人教版七年级数学上册2.1多项式教案
人教版七年级数学上册第2章教案2.1 第3课时 多项式2

2.1 整式第3课时多项式教学目标:1.通过本节课的学习,使学生掌握整式、多项式的项及其次数、常数项的概念.2.初步体会类比和逆向思维的数学思想.教学重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数以及常数项等概念.教学难点:准确指出多项式的次数.教学过程一、复习引入1.列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)图中阴影部分的面积为;(4)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只.2.观察以上所得出的四个代数式与上节课所学单项式有何区别.(1)2(a+b);(2)21+x;(3)ab-π()2;(4)2a+4b.二、讲授新课1.多项式:板书由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项3x2-2x+5有三项,它们是3x2,-2x,5,其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2-2x+5是一个二次三项式.注意:(1)多项式的次数不是所有项的次数之和.(2)多项式的每一项都包括它前面的符号.2.例题:【例1】判断:①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;②多项式3n4-2n2+1的次数为4,常数项为1.【例2】指出下列多项式的项和次数:(1)3x-1+3x2;(2)4x3+2x-2y2.【例3】指出下列多项式是几次几项式.(1)x3-x+1;(2)x3-2x2y2+3y2.【例4】已知代数式3x n-(m-1)x+1是关于x的三次二项式,求m、n的值.注意:多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式.分析例4时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.【例5】一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中顺水行驶和逆水行驶的速度各是多少?3.课堂练习:课本P58练习第1、2题.填空:-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项 .三、课时小结1.理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.2.这堂课学习了多项式,与前一节所学的单项式合起来统称为整式,使知识形成了系统.(让学生小结,师生进行补充.)四、课堂作业课本P59习题2.1的第3、4题.。
人教版数学七年级上册2.1多项式教案

《整式(多项式)》教学任务分析教知识与技能掌握多项式的定义、多项式的项和次数,以及常数项等概念学目标过程与方法让学生经历新知的形成过程,培养比较、分析、归纳的能力,由单项式与多项式归纳出整式,培养学生分析问题、解决问题的能力。
通过数学探究活动,提高学生对数学学习的好奇心与求知欲。
情感态度与价值观教学重点掌握整式和多项式的项及其次数、常数项的概念。
教学难点掌握整式和多项式的项及其次数、常数项的概念。
教学过程设计教学过程备注[活动1]创设情景,引入新课1、对于单项式,我们学习了哪些内容?2、请举例说明单项式、单项式的系数和次数的概念.[活动2]讲授新课问题1:观察上面的5个式子:v+2.5,v-2.5,3x+5y+2z,1/2ab-πr2,x2+2x+18,它们有什么共同特点?与上节课学习的单项式有什么区别?你能试着用和的形式读一下吗?通过学生的观察、思考,对特征的描述,由学生自己说出多项式的定义,教师给予适当的补充。
板书多项式的概念:像这样,几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项。
注意:多项式的项要包含前面的符号。
例如:v-2.5中,共有2项,分别是v与-2.5。
其中-2.5是常数项.多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式v-2.5就是一个一次二项式。
练习:(1)你能举出一个多项式的例子,并说出它的项和次数吗?2)请你写出一个二次三项式,并使它的二次项系数是-2,一次项系数是3,常数项是5,那么这个多项式可以是 .例1如图所示,用式子表示圆环的面积.当 R=15 cm, r=10 cm时,求圆环的面积(π取3.14 ).例2如图,文化广场上摆了一些桌子,若并排摆张桌子,可同时容纳多少人?当时,可同时容纳多少人?(图见课件)[活动3]练习:[活动4]小结:。
