Single-electron quantum dot in SiSiGe with integrated charge-sensing
光电技术专业英语词汇

《光电技术》专业英语词汇1.Absorption coefficient 吸收系数2.Acceptance angle 接收角3.fibers 光纤4.Acceptors in semiconductors 半导体接收器5.Acousto-optic modulator 声光调制6.Bragg diffraction 布拉格衍射7.Air disk 艾里斑8.angular radius 角半径9.Airy rings 艾里环10.anisotropy 各向异性11.optical 光学的12.refractive index 各向异性13.Antireflection coating 抗反膜14.Argon-ion laser 氩离子激光器15.Attenuation coefficient 衰减系数16.Avalanche 雪崩17.breakdown voltage 击穿电压18.multiplication factor 倍增因子19.noise 燥声20.Avalanche photodiode(APD) 雪崩二极管21.absorption region in APD APD 吸收区域22.characteristics-table 特性表格23.guard ring 保护环24.internal gain 内增益25.noise 噪声26.photogeneration 光子再生27.primary photocurrent 起始光电流28.principle 原理29.responsivity of InGaAs InGaAs 响应度30.separate absorption and multiplication(SAM) 分离吸收和倍增31.separate absorption grading and multiplication(SAGM) 分离吸收等级和倍增32.silicon 硅33.Average irradiance 平均照度34.Bandgap 带隙35.energy gap 能级带隙36.bandgap diagram 带隙图37.Bandwidth 带宽38.Beam 光束39.Beam splitter cube 立方分束器40.Biaxial crystal双s 轴晶体41.Birefringent 双折射42.Bit rate 位率43.Black body radiation law 黑体辐射法则44.Bloch wave in a crystal 晶体中布洛赫波45.Boundary conditions 边界条件46.Bragg angle 布拉格角度47.Bragg diffraction condition 布拉格衍射条件48.Bragg wavelength 布拉格波长49.Brewster angle 布鲁斯特角50.Brewster window 布鲁斯特窗51.Calcite 霰石52.Carrier confinement 载流子限制53.Centrosymmetric crystals 中心对称晶体54.Chirping 啁啾55.Cladding 覆层56.Coefficient of index grating 指数光栅系数57.Coherence连贯性pensation doping 掺杂补偿59.Conduction band 导带60.Conductivity 导电性61.Confining layers 限制层62.Conjugate image 共轭像63.Cut-off wavelength 截止波长64.Degenerate semiconductor 简并半导体65.Density of states 态密度66.Depletion layer 耗尽层67.Detectivity 探测率68.Dielectric mirrors 介电质镜像69.Diffraction 衍射70.Diffraction g rating 衍射光栅71.Diffraction grating equation 衍射光栅等式72.Diffusion current 扩散电流73.Diffusion flux 扩散流量74.Diffusion Length 扩散长度75.Diode equation 二极管公式76.Diode ideality factor 二极管理想因子77.Direct recombinatio直n接复合78.Dispersion散射79.Dispersive medium 散射介质80.Distributed Bragg reflector 分布布拉格反射器81.Donors in semiconductors 施主离子82.Doppler broadened linewidth 多普勒扩展线宽83.Doppler effect 多普勒效应84.Doppler shift 多普勒位移85.Doppler-heterostructure 多普勒同质结构86.Drift mobility 漂移迁移率87.Drift Velocity 漂移速度88.Effective d ensity o f s tates 有效态密度89.Effective mass 有效质量90.Efficiency 效率91.Einstein coefficients 爱因斯坦系数92.Electrical bandwidth of fibers 光纤电子带宽93.Electromagnetic wave 电磁波94.Electron affinity 电子亲和势95.Electron potential energy in a crystal 晶体电子阱能量96.Electro-optic effects 光电子效应97.Energy band 能量带宽98.Energy band diagram 能量带宽图99.Energy level 能级100.E pitaxial growth 外延生长101.E rbium doped fiber amplifier 掺饵光纤放大器102.Excess carrier distribution 过剩载流子扩散103.External photocurrent 外部光电流104.Extrinsic semiconductors 本征半导体105.Fabry-Perot laser amplifier 法布里-珀罗激光放大器106.Fabry-Perot optical resonator 法布里-珀罗光谐振器107.Faraday effect 法拉第效应108.Fermi-Dirac function 费米狄拉克结109.Fermi energy 费米能级110.Fill factor 填充因子111.Free spectral range 自由谱范围112.Fresnel’s equations 菲涅耳方程113.Fresnel’s optical indicatrix 菲涅耳椭圆球114.Full width at half maximum 半峰宽115.Full width at half power 半功率带宽116.Gaussian beam 高斯光束117.Gaussian dispersion 高斯散射118.Gaussian pulse 高斯脉冲119.Glass perform 玻璃预制棒120.Goos Haenchen phase shift Goos Haenchen 相位移121.Graded index rod lens 梯度折射率棒透镜122.Group delay 群延迟123.Group velocity 群参数124.Half-wave plate retarder 半波延迟器125.Helium-Neon laser 氦氖激光器126.Heterojunction 异质结127.Heterostructure 异质结构128.Hole 空穴129.Hologram 全息图130.Holography 全息照相131.Homojunction 同质结132.Huygens-Fresnel principle 惠更斯-菲涅耳原理133.Impact-ionization 碰撞电离134.Index matching 指数匹配135.Injection 注射136.Instantaneous irradiance 自发辐射137.Integrated optics 集成光路138.Intensity of light 光强139.Intersymbol interference 符号间干扰140.Intrinsic concentration 本征浓度141.Intrinsic semiconductors 本征半导体142.Irradiance 辐射SER 激光144.active medium 活动介质145.active region 活动区域146.amplifiers 放大器147.cleaved-coupled-cavity 解理耦合腔148.distributed Bragg reflection 分布布拉格反射149.distributed feedback 分布反馈150.efficiency of the He-Ne 氦氖效率151.multiple quantum well 多量子阱152.oscillation condition 振荡条件ser diode 激光二极管sing emission 激光发射155.LED 发光二极管156.Lineshape function 线形结157.Linewidth 线宽158.Lithium niobate 铌酸锂159.Load line 负载线160.Loss c oefficient 损耗系数161.Mazh-Zehnder