原子吸收分光光度法在环境监测中的应用
关于环境监测中电镀废水重金属含量分析——原子吸收分光光度法

5 结语 从推断结果看, 工作区内基岩埋深较浅, 本工程通过综合性水文高密度电法物探、浅层地震物探、钻探、试 育, 土洞或软土层不发育。 验等多种手段与方法的工作, 查明了塔基岩 本次物探工作成果在9 个塔基共推断了 土、水文工程地质条件以及岩溶发育特征, 18 处岩溶发育带、1 处溶蚀、 8 裂隙发育带, 没 并对塔基的稳定性进行了 详细的评价, 达到了 有发现软土层或土洞。所推断的岩溶发育带 预期的 目的, 效果较好。 在纵向上由串 珠状分布的溶洞、溶蚀和裂隙 组成;所推断的溶蚀、裂隙发育带, 异常较弱, 参考文献
2 。
其基本在基岩面下 l m 左右发育有一段裂隙。
川 GB50021一 2001. 中 华人民 共和国国 家标
H二 x承 形 价x几 一 ) 户护
式中. H 为垂向 深度(m) 。 为纵波波速 Vp (m/ 5 .Tx 为反射波双程走时, 为炮检距。 ) L 3 . 2 . 3 综合解释推断 本次物探工作是以高密度电法资料为主 要依据, 辅以浅层地震资料对该场区实测测线 段资料进行综合解释。通过对两种方法的综 合分析 , 得出的推断结果详见附表 1 和附表
资 源 与环 境
6 C 〔陇戈 & TECH付 (义 丫 1 FO归 〕 〕 囚 MA T ON I
关于环境监测 中电镀废水重金属含量分析
— 原子吸收分光光度法
关明添 (广州市海珠区环境监侧站
1 5 0240 )
摘 要: 本文采用火焰原子吸收分光光度法侧定了某市电镀废水中重金属铜、锡、铅、锌的含t 。结果表明, 在经过废水处理以前, 广州市某五家电 镀企业电镀废水中铜、福、 铅、锌含量均超过了电 镀行业污染物排放标准; 经过相关的废水处理工艺以后, 重金属的含
原子吸收分光光度法 原子吸收

原子吸收分光光度法原子吸收分光光度法是一种强大的分析化学技术,用于测量样品中特定元素的浓度。
这种技术能够提供高灵敏度和高选择性的分析结果,因此在环境监测、食品安全、生物医学和矿产资源等领域都得到了广泛的应用。
原子吸收分光光度法能够通过测量样品中特定元素吸收特定波长的光线来实现分析,从而可以得到目标元素的浓度信息。
1. 深入探讨原理原子吸收分光光度法的原理是基于原子在特定波长的光线激发下发生能级跃迁的现象。
当原子处于基态时,吸收特定波长的光线会使得原子中的电子跃迁到高能级,形成激发态;而当电子从高能级跃迁回基态时,会释放出特定波长的光线。
通过测量样品对特定波长光线的吸收量,就可以得到目标元素的浓度信息。
2. 工作原理原子吸收分光光度法的工作原理是通过光源、样品室、光谱仪和信号处理系统四个主要部分相互配合来实现的。
光源会产生特定波长的光线,并经过样品室中的样品后被光谱仪检测。
光谱仪会将不同波长的光线进行分离,并通过信号处理系统转换成对应的吸收量。
通过比对吸收量和标准曲线,就可以得到目标元素在样品中的浓度。
3. 应用领域原子吸收分光光度法在环境监测中有着重要的应用,例如大气颗粒物中重金属元素的测定;在食品安全领域,可以用于检测食品中的微量元素;在生物医学和生物化学研究中,可以用于体液中微量元素的测定;在矿产资源勘探和开发中,也可以用于矿石中目标元素的测定。
4. 总结与展望原子吸收分光光度法作为一种高灵敏度、高选择性的分析技术,为各个领域的分析化学研究提供了重要的支持。
随着科学技术的不断进步,原子吸收分光光度法的灵敏度和分辨率将得到进一步提升,从而能够更准确地测定样品中微量元素的含量。
该技术也将更广泛地应用于新的领域,并为人类健康、环境保护和资源利用等方面带来更多的益处。
个人观点原子吸收分光光度法作为一种重要的分析化学技术,对于解决实际中的分析难题具有重要的意义。
