q\,R三点共线.
第二十九页,共55页。
规律技巧:解决点共线或线共点的问题是平面性质的应用.解决点共
线一般地先确定一条直线,再用平面的基本性质,证明其他的点 也在该直线上.直线共点问题的步骤:一先说明直线相交,二让交 点也在其他直线上.
第十七页,共55页。
变式训练1:判断下列说法是否正确?并说明理由.
(1)平面的形状是平行四边形;
(2)任何一个平面图形都是一个平面;
(3)圆和平面多边形都可以表示平面;
(4)因为
ABCD的面积大于
ABCD大于平面A′B′C′D′;
A′B′C′D的面积,所以平面
(5)用平行四边形表示平面,以平行四边形的四条边作为平面的边 界线.
第四十四页,共55页。
7.三条直线相交于一点,可确定的平面有________个. 答案:1或3
北师大版(2024)七年级上册2.1.1 认识有理数 课件(共26张PPT)

跟踪训练
中国是最早采用正负数表示相反意义的量,并进行 负数运算的国家.若零上 10 ℃ 记作 +10 ℃ ,则零下 10 ℃ 可记作( C )
第二章 有理数及其运算
1 认识有理数 第1课时 认识有理数
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.能理解正、负数的概念,会判断一个数是正数还是负数.
(重点) 2.会用正、负数表示具有相反意义的量.(重点)
3.有理数的分类及其分类的标准.(难点)
情境引入
上帝创造了整数,所有其余的数都是人造的 ——法国数学家克罗内克
思考:你认为0应该放在什么地方? 0既不是正数,也不是负数
负数与对应的正数在数量上相等, 表示的意义相反。
跟踪训练
读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
4
12
正数
1 6
,+73,4.8, 172
负数
-11,-2.7, 3
4
例题讲解
例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺 时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,如果一个乒乓球的质量高于标准质量 0.02g记作+0.02g,那么-0.03g表示什么? (3)某大米包装袋上标注着“净含量:10kg±50g”,这里的“10kg±50g” 表示什么?
最新-2021学年高中数学必修二精讲优练课件:第二章 点、直线、平面之间的位置关系 2.1.1 精品

公理
文字语言
如果两个不重合的平
面有一个公共点,那么 公理3
它们有且只有一条过
该点的_公__共__直__线__
图形语言
符号语言
P∈α且P∈β⇒
_________ α∩β=l, ______ 且P∈l
【即时小测】 1.思考下列问题: (1)一个平面能把空间分成几部分? 提示:因为平面是无限延展的,一个平面把空间分成两部分. (2)若A∈a,a⊂α,是否可以推出A∈α? 提示:根据直线在平面内的定义可知,若A∈a,a⊂α,则A∈α.
(2)平面的画法.
常常把水平的平面画成一个_平__行__四__边__形__,并且 其锐角画成_4_5_°__,且横边长等于邻边长的_2_倍.
一个平面被另一个平面遮挡住,为了增强立体 感,被遮挡部分用_虚__线__画出来.
(3)平面的表示方法. ①用希腊字母表示,如平面α,平面β,平面γ. ②用表示平面的平行四边形的四个顶点的大写字母表示,如平面ABCD. ③用表示平面的平行四边形的相对的两个顶点表示,如平面AC,平面BD.
【解题探究】典例中梯形ABCD的两腰分别是什么?其延长后的交点位 于什么地方? 提示:结合题意可知梯形ABCD的两腰分别是AB,CD,它们延长后的交点 既在平面α内又在平面β内.
【证明】因为梯形ABCD中,AD∥BC, 所以AB,CD是梯形ABCD的两腰. 因为AB,CD必定相交于一点. 设AB∩CD=M. 又因为AB⊂α,CD⊂β,所以M∈α,M∈β. 所以M∈α∩β. 又因为α∩β=l,所以M∈l. 即AB,CD,l共点(相交于一点).