人教版数学七年级上册精品教案《2.1 第2课时 多项式》

人教版数学七年级上册精品教案《2.1 第2课时多项式》一. 教材分析《2.1 第2课时多项式》这一课时主要让学生理解多项式的概念,掌握多项式的表示方法,以及多项式的基本运算。
本课时内容是初中数学的重要内容,对学生后续学习函数、方程等数学知识有着重要的基础作用。
二. 学情分析学生在学习这一课时之前,已经学习了有理数、整式等基础知识,对数学符号、运算有一定的了解。
但部分学生可能对多项式的概念和表示方法理解不深,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生理解多项式的概念,掌握多项式的表示方法。
2.培养学生对多项式的运算能力,提高学生的数学思维能力。
3.通过对多项式的学习,激发学生学习数学的兴趣。
四. 教学重难点1.重点:理解多项式的概念,掌握多项式的表示方法。
2.难点:多项式的运算,特别是多项式与单项式的乘法。
五. 教学方法采用问题驱动法、实例教学法、分组讨论法等,引导学生主动探索、合作交流,培养学生的数学思维能力。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如:“某商品打8折,原价100元,现价是多少?”让学生尝试用数学语言来表达这个问题,引出多项式的概念。
2.呈现(15分钟)介绍多项式的定义、表示方法,以及多项式的基本运算。
通过PPT 展示多个实例,让学生理解多项式的概念,掌握多项式的表示方法。
3.操练(20分钟)让学生分组讨论,互相练习多项式的运算。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成PPT上的练习题,检验学生对多项式的理解和掌握程度。
教师选取部分学生的作业进行讲解和分析。
5.拓展(10分钟)引导学生思考:多项式与单项式的关系是什么?如何将单项式转化为多项式?让学生通过分组讨论,探索这个问题。
6.小结(5分钟)对本课时内容进行总结,强调多项式的概念、表示方法和基本运算。
提醒学生要注意多项式运算中的符号变化。
7.家庭作业(5分钟)布置适量的家庭作业,让学生巩固本课时所学内容。
2.1整式(2) 多项式 教学设计 人教版七年级数学上册

2.1整式〔2〕 多项式【教材分析】多项式是在学习单项式的根底上进一步学习的整式的另一个重要知识点,所以只有理解了单项式的概念,才能进一步理解并掌握多项式的概念.而多项式的加减运算正是整式加减运算的的根底,而整式的加减运算又是解决大量的实际问题的根底,因此学好多项式的相关知识是至关重要的.【学情分析】在学习了单项式后,学生对多项式的学习就顺理成章.【教学目标】知识与技能:掌握多项式.多项式的项.常数项.多项式的次数的概念.过程与方法:在预习的根底上,通过小组合作的方式,进一步探究有关多项式的相关概念,并能理解运用.情感与态度:初步体会类比和逆向思维的数学思想.【教学重点】多项式的相关概念【教学难点】多项式的次数【课时安排】1课时一.预学自检 互助点拨自学教材57--58页.45x -是不是单项式?4x ,5-是不是单项式?把4x ,5-的和用式子表示出来:,写成省略加号的形式是,式子45x -表示哪几个单项式的和?式子2427x x -+,22a ab b +-分别表示哪几个单项式的和?.〔1〕几个单项式的和叫〔2〕在多项式中,每个单项式叫做〔3〕在多项式中,不含字母的项叫做〔4〕在多项式中,次数最高的项的次数叫做这个〔5〕单项式和多项式统称二.例题示范 提炼方法合作互学 探究新知自主学习(1)以下多项式各由哪些项组成,各是几次几项式?333,1,,82b ab a a c b a x ++-++-.〔2〕以下式子中,哪些是整式,哪些是单项式,哪些是多项式?ab c +,2ax bx c ++,5-,π,3a b -,32m -. 探究新知 1.以下多项式中,是四次三项式的是〔 〕A.41x - B.232232xyz xy y x +- C.432224+-z y x x D.2x y z -+ 2..如果一个多项式的次数是6,那么这个多项式的任何一项的次数都〔 〕A.小于6B.不大于6 C .不小于6 D.大于63..多项式422y x +中,二次项系数是〔 〕 A.1 B.2 C.21 D.41 4.如果6)2()2(23----x k x k k 是关于x 的二次多项式,那么k 的值是〔 〕A .0B .2 C.0或2 D.