我对这一技术深信不疑,并且认为在科学研究和工程应用中,原子吸收分光光度法将会发挥越来越重要的作用。
原子吸收分光光度法在环境监测中的应用

原子吸收分光光度法在环境监测中的应用摘要:原子吸收分光光度法(AAS)已经在日常环境监测中广泛使用。
简述了AAS常规操作方法及注意事项,重点阐述了背景扣除对于原子吸收光度法的意义以及近年来AAS在环境监测中的应用进展。
关键词:原子吸收;光度法;环境监测;应用引用随着仪器和电子计算机技术的飞跃发展,加上各国学者广泛深入的研究,原子吸收分光光度法已成为痕量和超痕量成分测试的重要手段,也是环境监测分析中最主要的手段之一。
一、原子吸收分光光度法之所以得到如此巨大的推广与应用,无疑是因为其本身的几大主要特点:(1)灵敏度高;(2)原子吸收谱线简单;(3)操作简单快速;(4)测量精密度好,准确度高;(5)测定元素多。
1.最佳测试条件的选择选择最佳的仪器测试条件,能获得最好的灵敏度、稳定性、重现性和良好的线性范围。
不同的仪器,最佳的测试条件也会有所不同。
分析工作者在平时的操作当中要善于按照实际情况进行优选。
1.1吸收波长(分析线)的选择准确地设定测量吸收波长是头等重要问题。
通常选用共震吸收线为分析线,测量高含量元素时,可选用灵敏度较低的非共振线作为分析线。
如测Zn时常选用最灵敏的213.9nm波长,但当Zn的含量较高时,为保证工作曲线的线性范围,可改用次灵敏线307.5nm波长进行测量。
1.2狭缝宽度的选择狭逢宽度影响着光谱通带的宽度和检测器接受的能量。
不引起吸光度减少的最大狭缝宽度,即为应选取得适合狭缝宽度。
1.3试液提升量的选择试液提升量受吸入毛细管的内径、长度、压缩空气的压强及试液的粘度等因素的影响,应仔细的调节和选择。
二、原子吸收化法实验操作方法及注意事项实验前首要工作是调试仪器状态、配置样品及标准溶液,根据不同重金属,通常使用0.2~1%光谱纯硝酸溶液或盐酸溶液作为试剂,样品消解方法不尽相同,方法有高温干灰化法、低温干灰化法、湿法消解法、酸浸提法等,一般根据中国环境科学出版社《水和废水监测分析方法(第四版)》[所示方法进行消解即可。
原子吸收光谱法和原子吸收分光光度法

原子吸收光谱法和原子吸收分光光度法原子吸收光谱法和原子吸收分光光度法是分析化学中常用的技术手段,用于测定物质中金属元素的含量。
本文将介绍这两种方法的原理、应用以及比较。
一、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长的吸收能力进行分析的方法。
它利用原子在吸收特定波长的光线时会发生能量跃迁的特性,通过测量样品对特定波长的光线吸收的强度来确定其中金属元素的含量。
原子吸收光谱法的原理是基于原子的量子力学原理,当金属元素处于基态时,外层电子具有特定的能级跃迁能量,吸收特定波长的光线。
通过测量光线透过样品之前和之后的强度差,可以计算得到金属元素的浓度。
原子吸收光谱法的应用广泛,尤其在环境监测、食品安全、药物分析等领域具有重要意义。
例如,通过原子吸收光谱法可以测定水中重金属元素的含量,用于评估水质的安全性;还可以用于监测土壤中的污染物含量,从而保护农作物的品质。
二、原子吸收分光光度法原子吸收分光光度法是一种基于原子吸收光谱技术的定量分析方法。
它利用物质对特定波长的光线吸收的强度与其浓度呈线性关系的特点,通过测量样品对特定波长光线吸收的强度来确定其中金属元素的含量。
原子吸收分光光度法与原子吸收光谱法相比,其最大的区别在于前者是定量分析方法。
通过建立标准曲线,测定样品吸光度与浓度的线性关系,可以准确计算得到金属元素的含量。
原子吸收分光光度法具有高灵敏度、准确度高以及分析速度快的优点,广泛应用于食品、化妆品、医药等行业中。
例如,原子吸收分光光度法可以用于检测食品中的微量元素,如铜、锌等,帮助评估食品的质量和安全性。