【总结提升】 1.公理1、2、3的意义和作用 (1)公理1. 意义:说明了平面与曲面的本质区别.通过直线的“直”来刻画平面的 “平”,通过直线的“无限延伸”来描述平面的“无限延展性”. 作用:既是判断直线在平面内,又是检验平面的方法.
第三讲 平面、线线、线面和面面的位置关系

5. 用数学符号来表示点、线、面之间的 位置关系: (1)点与直线的位置关系: a A 点A在直线a上: 记为A∈a. B 点B不在直线a上: 记为Ba. (2)点与平面的位置关系:
A
5. 用数学符号来表示点、线、面之间的 位置关系: (1)点与直线的位置关系: a A 点A在直线a上: 记为A∈a. B 点B不在直线a上: 记为Ba. (2)点与平面的位置关系:
例4:根据下列条件作图:
(1) A∈,a,A∈a; (2) a ,b,c,且a∩b=A, b∩c=B,c∩a=C.
2.1.2空间中直线与直线 之间的位置关系
讲授新课
问题1:在平面几何中,两直线的位置 关系如何?
讲授新课
问题1:在平面几何中,两直线的位置 关系如何? c a d b
3. 平面的画法:
3. 平面的画法: (1)水平放置的平面:
3. 平面的画法: (1)水平放置的平面:
3. 平面的画法: (1)水平放置的平面: (2)垂直放置的平面:
3. 平面的画法: (1)水平放置的平面: (2)垂直放置的平面:
3. 平面的画法: (1)水平放置的平面: (2)垂直放置的平面:
图形语言:
符号语言:
A
B
l
公理1是判断直线是否在平面内的依据.
观察下图,你能得到什么结论?
B A C
观察下图,你能得到什么结论?
B A C A
B C
观察下图,你能得到什么结论?
B A C A
B C
公理2 过不在同一直线上的三点,有 且只有一个平面.
文字语言:
文字语言: 公理2 过不在同一直线上的三点,有 且只有一个平面.
2.1.1倾斜角与斜率课件-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册

1.5
• 当90°<<180°时, k<0,
1
且k随的增大而增大.
2
2π 3
π 3
0.5
2
0.5
o
2
π 3
x
2
2π
π
3
由于正切函数的单调性,倾斜角不
4π5πLeabharlann 2π7π8π
同3的直线3 ,斜率也不3同。因3 此我们可
以利用斜率表示倾斜角不等于90°的
1
直线相对于x轴的倾斜程度,进而表示
1.5
直线的方向。
x
P1(x1, y1)
= 1,
y2 x2
y1 x1
=(1,
k)
其中k是直线P1 P2的斜率.
若直线l的斜率为k, 它的一个方向向量的坐标为( x, y), 则k y . x
典例解析
课本P54
例1 如图示, 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA的斜率, 并判断这些
新知探究 (1) 已知直线l经过O(0, 0), P( 3,1), 与O, P的坐标有什么关系?
如图, 向量OP ( 3,1), 且直线OP的倾斜角为 .
由正切函数的定义, 有
y
tan 1 3
33 即 tan 1 0 3
30 3
P( 3 ,1)
α
O
x
新知探究
(2) 类似地,如果直线l经过P1(1,1), P2( 2,0),与P1, P2的坐标又有什么关系?
一般地, 如图, 当向量P1P2的方向向上时, P1P2 ( x2 x1, y2 y1 ),平移
向量P1P2到OP, 则点P的坐标为( x2 x1, y2 y1 ), 且直线OP的倾斜角也是.
2021_2022年高中数学第二章点直线平面之间的位置关系1

• 因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公
理2的推理2知:经过两条相交直线,有且只有一个平面,所
以平面α与平面β重合,所以直线a,b,c和l共面.
• 规律总结:(1)证明点线共面的主要依据:公理1、公理2及其 推论.