不能确定设计意图:稳固多项式的概念及相关概念,同时为学生创造用多项式表示实际问题中的数量关系的时机,培养学生的列式能力.三.师生互动 稳固新知1.多项式43232--+-n mn m 是次项式,最高项的系数是,常数项是2.买一个篮球需要m 元,买一个排球需要n 元,那么买3个篮球和2排球共需元.3.n 表示整数,用含n 的式子表示两个连续奇数4.63513212--+-+x xy y x m 是六次多项式,单项式m n y x -523与该多项式的次数相同,求m.n 的值.四.应用提升挑战自我某影剧院观众席近似于一个扇面的形状,第一排有20个座位,后面的每一排都比前一排多两个座位.〔1〕写出第n 排座位数的表达式;〔2〕如果这个剧院的观众席共25排,那么它最多可以容纳多少观众?设计意图:此题属于一道中难题,学生在学习掌握根底概念之后,有种想突破自我,向更高难度挑战的意识,这道题此时能够较好地激发起学生学习的热情,使思维,解题等能力得到提升,能够较好地到达培优的目的.五.经验总结 反思收获本节课你学到了什么?写出来【板书设计】2.1整式〔2〕 多项式1.多项式2.项 常数项3.多项式的次数4.整式【教学反思】本节内容通过五步教学法,以自学合作为主,充分调动学生学习的主动性.能动性.积极性,学生大多能掌握本节所学内容,到达了教学目标.。
七年级数学上册-2.1 整式(第2课时)--多项式 教案

2.1 整式--多项式课型新授单位主备人教学目标:1.知识与技能:1.掌握多项式的定义;2.会确定一个多项式的项和次数;3.理解多项式与单项式和整式的区别和联系;2.过程与方法:经历动手操作和自主探究的过程,进一步积累认识多项式与单项式和整式的区别和联系;。
3.情感、价值观:保持探索精神,养成积极探索的精神和合作意识,感受数学的价值。
重点、难点:教学重点:会确定一个多项式的项和次数;。
教学难点:会确定一个多项式的项和次数;教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课复习提问:1.单项式的定义?2.什么是单项式的系数?3.什么是单项式的次数?4.单项式与代数式有什么区别与联系?注意:单项式中只含有乘法运算和数字做分母的分数形式.(字母不能做分母)二、自主学习、合作探究请同学们看课本,并把内容补充完整。
(1)什么是多项式(2)什么是多项式的项;(3)什么叫常数项;(4)什么是多项式次数(5)什么是整式。
自主检测:判断下列式子哪些为多项式?2、指出下列多项式的项和次数.12324+-n n3223b ab b a a -+-3、指出下列多项式是几次几项式:13+-x x222332y y x x +-4、填空1. 多项式x+y-z 是单项式___,___,___的和,它是___次___项式.2.多项式3m 3-2m-5+m 2的常数项是____,一次项是_____, 二次项的系数是_____.5、拔高题六、总结升华、反思提升同学们,请你回想一下,这节课你有什么收获?学生说收获。
【学生对本节课进行知识梳理,巩固教学目标。
】板书设计:3.2 整式--多项式1、多项式的概念:2、多项式的项:3、多项式的次数:4、多项式的名称:作业设计最佳解决方案个基础:1、______________叫做多项式2、____________________________叫做多项式的项3、_________叫做常数项4、一个多项式含有几项,就叫几项式.______________多项式的次数.5、指出下列多项式的项和次数:(1);(2).6、指出下列多项式是几次几项式:(1);(2)7、__________________________统称整式拓展:8、一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.参考答案:1、几个单项式的和2、在多项式中,每个单项式3、不含字母的项4、最高次项的次数5、(1)三次四项式(2)四次三项式6、(1)三次三项式(2)四次三项式7、单项式和多项式 8、11a+20教学反思:1、本节课内容以单项式为基础,在复习单项式的定义和次数的前提下,引入多项式。
人教版数学七年级上册2.1 第3课时《 多项式》精品教学设计1

人教版数学七年级上册2.1 第3课时《多项式》精品教学设计1一. 教材分析人教版数学七年级上册第2章《多项式》是学生在小学阶段学习基础上,进一步深化对数学概念的理解和运用的关键内容。
本节课主要介绍多项式的定义、多项式的项、次数和系数等基本概念。
通过本节课的学习,使学生掌握多项式的基本知识,能够正确理解并运用多项式进行简单的计算和问题解决。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念的理解和运用有一定的掌握。