三、原子吸收光谱法与原子吸收分光光度法的比较原子吸收光谱法和原子吸收分光光度法在金属元素的定量分析方面都有重要的应用,但在一些方面存在差异。
1. 灵敏度:原子吸收光谱法的灵敏度更高,可以检测到更低浓度的金属元素,而原子吸收分光光度法的灵敏度相对较低。
2. 准确度:原子吸收分光光度法的准确度更高,可以通过建立标准曲线进行定量分析,而原子吸收光谱法的准确度相对较低。
原子吸收分光光度法测定水中重金属含量的应用

原子吸收分光光度法测定水中重金属含量的应用摘要:在水体污染防治中,重金属污染是主要的污染类型和危害性极大的污染物,要对其进行精准测定,还须借助原子吸收分光光度法达成目标。
这种重金属污染物含量和浓度测定方法有极高的灵敏度和选择性,适用于广泛的检测范围,本文就是对原子吸收分光光度法测定水体重金属进行全面分析,详细介绍原子吸收分光光度计、原子吸收分光光度法应用以及重金属元素等的特点,阐述规范化的检测操作流程,供有关部门作业人员参考使用。
关键词:原子吸收分光光度法测定;水中重金属含量;技术应用引言:重金属元素是水体污染的重要来源。
利用原子吸收分光光度法开展水体重金属含量测定,须明确原子吸收分光光度计的构成成分和操作原理,通过关键仪器的标准顺序操作,配置标准曲线以及水样铁含量分析等步骤,对水体中的镉、铬、铜、铅以及镍等在内的重金属元素含量和浓度进行精准测定,取得生态污染防治的第一手资料,为落实后续治理措施打好基础。
1.原子吸收分光光度计这种测量设备的组分包括光源、分光系统、原子化器以及检测系统4个部分。
第一,光源负责检测对象元素的锐线光谱发射,发射原子吸收光源的灯具通常是无极放电灯以及空心阴极灯。
现行封闭性空心阴极灯是应用范围最广泛的原子吸收光源,它又包括单元素、多元素以及高强度等多种类型;第二,原子化器。
它包括石墨炉以及火焰两种类型的原子化器,它负责对试样中的检测对象元素进行转化,得到原子蒸气。
原子化的效率和质量直接影响测定过程的准度、灵敏度和受干扰状况;第三,分光系统。
它包括色散元件、凹面反射镜以及狭缝等。
其中色散元件中光栅是主要成分,负责对相关辐射进行筛选,达标的辐射才能送入检测器,不达标辐射会在检测器以外遭到屏蔽;第四,检测系统。
它包括检测器、电脑、对数转换器以及放大器,作用是把光信号向电信号转化,放大处理后提交给电脑或者CPU完成测算和研究,试样中所含的类金属以及多种金属元素,无论微量还是超微量,都会在显示屏上给出含量及浓度数据。
在原子吸收分光光度法

原子吸收分光光度法引言原子吸收分光光度法是一种广泛应用于分析化学领域的重要分析技术。
通过测量原子或分子在特定波长的吸收光强,可以定量分析样品中的特定元素含量。
本文将深入探讨原子吸收分光光度法的原理、仪器设备和应用。
原理原子吸收分光光度法基于原子或离子对特定波长的电磁辐射有选择性地吸收的原理。
其分析过程主要包括以下几个步骤:1.样品预处理:样品需要进行适当的预处理,如溶解、稀释、过滤等,以消除干扰物质对分析结果的影响。
2.原子化:将样品中的元素原子化,一般常用火焰、石墨炉等方式。
在火焰原子吸收光度法中,样品通过火焰中原子化,而石墨炉原子吸收光度法则将样品蒸发到石墨管中进行原子化。
3.吸收测量:将原子化的样品通入光束中,通过测量样品对特定波长光的吸收程度,来推断样品中的元素浓度。
吸收光强和浓度之间存在线性关系。
4.校正和数据处理:为了准确测量样品中元素的浓度,常常需要进行校正。
校正的方式包括空白法和标准曲线法。
同时,需要进行数据处理,如峰高、峰面积的计算等。
仪器设备原子吸收光度法需要一系列的仪器设备来实现测量过程,主要包括:1.光源:常用的光源有正常辐射源和中空阴极灯。
正常辐射源可以发射广谱的光,而中空阴极灯则可以发射特定波长的光。