• [证明] 如右图所示,
• ∵PA∩PB=P, • ∴过PA,PB确定一个平面α. • ∴A∈α,B∈α. • ∵A∈l,B∈l, • ∴l⊂α. • ∴PA,PB,l共面.
3. 证明多点共线问题
• 例题3 已知△ABC在平面α外,AB∩α=P,AC∩α=R,
BC∩α=Q,如图.求证:P、Q、R三点共线.
自主预习
1.平面
描述
几何里所说的“平面”是从生活中的一些物体抽象出 来的,是无限___延__展_____的
通常把水平的平面画成一个__平__行__四__边__形__,并且其锐 角画成45°,且横边长等于其邻边长的___2__倍,如图 1所示;如果一个平面被另一个平面遮挡住,为了增强 立体感,被遮挡部分用__虚__线___画出来,如图2所示
练习1
(1)若点 M 在直线 a 上,a 在平面 α 内, 则 M,a,α 间的关系可记为________.
(2) 根 据 右 图 , 填 入 相 应 的 符 号 : A________平面 ABC,A________平面 BCD, BD________平面 ABC,平面 ABC∩平面 ACD =________.
• (2)公理2中“有且只有一个”的含义要准确理解,这里的“有 ”是说图形存在,“只有一个”是说图形唯一,强调的是存在 和唯一两个方面,因此“有且只有一个”必须完整地使用,不 能仅用“只有一个”来代替,否则就没有表达出存在性.确定 一个平面中的“确定”是“有且只有”的同义词,也是指存在 性和唯一性这两个方面,这个术语今后也会常常出现.
高一数学高效课堂资料2.1.1数轴上的基本公式

【补偿训练】已知数轴上有点A(-2),B(1), D(3),点C
在直线AB上,且有 AC=1 .问:在线段DC上是否存在点
BC 2
E,使 d(C,E)=1 ?若存在,求出点E的坐标;若不存在,
d(E,D) 4
请说明理由.
【自主总结】1.向量与线段的区别与联系
(1)向量AB 与线段AB既有联系又有区别,向量 AB 的起 点和终点分别是线段AB的两个端点,向量 AB 的长度等 于线段AB的长度,但向量 AB 的两个端点有起点、终点 的顺序之分,而线段的两个端点没有顺序,向量既有长
度又有方向,而线段只有长度没有方向.
(2)注意向量、向量的长度,线段、线段的长度的表示 的区别,向量记为AB ,向量 AB 的长度记为| AB|,线段 记为AB或BA,AB的长度记为|AB|或|BA|.
B.OB=| OB| D.BA=OA-OB
【解析】选B.由于点A在原点的右侧,点B在原点的左 侧,可知点A表示的数x1比点B表示的数x2大, 即OA=x1>0,OB=x2<0, 所以OA=|OA |=|x1|=x1, OB=x2≠| OB |=|x2|=-x2, AB=x2-x1=OB-OA,BA=x1-x2=OA-OB.所以选项B不正确.
【解析】AB=x2-x1=(a-b)-(a+b)=-2b,BA=-AB=2b. d(A,B)=|x2-x1|=|-2b|=2|b|,d(B,A)=d(A,B)=2|b|.
【方法技巧】 数轴上的基本公式应用思路与方法
(1)已知向量 AB,BC,AC 中的两个的坐标,求另外一个 的坐标时,使用AC=AB+BC求解.