modulator Mazh-Zehnder 型调制器162.Macrobending loss 宏弯损耗163.Magneto-optic effects 磁光效应164.Magneto-optic isolator 磁光隔离165.Magneto-optic modulator 磁光调制166.Majority carriers 多数载流子167.Matrix emitter 矩阵发射168.Maximum acceptance angle 最优接收角169.Maxwell’s wave equation 麦克斯维方程170.Microbending loss 微弯损耗171.Microlaser 微型激光172.Minority carriers 少数载流子173.Modulated directional coupler 调制定向偶合器174.Modulation of light 光调制175.Monochromatic wave 单色光176.Multiplication region 倍增区177.Negative absolute temperature 负温度系数 round-trip optical gain 环路净光增益179.Noise 噪声180.Noncentrosymmetric crystals 非中心对称晶体181.Nondegenerate semiconductors 非简并半异体182.Non-linear optic 非线性光学183.Non-thermal equilibrium 非热平衡184.Normalized frequency 归一化频率185.Normalized index difference 归一化指数差异186.Normalized propagation constant 归一化传播常数187.Normalized thickness 归一化厚度188.Numerical aperture 孔径189.Optic axis 光轴190.Optical activity 光活性191.Optical anisotropy 光各向异性192.Optical bandwidth 光带宽193.Optical cavity 光腔194.Optical divergence 光发散195.Optic fibers 光纤196.Optical fiber amplifier 光纤放大器197.Optical field 光场198.Optical gain 光增益199.Optical indicatrix 光随圆球200.Optical isolater 光隔离器201.Optical Laser amplifiers 激光放大器202.Optical modulators 光调制器203.Optical pumping 光泵浦204.Opticalresonator 光谐振器205.Optical tunneling光学通道206.Optical isotropic 光学各向同性的207.Outside vapor deposition 管外气相淀积208.Penetration depth 渗透深度209.Phase change 相位改变210.Phase condition in lasers 激光相条件211.Phase matching 相位匹配212.Phase matching angle 相位匹配角213.Phase mismatch 相位失配214.Phase modulation 相位调制215.Phase modulator 相位调制器216.Phase of a wave 波相217.Phase velocity 相速218.Phonon 光子219.Photoconductive detector 光导探测器220.Photoconductive gain 光导增益221.Photoconductivity 光导性222.Photocurrent 光电流223.Photodetector 光探测器224.Photodiode 光电二极管225.Photoelastic effect 光弹效应226.Photogeneration 光子再生227.Photon amplification 光子放大228.Photon confinement 光子限制229.Photortansistor 光电三极管230.Photovoltaic devices 光伏器件231.Piezoelectric effect 压电效应232.Planck’s radiation distribution law 普朗克辐射法则233.Pockels cell modulator 普克尔斯调制器234.Pockel coefficients 普克尔斯系数235.Pockels phase modulator 普克尔斯相位调制器236.Polarization 极化237.Polarization transmission matrix 极化传输矩阵238.Population inversion 粒子数反转239.Poynting vector 能流密度向量240.Preform 预制棒241.Propagation constant 传播常数242.Pumping 泵浦243.Pyroelectric detectors 热释电探测器244.Quantum e fficiency 量子效应245.Quantum noise 量子噪声246.Quantum well 量子阱247.Quarter-wave plate retarder 四分之一波长延迟248.Radiant sensitivity 辐射敏感性249.Ramo’s theorem 拉莫定理250.Rate equations 速率方程251.Rayleigh criterion 瑞利条件252.Rayleigh scattering limit 瑞利散射极限253.Real image 实像254.Recombination 复合255.Recombination lifetime 复合寿命256.Reflectance 反射257.Reflection 反射258.Refracted light 折射光259.Refractive index 折射系数260.Resolving power 分辩力261.Response time 响应时间262.Return-to-zero data rate 归零码263.Rise time 上升时间264.Saturation drift velocity 饱和漂移速度265.Scattering 散射266.Second harmonic generation 二阶谐波267.Self-phase modulation 自相位调制268.Sellmeier dispersion equation 色列米尔波散方程式269.Shockley equation 肖克利公式270.Shot noise 肖特基噪声271.Signal to noise ratio 信噪比272.Single frequency lasers 单波长噪声273.Single quantum well 单量子阱274.Snell’s law 斯涅尔定律275.Solar cell 光电池276.Solid state photomultiplier 固态光复用器277.Spectral intensity 谱强度278.Spectral responsivity 光谱响应279.Spontaneous emission 自发辐射280.stimulated emission 受激辐射281.Terrestrial light 陆地光282.Theraml equilibrium 热平衡283.Thermal generation 热再生284.Thermal velocity 热速度285.Thershold concentration 光强阈值286.Threshold current 阈值电流287.Threshold wavelength 阈值波长288.Total acceptance angle 全接受角289.Totla internal reflection 全反射290.Transfer distance 转移距离291.Transit time 渡越时间292.Transmission coefficient 传输系数293.Tramsmittance 传输294.Transverse electric field 电横波场295.Tranverse magnetic field 磁横波场296.Traveling vave lase 行波激光器297.Uniaxial crystals 单轴晶体298.UnPolarized light 非极化光299.Wave 波300.W ave equation 波公式301.Wavefront 波前302.Waveguide 波导303.Wave n umber 波数304.Wave p acket 波包络305.Wavevector 波矢量306.Dark current 暗电流307.Saturation signal 饱和信号量308.Fringing field drift 边缘电场漂移plementary color 补色310.Image lag 残像311.Charge handling capability 操作电荷量312.Luminous quantity 测光量313.Pixel signal interpolating 插值处理314.Field integration 场读出方式315.Vertical CCD 垂直CCD316.Vertical overflow drain 垂直溢出漏极317.Conduction band 导带318.Charge coupled