2.分光仪:分光仪可以将光束分成不同波长的光,使得样品在特定波长处被测量。
3.比色池:比色池用于保持样品的恒温,并作为样品吸收光的量度。
4.控制和数据处理单元:用于仪器的控制和光强的测量。
应用原子吸收分光光度法广泛应用于环境、食品、药品、冶金等领域,可用于检测和分析各种元素。
以下是一些常见的应用实例:环境监测•水体中重金属离子的检测和分析。
•大气中微量元素的监测,如铅、汞等。
食品安全•果蔬中重金属残留量的测定。
•食物中微量元素的分析,如铁、锌等。
药品分析•药物中金属离子的测定。
•药品中活性成分的含量测量。
冶金工业•矿石中金属元素的检测和分析。
•金属合金中杂质元素的测定。
总结原子吸收分光光度法是一种常用的分析方法,其原理简单、准确性高,广泛应用于各个领域。
原子吸收分光光度法在环境分析领域中的应用

b scpi cpe a i r ils,p roe a d e mno to so x o io r n lzd b tmi b o p o p cmp o mer n tef l f n up s n o ln meh d fep st n weea aye y ao c a s rt ns e t h t tyi ed o i i o h i e vr n e tl n lssa piain . n io m na ay i p l t s a c o
Xu Ha t g,Ling L a ii n a ing
( n aCt,H H n jn r ic n i n e t r et nB r u A d 54 0,C ia A d i y e o g agPo n eE v o m na Po c o ue , n a1 10 i v r l ti a hn )
第 3 卷第 7 5 期 21 00年 7月
环境科学与管理
ENVI RONM ENTAL SCI ENCE AND MA NAGEh踟 I
V0 5 L3 No 7 .
J l 01 uy2 0
文章编 号 :6 4- 19 2 1 )7— 12— 3 17 63 (0 0 0 03 0
原 子 吸收 分 光 光度 法在 环 境分 析领 域 中的应 用
徐海 亭, 梁亮
( 黑龙江省安达市环境保护局 。 黑龙江 安达 110 ) 54 0
摘
ቤተ መጻሕፍቲ ባይዱ
要: 原子吸 收光谱分析方 法问世 已有 5 年的历 史。 O余 中国从 16 9 5年开始 引进这 一新技 术 , 发展十分迅速 , 现 已成为一种 日 常惯用的分析手段 。通过对其基本原理 、 用途和常用方法的阐述 , 总结分析 了原子 吸收分光光 度 法在环境 分析领城 中的应 用。
原子吸收分光光度法hj702-2014

一、概述1. 原子吸收分光光度法(AAS)是一种用于检测金属元素浓度的分析方法,具有高灵敏度、高选择性和高准确性的优点,被广泛应用于环境、医药、食品等领域。
2. 经过多年的发展,AAS技术在国内不断取得进步与成熟,为保证AAS分析结果的准确性和可靠性,国家标准化委员会于2014年发布了《原子吸收分光光度法(AAS)hj702-2014》标准,对AAS分析方法提出了详细的要求和规定。
二、《原子吸收分光光度法(AAS)hj702-2014》的制定背景1. 随着我国环境保护、食品安全等领域的不断发展,对于金属元素浓度的监测需求日益增加。
2. 为了规范AAS分析方法的使用和操作,确保测试结果的准确性和可靠性,国家标准化委员会积极组织有关专家,制定了《原子吸收分光光度法(AAS)hj702-2014》标准。
三、《原子吸收分光光度法(AAS)hj702-2014》的主要内容1. 标准的范围和适用范围:明确了本标准适用于环境、医药、食品等领域中金属元素浓度的测定。