混凝土结构施工图平面整体表示方法学习

混凝土结构施工图平面整体表示方法(简称平法)是把结构构件的尺寸和钢筋等,按照平面整体表示方法制图规则,整体直接表达在各类构件的结构平面布置图上,再与标准构造详图相配合,即构成一套完整的结构施工图的方法。
一、结构施工图的识读方法及步骤结构施工图包括结构设计总说明、结构平面图和构件详图。
1.基础施工图的识读步骤1)看图名、比例。
图名常用1—1断面、2—2断面……或用基础代号表示。
读图时先用基础详图的名字(1—1或2—2等)去对应基础平面的位置,了解这是哪一道基础上的断面;2)看基础断面图中轴线及其编号。
如果该基础断面适用于多道基础的断面,则轴线的圆圈内可不予编号;3)看基础断面各部分详细尺寸和室内外底面、基础底面的标高。
如基础厚度、大放脚的尺寸、基础的底宽尺寸以及它们与轴线的相对位置尺寸。
从基础底面标高可了解基础的埋置深度;4)看基础断面图中基础梁的高、宽或标高及配筋;5)看施工说明等。
了解对基础的施工要求。
2.柱平法施工图的识读步骤1)查看图名、比例;2)校核轴线编号及其间距尺寸,要求必须与建筑平面图、基础平面图保持一致;3)与建筑图配合,明确各柱的编号、数量及位置;4)阅读结构设计总说明或有关说明,明确柱的混凝土强度等级;5)根据各柱的编号,查阅图中截面标注或柱表,明确柱的标高、截面尺寸和配筋情况。
再根据抗震等级、设计要求和标准构造详图,确定纵向钢筋和箍筋的构造要求(如纵向钢筋连接的方式、位置和搭接长度、弯折要求、柱头锚固要求、箍筋加密区的范围)。
3.剪力墙平法施工图的识读步骤1)查看图名、比例;2)首先校核轴线编号及其间距尺寸,要求必须与建筑图、基础平面图保持一致;3)与建筑图配合,明确各段剪力墙的暗柱和端柱的编号、数量及位置、墙身的编号和长度、洞口的定位尺寸;4)阅读结构设计总说明或有关说明,明确剪力墙的混凝土强度等级;5)所有洞口的上方必须设置连梁,如剪力墙洞口编号,连梁的编号应与剪力墙洞口编号相对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业: P56习题2.1A组
1,2,3(1)(2)
海鲜的鲜美、凉粉的爽滑,老陈醋、蒜泥和香菜的调味,真是清爽美味啊。崂山本地的散养鸡每次去都会吃,多以炖炒为主,这家的烤鸡还真有点意思。 崂山农家宴里少不了的特色的高蛋白,有些人大概真的不敢吃,其实又香又酥,错过了这样的美味可惜啊。
补充练习:
l 1、A为直线 上的点,又点A不在平面 内, l 则 与 的公共点最多有 __1_____个.
2、四条直线过同一点,过每两条直线作一个
平面,则可以作__1_或___4_或___6___个不同的平面 .
五.用数学符号来表示点、线、面之间的位置关系:
(1)点与直线的位置关系:
点A在直线a上: 记为:A∈a
a
点B不在直线a上: 记为:B∈a
A
B
(2)点与平面的位置关系:
点A在平面α上: 记为:A∈α
B
点B不在平面α上记:为:B∈ α
A
α
(3)直线与平面的位置关系:
直线a上的所有点都在平面α上,称直线a
实例引入
观察活动室里的地面,它呈现出怎样的形象?
一.平面的概念: 光滑的桌面、平静的湖面等都是我
们熟悉的平面形象,数学中的平面概念 是现实平面加以抽象的结果。
二.平面的特征:
平面没有大小、厚薄和宽窄,平面在空 间是无限延伸的。
三.平面的画法: (1)水平放置的平面:(2)垂直放置的平面:
在平面α内,或称平面α通过直线a.记为:a α
直线a与平面α只有一个公共点A时,称直 线a与平面α相交。 记为:a∩α=A
直线a与平面α没有公共点时,称直线a与 平面α平行。 记为:a∩α=φ 或 a∥α.
a
a
a
A
α
α
α
五.用数学符号来表示点、线、面之间的位置关系:
a B
A
A∈a
B∈a
B
α
A
A∈α B∈α
ß a
通常把表示平面的平行四边形的锐角 画成450
(3)在画图时,如果图形的一部分被另一 部分遮住,可以把遮住部分画成虚线,也 可以不画。
四.平面的表示方法:
平面可以用希腊字母表示,也可以用代表表 示平面的平行四边形的四个顶点或相对的两个顶 点字母表示。
D
C
A
B
如:平面α,平面β,平面ABCD,平面AC 平面BD等。
( 4 ) 平 面 α 与 平 面 β相交,它们只有有限个 公 共 点 。
(×)
公理2.过不在同一直线上的三点,有且只有一个平面.