device 电荷耦合组件319.Electronic shutter 电子快门320.Dynamic range 动态范围321.Temporal resolution 动态分辨率322.Majority carrier 多数载流子323.Amorphous silicon photoconversion layer 非晶硅存储型324.Floating diffusion amplifier 浮置扩散放大器325.Floating gate amplifier 浮置栅极放大器326.Radiant quantity 辐射剂量327.Blooming 高光溢出328.High frame rate readout mode 高速读出模式329.Interlace scan 隔行扫描330.Fixed pattern noise 固定图形噪声331.Photodiode 光电二极管332.Iconoscope 光电摄像管333.Photolelctric effect 光电效应334.Spectral response 光谱响应335.Interline transfer CCD 行间转移型CCD336.Depletion layer 耗尽层plementary metal oxide semi-conductor 互补金属氧化物半导体338.Fundamental absorption edge 基本吸收带339.Valence band 价带340.Transistor 晶体管341.Visible light 可见光342.Spatial filter 空间滤波器343.Block access 块存取344.Pupil compensation 快门校正345.Diffusion current 扩散电流346.Discrete cosine transform 离散余弦变换347.Luminance signal 高度信号348.Quantum efficiency 量子效率349.Smear 漏光350.Edge enhancement 轮廓校正351.Nyquist frequency 奈奎斯特频率352.Energy band 能带353.Bias 偏压354.Drift current 漂移电流355.Clamp 钳位356.Global exposure 全面曝光357.Progressive scan 全像素读出方式358.Full frame CCD 全帧CCD359.Defect correction 缺陷补偿360.Thermal noise 热噪声361.Weak inversion 弱反转362.Shot noise 散粒噪声363.Chrominance difference signal 色差信号364.Colotremperature 色温365.Minority carrier 少数载流子366.Image stabilizer 手振校正367.Horizontal CCD 水平CCD368.Random noise 随机噪声369.Tunneling effect 隧道效应370.Image sensor 图像传感器371.Aliasing 伪信号372.Passive 无源373.Passive pixel sensor 无源像素传感器374.Line transfer 线转移375.Correlated double sampling 相关双采样376.Pinned photodiode 掩埋型光电二极管377.Overflow 溢出378.Effective pixel 有效像素379.Active pixel sensor 有源像素传感器380.Threshold voltage 阈值电压381.Source follower 源极跟随器382.Illuminance 照度383.Refraction index 折射率384.Frame integration 帧读出方式385.Frame interline t ransfer CCD 帧行间转移CCD 386.Frame transfer 帧转移387.Frame transfer CCD 帧转移CCD388.Non interlace 逐行扫描389.Conversion efficiency 转换效率390.Automatic gain control 自动增益控制391.Self-induced drift 自激漂移392.Minimum illumination 最低照度393.CMOS image sensor COMS 图像传感器394.MOS diode MOS 二极管395.MOS image sensor MOS 型图像传感器396.ISO sensitivity ISO 感光度。
introduction of quantum dot量子点技术介绍(附演讲稿)-半导体物理全英文展示

Introuction
Nanoscale crystals<=100nm Diameter of ≈10 to 50 atoms Contains 100 - 100,000 atoms
Introuction
Emission spectrum controlled by size Larger QDs emit longer wavelengths Smaller QDs emit shorter wavelengths
4. From our course, we know it’s nano scale size make quantum dots so special. The important point is Bohr diameter. These data is cited form our course slides. In this kind of single point, carriers are constrained strongly. So they have discrete, quantized energy levels, according to the laws of quantum theory. It is a bit like individual atoms, sometimes known as "artificial atoms."
Fluorescence mages for the detection of CEA
Conclusion
Nanocrystal Size controlling emission color Optical, biomedical research application
单量子跃迁名词解释

单量子跃迁名词解释英文回答:A single-quantum transition is a quantum-mechanical phenomenon in which an atom or molecule undergoes a transition from one quantum state to another by absorbing or emitting a single quantum of electromagnetic radiation. The frequency of the absorbed or emitted radiation is equal to the energy difference between the two quantum states involved in the transition.Single-quantum transitions are fundamental to many physical processes, including the operation of lasers, the spectroscopy of atoms and molecules, and the detection of electromagnetic radiation. They also play an important role in the energy transfer processes that occur in biological systems.The simplest example of a single-quantum transition is the absorption or emission of a photon by an electron in anatom. When an electron absorbs a photon, it is excited to a higher energy state. When the electron returns to its original energy state, it emits a photon with the same frequency as the absorbed photon.The energy of a photon is proportional to its frequency. Therefore, the energy difference between two quantum states can be determined by measuring the frequency of the absorbed or emitted photon. This principle is used in spectroscopy to identify and characterize atoms and molecules.Single-quantum transitions can also occur in molecules. In a molecule, the energy levels are more complex than inan atom, and there are many more possible quantum states.As a result, molecules can undergo a wide variety ofsingle-quantum transitions.The study of single-quantum transitions has led to a deep understanding of the quantum-mechanical nature ofatoms and molecules. This understanding has been essential for the development of many important technologies,including lasers, spectrometers, and detectors.中文回答:单量子跃迁是原子或分子通过吸收或发射单个电磁辐射量子从一种量子态跃迁到另一种量子态的量子力学现象。