2. 术语和定义:对AAS分析中常用术语和定义进行了详细说明,便于标准的理解和适用。
3. 仪器和设备:对AAS分析所需的仪器和设备进行了规定,包括各种技术参数的要求,保证了分析仪器的准确性和稳定性。
4. 样品的处理:规定了样品的采集、保存、前处理等各个环节的要求,保证了样品的代表性和可比性。
5. 分析方法:对AAS分析方法进行了详细的规定,包括操作步骤、技术要求、质量控制等,确保了AAS分析方法的可操作性和准确性。
6. 报告结果:对分析结果的表达方式、数据处理方法进行了规定,提高了结果的可比性和可信度。
四、《原子吸收分光光度法(AAS)hj702-2014》标准的意义1. 《原子吸收分光光度法(AAS)hj702-2014》的发布,进一步规范了AAS分析方法的应用,提高了金属元素浓度测定的准确性和可靠性。
2. 标准的制定,为AAS技术的推广和应用提供了技术支撑和保障,促进了AAS分析方法在环境监测、食品安全等领域的应用和推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收分光光度法在环境监测中的应用
摘要:原子吸收分光光度法(AAS)已经在日常环境监测中广泛使用。
本文简述了AAS常规操作方法及注意事项,重点阐述了背景扣除对于原子吸收光度法的意义以及近年来AAS在环境监测中的应用进展。
关键词:原子吸收光度法环境监测应用
一、原子吸收化法实验操作方法及注意事项
实验前首要工作是调试仪器状态、配置样品及标准溶液,根据不同重金属,通常使用0.2~1%光谱纯硝酸溶液或盐酸溶液作为试剂,样品消解方法不尽相同,方法有高温干灰化法、低温干灰化法、湿法消解法、酸浸提法等,一般根据中国环境科学出版社《水和废水监测分析方法(第四版)》[1]所示方法进行消解即可。
连接好相关仪器设备后对实验条件着手进行调整、优化,这需要长期的实践性以及一定的操作技巧性,实验前调整雾化器、使用背景校正减少基体效应;实验中适时地调整燃助比、火焰头高度,实验后对一些异常数据进行删减,可以优化标准曲线、提高实验效果。
接下来要做的工作主要为选择光谱分析方法,环境监测中常规重金属项目有铅、镉、锌、铜、锰、铁、铬、镍等元素,除清洁地表水或痕量分析适宜用石墨炉法外,其他均推荐使用火焰法,可配置单标,也可配置混标,需要注意的是分析元素铬使用的燃气是富燃焰。
分析前要检查一下实验室是否有明火、水封是否具备、实验用气体是否漏气等,手动调光并平衡光能量,分析过程中需要注意雾化器雾化效果、气体燃助比、燃烧头高度等对实验结果的影响,分析结束后要删除异常数据,确保标准曲线的r值不少于0.9990、截距绝对值在0.005以内(符合质控要求)。
二、需要注意的几点事项及一些常见问题
做原子吸收分析工作要注意以下几点事项:安装未完成不能接电源且通风设备非常必要;室内严禁明火,并配备灭火设施;气体达到最低压力时应换气,经常检查是否漏气;点火前确认水封瓶注满水;熄火步骤要明确,先关乙炔后关空气(火焰法);要等到冷却至室温才可进样(石墨炉)。
在实际操作过程中,我们还经常遇到以下几点问题值得注意:储存液配置后即行失效,使用液最好现配现用,中间液存放时间可以长点。
选中“背景扣除”并点击确定即为开启氘灯,使用氘灯前需要压下半透半反镜;常用背景扣除的情况有:基体成分复杂;常见扣除背景元素有:镉、铅。
三、背景扣除对原子吸收的意义
影响背景扣除效果的因素有很多,但从分析结果上来看,这些因素可归结为两个方面,主要是:元素灯、氘灯与石墨炉之相对位置与电气测量线路之时间常数,原子化温度也有一定的影响。
背景扣除倍数与仪器的电气测量线路之时间常数也有密切联系。
综上所述,在采用氘灯背景扣除时,若想求得最佳的扣除效果,必须从上述两个方面认真仔细调整,最后只能通过实际样品检查才能确定背景扣除效果。
国家标准规定背景扣除倍数≥30.