B
αA
C
推论1.一条直线和直线外一点唯一确定一个平面。
A
l
α
B
C
推论2.两条相交直线唯一确定一个平面。
推论3.两条平行直线唯一确定一个平面。
例 1 . 判 断 下 列 命 题 是否 正 确 : ( 1 )经过三 点 确 定 一 个 平 面 。
(×)
( 2 ) 经 过 同 一 点 的 三条 直 线 确 定 一 个 平 面 。(×)
( 3 ) 若 点 A 直 线 a , 点 A 平 面 α , 则 aα .(×)
例2.把下列语句用集合符号表示,并画出直观图。 (1)点A在平面α内,点B不在平面α内,点A,B
都在直线 a上; (2)平面α与平面β相交于直线 m,直线 a 在平
面α内且平行于直线 m.
B A α
a
α
a
m β
观察下列问题,你能得到什么结论?
B
桌面α
A
公理1.如果一条直线上的两点在一个平面 内,那么这条直线在此平面内(即这条直 线上的所有的点都在这个平面内)。
b
a
aA
α
α
a α
b∩α=A
a∩α=φ 或 a∥α
典型例题
例1 如图,用符号表示下列图形中点、直线、平面 之间的位置关系.
a
B
A l
(1)
al
P
b
(2)
解:在(1)中, = l,a = A,a = B.
在(2)中, = l,a ,b ,a l = P,b l = P.
B A
B
CαA
C
公理2.过不在同一直线上的三点,有且只有一个平面.
文字语言:
公理2.过不在同一直线上的三点,有且只 有一个平面.
图形语言:
B
αA
C
符号语言:
A, B,C三点不共线 有且只有一个平面 使A, B ,C
观察下列问题,你能得到什么结论?
而农家宴发展起来后,游客带来的不仅仅是消费收入,还为当地经济的发展提供了契机。成为农民了解市场的窗口,成为城市与乡村互动的桥梁;各地游客为农村带来了新思想、新观念,使农民及时了 解到市场信息,生产经营与市场需求相接轨。/index.html
5.崂山北九水:乘坐639路公交车,大崂、孙家村、卧龙村等沿途站点均有农家宴。特色:吃农家宴、爬山、海边垂钓。,水果最好了,吃完了自己在庄园采摘,有杏子、蓝莓和桑葚,只是菜品就吃 饱了,这些水果也就是尝尝鲜了
空间点、直线、平面的位置关系
观察长方体,你能发现长方体的顶点,棱所 在的直线,以及侧面、底面之间的位置关系吗?
D C
A
B
D C
A
B
长方体由上下、前后、 左右六个面围成.
有些面是平行的,有些面 是相交的;有些棱所在直线 与面平行,有些棱所在直线 与面相交,每条棱所在的直 线都可以看成是某个平面内 的直线,等等.
天花板α
墙面γ
P 墙面β
β
l
α
P
公理3.如果两个不重合的平面有一个公共点,那么 这两个平面有且只有一条过该点的公共直线。
文字语言:
公理3.如果两个不重合的平面有一个公共点,那么 这两个平面有且只有一条过该点的公共直线。
图形语言:
β
l
α
P
符号语言:
P 且P = l且P l
l
α
Aቤተ መጻሕፍቲ ባይዱ
B
文字语言: 公理1.如果一条直线上两点在 一个平面内,那么这条直线在 此平面内(即这条直线上的所 有的点都在这个平面内)。
图形语言:
l
α
A
B
符号语言:符号表示:
Al, B l,且A, B l
观察下列问题,你能得到什么结论_?