量子点(Quantum

量⼦点(Quantum Dots)量⼦点(quantum dot)是准零维(quasi-zero-dimensional)的奈⽶材料,由少量的原⼦所构成。
粗略地说,量⼦点三个维度的尺⼨都在100奈⽶(nm)以下,外观恰似⼀极⼩的点状物,其内部电⼦在各⽅向上的运动都受到局限,所以量⼦局限效应(quantum confinement effect)特别显著。
由于量⼦局限效应会导致类似原⼦的不连续电⼦能阶结构,因此量⼦点⼜被称为「⼈造原⼦」(artificial atom)。
科学家已经发明许多不同的⽅法来制造量⼦点,并预期这种奈⽶材料在⼆⼗⼀世纪的奈⽶电⼦学(nanoelectronics)上有极⼤的应⽤潜⼒。
若要严格定义量⼦点,则必须由量⼦⼒学(quantum mechanics)出发。
我们知道电⼦具有粒⼦性与波动性,电⼦的物质波特性取决于其费⽶波长(Fermi wavelength)λF = 2π / k F在⼀般块材中,电⼦的波长远⼩于块材尺⼨,因此量⼦局限效应不显著。
如果将某⼀个维度的尺⼨缩到⼩于⼀个波长(如图⼀所⽰),此时电⼦只能在另外两个维度所构成的⼆维空间中⾃由运动,这样的系统我们称为量⼦井(quantum well);如果我们再将另⼀个维度的尺⼨缩到⼩于⼀个波长,则电⼦只能在⼀维⽅向上运动,我们称为量⼦线(quantum wire);当三个维度的尺⼨都缩⼩到⼀个波长以下时,就成为量⼦点了。
由此可知,并⾮⼩到100nm以下的材料就是量⼦点,真正的关键尺⼨是由电⼦在材料内的费⽶波长来决定。
⼀般⽽⾔,电⼦费⽶波长在半导体内较在⾦属内长得多,例如在半导体材料砷化镓GaAs(100)中,费⽶波长约40nm,在铝⾦属中却只有0.36nm。
⽬前量⼦点的制造⽅法主要有以下四种:1.化学溶胶法(chemical colloidal method):以化学溶胶⽅式合成,可制作复层(multilay ered)量⼦点,过程简单,且可⼤量⽣产。
量子测量术语-最新国标

量子测量术语1 范围本文件规定了量子测量相关的基本术语和定义。
本文件适用于量子测量相关标准制定、技术文件编制、教材和书刊编写以及文献翻译等。
2 规范性引用文件本文件没有规范性引用文件。
3 通用基础3.1量子测量quantum measurement利用量子的最小、离散、不可分割特性及量子自旋、量子相干、量子压缩、量子纠缠等特性,大幅提升经典测量性能的测量。
3.2量子计量quantum metrology基于基本物理常数定义国际单位制基本单位,利用量子系统、量子特性或量子现象复现测量单位量值或实现直接溯源到基本物理常数的测量,可用于其他高精度测量研究。
3.3量子传感quantum sensing利用量子系统、量子特性或量子现象实现的传感技术。
3.4量子态quantum state量子系统的状态。
3.5量子费希尔信息quantum Fisher information量子费希尔信息是经典费希尔信息的扩展,表征了量子系统状态对待测参数的敏感性,可用于确定参数测量的最高精度。
3.6海森堡极限Heisenberg limit根据海森堡不确定性关系,在给定的量子态下,量子系统的某个指定的可观测物理量受其非对易物理量测量不确定性的制约所能达到的测量精度极限。
3.7标准量子极限standard quantum limit由量子力学原理决定的噪声极限,即多粒子系统处于真空态时两个正交分量的量子噪声相等且满足海森堡最小不确定关系。
3.8散粒噪声shot noise散粒噪声,或称泊松噪声,是一种遵从泊松过程的噪声。
对于电子或光子,其散粒噪声来源于电子或者光子离散的粒子本质。
3.9量子真空涨落quantum vacuum fluctuation真空能量密度的随机扰动,是海森堡不确定原理导致的结果。
3.10量子噪声quantum noise测量过程中由于量子系统的海森堡不确定性引发的噪声。
3.11量子投影噪声quantum projection noise测量过程中由于量子投影测量结果的随机性所引发的噪声。
信息系专业英语词汇

1-1 computers of the futurekeyboard, mouse, textgesture:手势pragmatic:实际的,注重实效的make sense:有意义的anticipate:预测context-aware:上下文感知speech recognition:语音识别prototype:原型,标准hands-free:免提handset:手机personal digital assistant:个人数字助理laptop:膝上型轻便电脑flight reservation request form:航空订票单1-2Future of Portable Computersobserver:观察员shrink:收缩、减小(规模)unfold:展开clamshell:翻盖tablet:胶囊monopoly:垄断Portable Computers:便携式计算机Notebook Computer:笔记本电脑DDR SDRAM ( Double Data Rate Synchronous Dynamic Random Access Memory):双数据速率同步动态RAMUSB(Universal Serial Bus):通用串行总线Floppy and CD drives:软盘和CD驱动器smart card:智能卡LAN(Local Area Network):局域网W AN(Wide Area Network):广域网Virus:病毒GHZ:gigaherz,千兆赫Disk:磁盘Solid-state memory:固态内存CPU(Central Processing Unit):中央处理单元Banias:迅驰一代OLED(Organic Light Emitting Diode ):有机发光二极管futurist:未来学家nanocomputer:纳米计算机microscopic:精微的,用显微镜可见的nanotechnology:纳米技术electronic nanocomputer:电子纳米计算机transistor:晶体管IC (intergrated circuits):集成电路chemical and biochemical nanocomputer:化学和生化纳米计算机1-3 Nanocomputersvaccine:疫苗antibiotic:抗生素antiviral medication:抗病毒药物mechanical nanocomputer:机械纳米计算机component:元件、组件encode:编码quantum nanocomputer:量子纳米计算机SEM(single-electron memory):单电子存储器1-4 A Self-Aware Computerself-aware computer:自我意识计算机cognitive system:认知系统envision:预想、想象brittleness:脆弱性machine learning:机器学习pattern recognition:模式识别electrocardiogram:心电图2-1accurate:精确的symbol:符号manipulate:操纵stored program:存储程序instruction:指令medium:中介magnetizable:磁化magnetically:磁coated:涂interpretation:解释2-2 types of computersspecial-purpose computer:专用计算机general-purpose computer:通用计算机permanently:永久、固化lack:缺乏versatility:多功能性atomic submarines:核潜艇processor:处理器customized:定制appliance:家电microcomputer:微型计算机stream:流minicomputer:小型计算机mainframe computer:大型计算机PC(personal computer):个人计算机supercomputer:超级计算机input/output device:输入/输出设备input pen:输入笔touch screen:触摸屏primary storage:主存储器arithmetic logic section:算术逻辑部件workstation:工作站peripheral:外围设备secondary storage:辅助二级存储器magnetic tape drive:磁带机2.3 computer generationsENIAC (Electronic Numerical Integrator And Calculator ):电子数字积分计算机prominent:突出的vacuum tube:真空管binary arithmetic:二进制算术random access:随机访问transistor:晶体管compatibility :兼容性radically:根本上,彻底地concurrently:并发的microprocessor:微处理器generationless computers:无代计算机3-1 what is a processorinstruction:指令instruction set:指令系统operation:操作符operand:操作数machine language:机器语言address:地址megahertz:兆赫control unit:控制部件decode:译码,解码ALU(arithmetic/logic unit):算术逻辑部件register:寄存器switchboard:(电话)总机word size:字长analogous:类似的repertoire:剧目/(指令系统的…)3-2 the storage hierarchystorage hierarchy:存储层次pyramid:金字塔semiconductor storage chip:半导体存储芯片bit:位In addition to:除了built-in:内置DASD(direct-access storage device):直接访问存储设备SASD(squential-access storage device):顺序访问存储设备load:加载scratch pad:便签cache memory:高速缓冲存储器microprogram:微程序temporarily:暂时retrieved :检索3-3 computer-system input/outputanalogy:相似之处,类比,类推organ:器官,机构,组织scanner:扫描仪sensor:传感器activate:刺激,使活动deactivate:使无效,使不活动trigger:触发,引发,引起keystroke:击键,按键;用键盘输入,击打…的键transcribed input:转录输入direct-source input:直接源输入analogous [ə'næləɡəs] adj. 类似的3-4 multiprocessingmultiprocessing:多道处理系统multiprocessor:多处理机系统trade-off:权衡primary memory multiprocessor:共享主存的多处理机系统secondary memory multiprocessor:共享辅存的多处理机系统SISD : single instruction stream,single data stream单指令流单数据流SIMD:single instruction stream,multiple data stream单指令流多数据流MISD:multiple instruction stream,single data stream多指令流单数据流MIMD:multiple instruction stream,multiple data stream多指令流多数据流4-1 java languageobject:对象class:类exponential:指数OO(object-oriented):面向对象compiler:编译器syntax:语法,句法pointer:指针multiple inheritance:多重继承JVM(java virtual machine):java虚拟机distributed architecture:分布式体系结构library function:库函数parallels:并行pseudorandom:伪随机的namespace:名字空间viability:可行性allocate:分配Discouraged:泄气、灰心JIT(just in time) compiler:运行时编译descendent:后代minus:减去wags:太太团non-portable:非便携式catastrophic:灾难性的eliminating:消除markup language:标识语言embed:嵌入XML(eXtensible Markup Language):可扩展标识语言structured information:结构化信息HTML(Hypertext Markup Language):超文本标识语言template:模板句子A nanocomputer is a computer whose physical dimensions are microscopic. The field of nanocomputing is part of the emerging field of nanotechnology. Several types of nanocomputers have been suggested or proposed by researchers and futurists.纳米计算机是一种物理尺寸为显微级的计算机。
纳米电子学-课程总结
纳米电子学当前信息技术不断发展,个人PC机早已进入寻常百姓家,平板电脑和手机以其更加简单的使用方式和快捷的网络接入成为广大人民群众必不可少的日常生活用品。
但是总会听到有人说“我的手机没电了”,“你的手机太慢了”等等令人扫兴的话题,这些问题也就是物理学家、计算机专家和电子工程师矢志不渝为之奋斗的科学问题:芯片的计算性能和功耗。
传统微电子工业从20世纪50年代末发展到现在,特征尺度已下降到22nm,不可避免会出现很多量子效应和介观效应,这些新的现象会严重干扰芯片的正常工作,为了解决这些难题,必须研究纳米尺度的电子学,设计新的器件结构。
一、闻所未闻的几个新现象纳米电子学是讨论纳米电子元件、电路、集成器件和信息加工的理论和技术的新学科。
国家科学基金委将纳米技术定义为长度为1 –100 nm的结构、器件和系统,由于其纳米尺度而具有新奇的特性。
介观尺度下的精彩世界固态器件的尺度从微米缩小到纳米尺度会使系统从量变引起物质性质的质变,尺度的变化导致研究内容和学科的变化。
自然界中大到日月星辰,小到分子原子都有其严格遵守的运动规律,纳米电子学主要研究介观尺度的新现象和新问题。
100nm尺度下可以清晰看出双螺旋结构的DNA是生命信息的携带者,32nm工艺下的芯片每秒可以进行1亿次浮点运算。
在介观尺度下,涉及一些重要的特征长度:德布罗意波长、平均自由程、相位弛豫长度。
在某些小的纳米结构中,输运既不是弹道的也不是扩散的,而是处于这两种极限情况之间的情况。
对于这些结构,有效相位弛豫长度既不是非弹性平均自由程,也不是相干长度。
对于这些结构的理解更困难,它们对于边界条件相当敏感。
弱局域化电子在固体中扩散运动,受到杂质的散射作用,以一定的概率存在时间反演路径,电子经过时间反演路径时,相位的移动是相等的。
如果电子从α点出发,经过时间反演路径回到α点,此时电子处于相反动量态,该电子的强度增加一倍,这说明波在经历了漫散射后仍能产生一定量的回波。
半导体双语专业常见单词
Chapter 2Quantum['kwɔntəm] Mechanics[mɪ'kænɪks]量子力学accuracy['ækjurəsi]n. 精确(性), 准确(性)theoretical [,θiə'retikəl]adj. 理论的;推想的, 假设的electromagnetic wave [ɪ,lektrəʊmæg'netɪk]电磁波inconsistent[,ɪnkən'sɪstənt]adj. (思想、意见等)不一致的, 不协调的;易变的, 不稳定的, 反复无常的Energy Quanta 能量子,量子Relativity 相对论The blackbody radiation (黑体辐射)particle (粒子)unambiguous[,ʌnæm'biɡjuəs]adj. 不含糊的; 清楚的; 明确的thermal ['θə:məl] radiation热辐射photoelectric[,fəʊtəʊɪ'lektrɪk] effect (光电效应).electrodes [ɪ'lek,trəʊd]n. 电极irradiate [i/reidieit] (照射)incident light (入射光)threshold ['θreʃhəuld[ frequency 截止频率proportional to [prə'pɔ:ʃənəl]adj. 比例的, 成比例的Photoelectric[,fəʊtəʊɪ'lektrɪk]adj. 光电的intensity [in'tensiti]n. 强烈, 剧烈;(感情的)强烈程度photoelectron[,fəutəui'lektrɔn]n. 光电子kinetic [kɪ'netɪk, kaɪ-]adj. <物>动力的,由运动引起的electrode [ɪ'lek,trəʊd]n. 电极emission[ɪ'mɪʃən] n.1.排放物,散发物(尤指气体)2.排放,散发,发出(气体、光、热)eject[i'dʒekt]vt. & vi. 弹出, 喷出, 排出vt. 逐出contamination (污染)hypothesis [hai'pɔθisis]n. 假说, 假设, 前提assumption [ə'sʌmpʃən]n. 假定, 臆断photon [/fəʊ:tɔn]光子;光量子cathode['kæθ,əʊd]n. <电>(-)阴极,负极work function (功函数).equation方程kinetic energy (动能)photon. ['fəʊ,tɔn]n. <物>光子;光量子photoelectron [,fəutəui'lektrɔn]n. 