四、原子吸收化法在环境监测日常工作中的实际应用
1.水环境监测
适时地对地表水质量现状及发展趋势进行评价,对生产和生活设施所排废水
进行监督性监测是常规环境监测的两项基本任务。
除了工业废水一般推荐火焰原子化法外,饮用水可以直接测定的元素并不多,因为含量一般都很低,火焰法测定时一般采用萃取浓缩法以满足仪器可检测水平。
氢化物发生—原子吸收化法可用来测定ug级的元素,而使用石墨炉法则更为快捷、简便。
近年来,随着经济社会的急速发展、人居环境的不断提升,常规的原子吸收方法已不能满足公务中复杂的检测需要,从而催生出一批先进的知识分子不断改进监测方法,以提高测定结果的精密性与准确性。
冷家峰等[5]对螯合树脂富集-火焰原子吸收光谱法测定天然水体中痕量铜和锌的在线富集条件、干扰因素等进行研究。
联用技术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子吸收光谱检测的专一性的优点,是解决这一问题的有效手段。
2.土壤、底泥和固体物分析
固体样品分析一般分为全量分析与形态分析。
全量分析必须分解固体样品。
制成分析溶液,常用分解方法有融熔法与酸分解法。
融熔法常采用过氧化钠、碳酸钠、碳酸钾、偏硼酸锂等试剂与土壤充分混匀在铂坩埚或石墨坩埚中加热熔融以彻底分解土壤硅酸盐,然后将熔融物溶解在盐酸或者硝酸中制成分析溶液。
一般而言,熔融法费时费力,且损耗较大,故用高氯酸—硝酸—盐酸分解法代替融熔法作为全量分析的样品处理方法,但无论哪种方法均含有复杂的基体组分,在石墨炉原子吸收中会带来严重的干扰,引起极大误差。
微波消解法的广泛应用,在一定程度上简化了步骤、为监测提供便利。
宫青宇[7]采用直接固体进样、添加基体改进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实现了土壤样品中铅的快速分析。
王北洪等[8]采用了“硝酸-氢氟酸-过氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化。
结果表明:采用该法测定土壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。
大气环境质量监测
原子吸收用于大气环境质量监测较为频繁的为铅蓄电池厂、矿厂等地,但由于预处理易掺杂其他干扰因素,得到的结果往往偏低。
邹晓春等[10]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收分光光度法测定居住区大气中硒,检出限为3450ng/L,线性范围为0~50000ng/L,加标回收率94.6~102.0%;其中砷对测定硒有一定干扰,其它金属元素对测定无干扰。
综上所述,原子吸收分光光度法在环境监测分析中应用取得了不少成果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深入等。
随着环境监测事业的发展,原子吸收分光光度法因具有常规理化分析方法所不能比拟的优势,必将在环境监测分析中展现广阔的应用前景。
参考文献
[1]王心芳、魏复胜等.水和废水监测分析方法(第四版)[J].中国环境科学出版社,2002,12
[2]张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定水样中的痕量镉[J].河北大学学报(自然科学版),2009,29(4):407-411.
[3]陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废水中铝[J].环境保护科学,2008,34(3):111-113.
[4]高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕量镉[J].冶金
分析,2007,27(1):61-63.。