但同时,学生对于较为抽象的数学概念的理解还存在一定的困难,需要通过具体实例和实际操作来加深理解。
此外,学生的学习习惯和方法还需要进一步指导和培养。
三. 教学目标1.知识与技能目标:理解多项式的定义、多项式的项、次数和系数等基本概念,能够正确运用多项式进行简单的计算和问题解决。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:多项式的定义、多项式的项、次数和系数等基本概念。
2.难点:对于多项式概念的理解和运用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,引导学生理解和掌握多项式的概念。
2.启发式教学法:通过提问和讨论,激发学生的思维,引导学生主动探索和发现问题的解决方法。
3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作精神和交流沟通能力。
六. 教学准备1.教学PPT:制作多媒体教学PPT,包括多项式的定义、多项式的项、次数和系数等基本概念的介绍,以及相关的例题和练习。
2.教学素材:准备相关的数学题目和实际问题,用于引导学生进行观察和操作。
3.教学工具:准备黑板、粉笔等教学工具,用于板书和演示。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题——多项式。
例如:已知一个数的平方减去这个数等于3,求这个数。
人教版七年级数学上教案:2.1多项式

2.1.2整式——多项式教学目标:1、 通过实例,进一步体验字母表示数的意义。
会利用字母表示简单的数量关系和数学规律。
2、通过实例,经历多项式、整式概念产生的过程。
了解整式的概念,会用整式表示简单的数量关系。
3、掌握整式、多项式的次数、项的概念,能识别多项式,并正确说出多项式的项数和次数。
教学重点与难点:重点:用字母表示数的意义。
多项式、整式概念。
难点:识别多项式的项及次数。
教学过程:一、创设情境,引入课题前面我们学习了单项式,现在我们利用所学的知识帮小红帽解决一下她的问 题。
由买水果引出ab ab a ++222这样一个式子,它是几个单项式的和的形式。
这就是我们今天要学习的多项式。
二、探究新知多项式的定义:几个单项式的和。
练习:判断下列式子哪些是多项式43)1(3-x 122)2(2-+-x x (3)x²-3x+4 2)4(ab z y x -+)5( 23523)6(m m m +--41)7(+x 141)8(2--x 2453)9(2232--+-ab b a b a 其中每个单项式叫多项式的项。
不含字母的项叫常数项。
指出上述多项式中的常数项。
怎样确定多项式的次数呢?在上一多项式中每一项的次数分别为2、3、2,最高次数为3次,则22ab 就是这一多项式的最高次项,我们规定多项式中最高次2453)9(2232--+-ab b a b a项的次数为多项式的次数。
说出上述多项式的次数分别是多少?ab ab a ++222的次数为3次,所以ab ab a ++222为三次三项式。
试说出上述多项式为几次几项式。
单项式和多项式统称为整式。
三、巩固练习1、同桌之间互考。
2、设计竞赛:以小组为单位,回答问题,答对小组加分。
①一个两位数,十位数字是x,个位数字是y.则这个两位数是 。
②写出一个多项式,使它的项数是3,次数是4。
③把下列各式填到相应的括号里:252+x -1 x x 32- π x 5 221xx + 单项式:{ }多项式:{ }整式:{ }④m 、n 都是自然数,那么多项式n m n m z y x ++-22的次数是 ⑤有一多项式为 54325432x x x x x +-+-,按照这样的规律写下去,第10项是 ,第2007项是 . .四、列多项式我们继续帮助小红帽解决她的问题。
人教版数学七年级上册2.1 第3课时 多项式[1]-课件
![人教版数学七年级上册2.1 第3课时 多项式[1]-课件](https://img.taocdn.com/s3/m/07da0313f02d2af90242a8956bec0975f465a413.png)
You made my day!
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
我们,还在路上……
讲授新课
一 多项式的相关概念
列式表示 下列数量
1.温度由t℃下降5℃后是 (t-5) ℃. 2.买一个篮球需要x元,买一个排球需要y 元,买一 个足球需要z元,买3个篮球、5个排球、2个足球共 需要(3x+5y+2z)元.
3.如图三角尺的面积为
(1 2
ab πr 2 )
.