光电子reciprocal ri'siprəkəl (倒数)Wave-Particle Duality [dju(:)'æliti] (波粒二象性)impinges [im/pindʒ] (冲击,撞击)diffuse reflection漫射wavelength 波长scattere.[/skætə]散射mechanism ['mekənizəm]n. (机理)forced vibration [vaɪ'breɪʃən] (受迫振动),oscillate vt. & vi. (使)摆动momentum(动量)collision [kə'liʒən]n. 碰撞, 冲突, 抵触recoils [ri/kɔil] 反冲D e B r o g l i e W a v e(德布罗意波)postulate [/pɔstju/leɪt] (假设matter waves 物质波wave-particle duality [dju(:)'æliti](波粒二象性)filament['fɪləmənt (灯丝)accelerate [æk'seləreit]vt. & vi. (使)加快, (使)增速nickel ['nikəl] (镍).Scattere [/skætə]散射diffract 衍射interference [,ɪntə'fiərəns]干涉grating ['greɪtɪŋ](光栅)magnitude 'mæɡnitju:d] (数量级)protons [/prəʊ/tɔn] (质子)neutrons [/nu:/trɔn] (中子)mechanics [mɪ'kænɪks]n. 力学;机械学;机件;过程;方法radius ['reidjəs (半径)wave theory 波动理论subatomic ['sʌbə'tɔmik]adj. 小于原子的;亚原子的,次原子的particle ['pɑ:tikl]n. 微粒, 颗粒, 〈物〉粒子;极少量;小品词conjugate [/kɔndʒəɡeit]variables [/vɛəriəbl](相关变量), simultaneous [,siməl'teinjəs]adj. 同时发生的; 同时存在的generalized[/dʒenərəlaizd]adj.1.广泛的, 普遍的, 全面的2.非具体的; 整体的angular position (角坐标)angular momentum (角动量momentum [məu'mentəm]n. 动力, 冲力, 势头;〈物〉动量profound [prə'faund]adj. 深度的; 深切的; 深远的;知识渊博的, 见解深刻的, 深奥的diameter [dai'æmitə]n. 直径;放大率electron single-slit diffraction([di'frækʃən]电子单缝衍射slit [slit]vt. 切开, 撕开n. 狭长的口子, 裂缝billiard [/bɪljəd] ball (台球)macroscopic [/mækrə/skɔpɪk] (宏观的)Microscopic [/maɪkrə/skɔpɪk] 微观的rifle [/raifl] (来福枪)bullet [/bulit] (子弹)apparatus [/æpə/reitəs] (仪器)bounced off 反弹probability density function (概率密度函数)precisely [prɪ'saɪsli:]adv. 精确地;恰好;细心地;对, 的确如此dice [dais]骰子violate ['vaiəleit]vt. 违反, 违背;亵渎;侵犯, 妨碍bizarre [bi/zɑ:] (怪诞的tick [tik]n. 钟的嘀嗒声;(表示正确无误的)记号;证券价格的增额;(寄生于体大动物的吸血小虫)壁虱vt. & vi.1.发出滴答声2.标以记号3.激怒kinetic energy 动能relativistic quantum mechanics (相对论量子力学non-relativistic quantum mechanics (非相对论量子力学) . hypotheses [hai/pɔθisiz]臆测,假定one-dimensional (一维的),constant ['kɔnstənt] (常数)portion ['pɔ:ʃən]n. 一部分, 一份vt. 把…分成份额, 分配the technique of separation of variables (分离变量法Substituting ['sʌbstitju:tiŋ]n. 取代denote [di'nəut]vt. 为…的符号; 为…的名称;指示; 指出dynamic [dai'næmik] (动力学的complex conjugate function (复共轭)normalizing condition 归一化条件coefficient [,kəʊə'fɪʃənt系数).derivative [di/rivətiv](导数)finite ['fainait]adj. 有限的, 有限度的;〈语〉限定的single-valued 单值的state superposition principle (态叠加原理)traveling wave (行波),parameter [pə'ræmitə]n. (限定性的)因素, 特性, 界限;〈物〉〈数〉参量, 参数Infinite ['infinit]adj. 无限的, 无穷的, 无边无际的Potential Well (势阱)bound particle (束缚粒子).explicit [iks'plisit]adj. 详述的, 明确的, 明晰的;直言的, 毫不隐瞒的, 露骨的discrete [dis'kri:t]adj. 分离的, 不相关联的energy levels (能级)dimension [di'menʃən]n. 尺寸, 维度standing wave (驻波quantization量子化quantum states (量子态)Barrier ['bæriə] (势垒)incident particle (入射粒子)a flux ([flʌks]of incident particles一束入射离子流originate [ə'ridʒineit]vi. 起源于, 来自, 产生transmission coefficient (透射系数),impinge [im/pindʒ]碰撞penetrate ['penitreit] (穿透)tunneling (tunnel [/tʌnəl]) effect (隧道效应contradict [,kɔntrə'dikt]vt. & vi. 反驳, 否认…的真实性vt. 与…发生矛盾, 与…抵触tunnel diode (隧道二级管)horizontal [,hɔri'zɔntəl]adj. 水平的, 与地平线平行的ionize ['aɪə,naɪz]vt. & vi. (使)电离,(使)成离子molecule分力theoretical [,θiə'retikəl]adj. 理论的;推想的, 假设的visualized ['viʒuəlaiz]vt. 在脑中使(某人或某物)形象化, 设想, 想像pulse [pʌls]n. 脉搏;脉冲vi. (心脏)跳动; 脉动attosecond阿秒periphery [pə'rɪfəri:]n. 外围;边缘spectrometry光谱测定法dynamics [dai'næmiks]n. 动力学、力学;facilitate [fə'siliteit]vt. 使便利, 减轻…的困难rectangular [rek/tæŋɡjulə](长方形的; 矩形的coulomb [/ku:lɔm]attraction (库仑引力)permittivity [/pə:mi/tiviti] (介電常數)spherical coordinates [/sfɪərɪkəl] [kəu/ɔ:dineit] (球坐标). Laplace operator (拉普拉斯算符)spherical['sfɪərɪkəl, 'sfer-]adj. 球形的,球面的;天体的coordinate[kəu'ɔ:dineit]vt. 使协调; 使调和adj. 同等的, 并列的n. 〈数〉坐标principle quantum number (主量子数);angular momentum quantum number (角量子数magnetic quantum number (磁量子数).Correspond[,kɔris'pɔnd]vi. 相符合, 相一致;相当, 相类似;通信discrete[dis'kri:t]adj. 分离的, 不相关联的,分立的symmetric对称的Bohr radius (玻尔半径emanate ['emə,neɪt]vi. 从…处传出;传出nucleus ['nju:kliəs]n. (原子)核;中心, 核心plot 绘制,作图electron cloud (电子云energy shell能量壳层yield [ji:ld]vt. & vi. 生产, 出产, 带来;evolve [i'vɔlv]vt. & vi. 演变; 进化Periodic ([,piəri'ɔdik])T able (周期表) initial [i'niʃəl]adj. 最初的, 开头的electron spin (电子自旋).spin [spin]vt. & vi. 使…旋转vt. 杜撰exclusion [ɪk'sklu:ʒən]n. 拒绝,排除n. 排外主义helium (氦),inert [ɪ/nɜ:t](惰性的valence ['veiləns]n. (化合)价,原子价deviate [/di:vieit] (偏离)。
纳米科学的基本理论
宏观金属材料电子以能带的形式存在,《kBT。 服从费料在高温条件下,其能 带可以看作是连续的。
纳米颗粒电子能级是什么?
从原子分立能级到固体能带中的能级
?
从上图我们可以预测纳米材料的能级结构
1937年,Frohlich设想自由电子局域在边长为L的立 方体内。电子能级为:
• 当N(很多)个硅原子相互接近 形成固体时,随着原子间距 的减小,其最外层3P和3S能 级首先发生相互作用,导致 能级分裂,形成N个不同的能 级。这些能级汇集成带状结 构,即能带。 • 当原子间距进一步缩小时, 3S和3P能带失去其特性而合 并成一个能带(杂化)。
•当原子间距接近原子间的平衡距离时,该能带再次分裂 为两个能带。两个能带之间的没有可能的电子态的区域, 称为禁带。在禁带上方的能带叫导带,下方的能带叫价 带。
• 只要电子密度恒定,不论颗粒大小, EF不变。 • 态密度(density of state): 即单位能量的状态数 N(E), 对于能量低于E的状态数有
V 2m E N' 2 2 3
• 氢原子的能级图
电子能量
1 me En 2 2 2 n 8 0 h
半径距离 r
4
E4
E3
E2
电子势能
E1
+e 原子核
• 2 原子间的键合 • Molecular Orbital (MO) Theory. • 当原子相互靠近时,原子的电子波函数重叠形成 分子波函数,即分子轨道。 • 通常主要是指价电子云之间的重叠。 • 例如: • The H2+ ion, interactions (both attractive and repulsive) between the single electron and two nuclei.
半导体纳米晶体介电常数的尺寸和成分效应
半导体纳米晶体介电常数的尺寸和成分效应马艳丽; 李明【期刊名称】《《淮北师范大学学报(自然科学版)》》【年(卷),期】2019(040)003【总页数】5页(P12-16)【关键词】介电常数; 半导体纳米晶体; 尺寸和成分效应【作者】马艳丽; 李明【作者单位】淮北师范大学物理与电子信息学院安徽淮北 235000【正文语种】中文【中图分类】O3410 引言由于低维纳米晶体(纳米粒子、纳米线、薄膜)具有不同于相应块体材料的物理化学性能,因此具有广泛的应用价值,从而引起学者们的广泛关注[1].介电常数ε是用来描述单元电荷产生电流的多少,作为一个重要的光电性能,学者们通过理论和实验方法对其进行广泛的研究[2].由于纳米材料约束电子的低屏蔽性,其介电常数小于相应的块体材料,即:ε(D)<ε(∞)[3-5].其中:D是纳米粒子和纳米线的直径、薄膜的厚度,∞则表示相应的块体材料.ε(D)的减小可以提高纳米器件中的电子、空穴和浅层杂质电离的库仑相互作用,并且改善光吸收和传输性能[2].比如:纳米闪存,纳米晶体通常是嵌入到栅极氧化物中作为一个电荷存储节点,纳米晶体的存在会对栅极电容产生影响[6-8].为得到所需性能的器件,首先要理解介电常数的基本原理.为得到所需的光电性能,大多数工作是通过改变尺寸来调整纳米晶体的介电常数,但在小尺寸范围内,尤其当尺寸下降到2~3 nm时,器件将不可避免地出现热稳定性问题[9].为解决小尺寸器件的热稳定性问题,可以用热稳定性高的多元合金[9],多元合金不仅具有相应的单相纳米晶体所具有的基本光电性能,同时还具有高的光致发光性能[10].为了描述ε(D),学者们在理论方面建立不同的模型,模型预测结果与实验结果保持一致,但模型中用到的可调参数限制了模型的应用[2,11].此外,由于对合金介电常数的成分效应研究很少,因此有必要建立一个定量的模型来描述介电常数的尺寸和成分效应.本文中,根据已建立的热力学模型,建立一个没有任何可调参数的模型来预测纳米晶体的介电常数.根据这个模型,对于化合物和合金,介电常数随着尺寸D的减小而减小.此外,通过选择适当的x,可以有效地对合金的ε(x,D)进行调整.通过与实验结果的比较证实模型的有效性,表明该模型可以为光电器件的开发、应用提供有效途径.1 模型根据近自由电子方法,Eg=2|V1|.其中:Eg是决定材料导电性能的带隙,V1是晶体场,取决于原子总数和固体原子间的相互作用[12].作为一级近似,将这种关系扩展到纳米尺寸,可以得到:其中Δ 表示差值,由于V∝Ec[12],Ec是原子结合能. 因此Ec(D)的函数可以表示为[13]:其中:Tm是熔化温度,Svib(∞)是振动熵,R是理想气体常数. 对于半导体,Svib(∞)≈Sm(∞)-R ,其中:Sm(∞)为熔化熵[14],D0是临界直径,此时低维材料中所有原子都位于表面.作为维数d和最近邻原子间距h的函数,D0可表示为[14]:其中d=0,1,2分别表示纳米粒子、纳米线和薄膜.介电常数来源于从价带到导带的电子极化或者电子跃迁过程.这个过程服从能量和动量守恒,并影响半导体的光电响应以及价带电子与激发的导带电子的耦合程度[2].因此,在室温下,半导体的介电常数与带隙Eg是直接相关的. 根据公式(1)~(3)以及的近似关系[2],尺寸依赖的磁化系数χ(D)可以表示为[χ(D)/χ(∞)]={2-[Tm(D)/Tm(∞)]}-2. 将ε=χ+1扩展到纳米尺寸,ε(D)可表示为对于纳米半导体合金,由于成分x对h(x)和Svib(x)产生影响,随着尺寸D的增加,ε(x,D)随成分的变化由直线变为曲线,表现出非线性关系.根据Fox方程h(x)和Svib(x)可表示为[15]:其中:Svib(0)、Svib(1)、h(0)和h(1)表示x=0或x=1时对应的块体值.表1 模型计算过程中用到的相关参数注aSvib(∞)∝Sm(∞)-R,其中:CdTe、CdSe的Sm(∞)分别是14.91 J/(g-atom·K)[18]、20.37 J/(g-atom·K)[18].CdSe CdTe ε(∞)[17]9.7 10.2 Svib(∞)/(J/(g-atom·K))6.59a 12.06ah[16]/nm 0.263 0.2812 结果与讨论计算中使用的参数如表1所示.图1是根据式(5)预测的CdTe和CdSe纳米粒子、纳米线的ε(D)与Tsu模型以及实验结果的比较.模型预测结果表明,随着尺寸D的减小,表面体积比(A/V)增大,ε(D)减小,模型预测结果和实验结果在整个范围内具有良好的一致性.而且,当纳米线的尺寸D<5 nm以及纳米粒子的尺寸D<10 nm时,ε(D)随着尺寸的变化变化明显;而当尺寸D>10 nm时,ε(D)随着尺寸的变化平缓,直至慢慢接近块体值.由于表面原子具有与内部原子不同的物理特性,随着尺寸的减小,表面体积比和表面原子数增多,因此,在决定纳米晶体的性能时,表面原子起主导作用.Wang等[5]提出介电常数的变化是由于表面的量子点而并不是所有的量子点,而Delerue等[3]认为,介电常数的减小是由表面极化键的断裂导致的,这正好支持Wang等的早期发现.研究表明,纳米晶体尺寸D 的减小导致晶格收缩和结合能减小[2].尽管晶格收缩会使单键能增加,但表面原子的低配位数(存在于表面的断裂建)导致纳米晶体的结合能随着表面原子的增大而减小.因此,配位数的缺失(结合能减小)导致可捕获到的哈密顿总量的改变,使得带隙增大,进而影响电子极化过程[19].根据以上分析以及介电常数和带隙的近似关系,ε(D)随着尺寸D的减小而减小是合理的.从图1还可以看出,纳米线介电常数的尺寸效应弱于纳米粒子.这种差异产生的原因是由于纳米粒子、纳米线的表面体积比分别是6/D、4/D.模型预测结果表明,可以通过改变尺寸来调节纳米合金的介电常数.相反,图1中Tsu的模型仅在D>10 nm时和实验结果存在一致性,而D<10 nm时,Tsu模型与实验结果存在偏差,这是由于Tsu的模型限定ΔEg(D)/Eg(∞)<0.56[11].实际上D<10 nm时,纳米晶体的ΔEg(D)/Eg(∞)值可以大于0.5[2].与Tsu的模型相比,模型预测的CdTe和CdSe纳米粒子、纳米线的ε(D)和实验结果有着良好的一致性.图1 模型预测的CdSe和CdTe的介电常数和Tsu模型以及实验结果的比较□[17]表示CdTe纳米线的实验结果;▼[20]、●[21]、◆[22]表示CdTe纳米粒子的实验结果;■[22]☆[23]表示CdSe纳米粒子的实验结果.