4.如图是一所住宅区的建筑平面图,这所住宅
π R 2 π r 2 3 .1 4 1 5 2 3 .1 4 1 0 2 392.5(cm2)
做一做
一个花坛的形状如图所示,这的两端是半径相等的半圆,
求:
aห้องสมุดไป่ตู้
(1)花坛的周长L;
(2)花坛的面积S.
r
r
解:(1) L=2a+2πr (2) 花坛的面积是一个长方形的面积与两个半圆 的面积 之和,即S=2ar+ πr2
解:由题意得m=0,n-1=0,所以n=1.
二 多项式的应用 例3 如图,用式子表示圆环的面积.当 R 15 cm,
r 10 cm 时,求圆环的面积( π 取 3 .1 4 ).
解:外圆的面积减去内圆的面积就是圆环 的面积,所以圆环的面积是 πR2 πr2 .
当R 15 cm ,r 10 cm 时, 圆环的面积(单位:cm2)是
次数
2
4
1
做一做
一个多项式的次数是3,则这个多项式的各项次数
( D)
A.都等于3
B. 都小于3
C.都不小于3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品基础教育教学资料,请参考使用,祝你取得好成绩!
第3课时 多项式
1.理解多项式的概念;(重点)
2.能准确迅速地确定一个多项式的项数和次数; 3.能正确区分单项式和多项式.(重点)
一、情境导入 列代数式:
(1)长方形的长与宽分别为a 、b ,则长方形的周长是________; (2)图中阴影部分的面积为________;
(3)某班有男生x 人,女生21人,则这个班的学生一共有________人.
观察我们所列出的代数式,是我们所学过的单项式吗?若不是,它又是什么代数式? 二、合作探究
探究点一:多项式的相关概念
【类型一】 单项式、多项式与整式的识别
指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x 2
+y 2
,-x ,
a +b
3
,
10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x
,a 7
.
解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:
2x 2+x ,1x
的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7
;
多项式有:x 2
+y 2
,
a +b
3
,6xy +1,2x 2
-x -5;
整式有:x 2
+y 2,-x ,
a +b
3,10,6xy +1,17
m 2n ,2x 2-x -5,a 7
. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;
(3)单项式不含加、减运算,多项式必含加、减运算.
【类型二】 确定多项式的项数和次数
写出下列各多项式的项数和次数,并指出是几次几项式.
(1)23
x 2
-3x +5;
(2)a +b +c -d ;
(3)-a 2+a 2b +2a 2b 2
. 解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.
解:(1)23
x 2
-3x +5的项数为3,次数为2,二次三项式;
(2)a +b +c -d 的项数为4,次数为1,一次四项式;
(3)-a 2+a 2b +2a 2b 2
的项数为3,次数为4,四次三项式. 方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.
【类型三】 根据多项式的概念求字母的取值
已知-5x m +104x m -4x m y 2
是关于x 、y 的六次多项式,求m 的值,并写出该多项式. 解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.
解:由题意得m +2=6, 解得m =4,
此多项式是-5x 4+104x 4-4x 4y 2
. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.
【类型四】 与多项式有关的探究性问题
若关于x 的多项式-5x -mx +(n -1)x -1不含二次项和一次项,求m 、n 的值. 解析:多项式不含二次项和一次项,则二次项和一次项系数为0.
解:∵关于x 的多项式-5x 3-mx 2
+(n -1)x -1不含二次项和一次项, ∴m =0,n -1=0,则m =0,n =1.
方法总结:多项式不含哪一项,则哪一项的系数为0. 探究点二:多项式的应用
如图,某居民小区有一块宽为2a 米,长为b 米的长方形空地,为了美化环境,准
备在此空地的四个顶点处各修建一个半径为a 米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?
解析:四个角围成一个半径为a 米的圆,阴影部分面积是长方形面积减去一个圆面积.
解:花台面积和为πa 2平方米,草地面积为(2ab -πa 2
)平方米.所以需资金为[100πa 2+50(2ab -πa 2)]元.
方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.
三、板书设计
多项式:几个单项式的和叫做多项式.
多项式的项:多项式中的每个单项式叫做多项式的项. 常数项:不含字母的项叫做常数项.
多项式的次数:多项式里次数最高项的次数叫做多项式的次数.
整式:单项式与多项式统称整式.
这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。