图2 模型预测的CdSexTe1-x纳米合金的介电常数■、▲[24]表示实验结果图2是根据式(7)预测的不同尺寸的CdSexTe1-x的ε(x,D)随成分变化与实验结果的比较.从图2可以看出,一方面,对于固定的x,随着尺寸的变化,纳米合金的介电常数与化合物具有相同的变化趋势,即ε(x,D)随着D的减小而减小.另一方面,随着尺寸D的增加,纳米半导体合金的ε(x,D)随成分的变化由线性变成非线性,其介电常数随着尺寸D的增加表现出弯曲行为.D=4.9 nm时,ε(x,D)表现出近似线性关系,而D=14 nm时,ε(x,D)表现出非线性关系,而且随着D的增加弯曲行为越明显.当D增加到大尺寸范围时,比如D=40 nm和D=50 nm,ε(x,40)和ε(x,50)之间的差异很小,其介电常数接近于块体值,表明此时介电常数具有弱的尺寸效应.模型预测和实验结果的一致性证实该模型的有效性,并表明利用Fox方程来确定纳米半导体合金的热力学常数是合理的.值得一提的是,式(5)和式(8)只适用于具有自由表面或位于惰性基体的纳米晶体[24-27].对于通过气相沉积方法来制备的纳米晶体[9]与基底形成非共格、半共格和共格界面,这可能会导致不同的变化趋势,比如对于具有不同界面的纳米晶体,可能产生过冷或过热现象[13].因此,界面效应在以后的工作中会进一步进行讨论.3 结论通过已建立的熔化温度模型以及Fox方程,建立一个没有任何可调参数的热力学模型来预测半导体化合物和合金的ε(x,D).模型预测结果表明,纳米晶体的ε(x,D)随着尺寸D的减小而减小,纳米半导体合金的ε(x,D)随成分表现出弯曲行为.而且,由于表面体积比的不同,纳米粒子ε(x,D)的尺寸效应强于纳米线.模型预测结果和实验结果一致性表明模型的有效性和普适性,同时该模型为光电器件的开发、应用提供有效指导.参考文献:【相关文献】[1]CANHAM L T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J].Applied Physics Letters,1990,57(10):1046-1048. [2]SUN C Q,SUN X,TAY B,et al.Dielectric suppression and its effect on photoabsorption of nanometric semiconductors[J].Journal of Physics D:Applied Physics,2001,34(15):2359.[3]DELERUE C,LANNOO M,ALLAN G.Concept of dielectric constant for nanosized systems[J].Physical Review B,2003,68(11):115411.[4]YOO H G,FAUCHET P M.Dielectric constant reduction in silicon nanostructures [J].Physical Review B,2008,77(11):115355.[5]WANG L W,ZUNGER A.Pseudopotential calculations of nanoscale CdSe quantum dots[J].Physical Review B,1996,53(15):9579.[6]DE SOUSA J S,PEIBST R,ERENBURG M,et al.Single-electron charging and discharging analyses in Ge-nanocrystal memories[J].IEEE Transactions on Electron Devices,2011,58(2):376-383.[7]PEIBST R,DE SOUSA J S,HOFMANN K.Determination of the Ge-nanocrystal/SiO2matrix interface trap density from the small signal response of charge stored in the nanocrystals[J].Physical Review B,2010,82(19):195415.[8]TIWARI S,RANA F,HANAFI H,et al.A silicon nanocrystals based memory[J].Applied Physics Letters,1996,68(10):1377-1379.[9]ZHU Y F,LANG X Y,JIANG Q.The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys[J].Advanced Functional Materials,2008,18(9):1422-1429.[10]SAKALAUSKA E,REUTERS B,KHOSHROO L R,et al.Dielectric function and optical properties of quaternary AlInGaN alloys[J].Journal of Applied Physics,2011,110(1):013102.[11]TSU R,BABIC D.Doping of a quantum dot[J].Applied Physics Letters,1994,64(14):1806-1808.[12]LANG X,ZHENG W,JIANG Q.Finite-size effect on band structure and photoluminescence of semiconductor nanocrystals[J].IEEE Transactions on Nanotechnology,2008,7(1):5-9.[13]JIANG Q,ZHANG Z,LI J.Melting thermodynamics of nanocrystals embedded in a matrix[J].Acta Materialia,2000,48(20):4791-4795.[14]ZHANG Z,ZHAO M,JIANG Q.Melting temperatures of semiconductor nanocrystals in the mesoscopic size range[J].Semiconductor Science and Technology,2001,16(6):33.[15]CHOW T.Molecular interpretation of the glass transition temperature of polymer-diluent systems[J].Macromolecules,1980,13(2):362-364.[16]Web Elements Periodic Table:the periodic table on the web[EB/OL].[2019-05-10].http://.[17]LI J,WANG L W.Band-structure-corrected local density approximation study of semiconductor quantum dots and wires[J].Physical Review B,2005,72(12):125325.[18]REGEL A,GLAZOV V.Entropy of melting of semiconductors[J].Semiconductors,1995,29:405-417.[19]GOH E S,CHEN T,YANG H,et al.Size-suppressed dielectrics of Ge nanocrystals:skin-deep quantum entrapment[J].Nanoscale,2012,4(4):1308-1311.[20]MASUMOTO Y,SONOBE K.Size-dependent energy levels of CdTe quantum dots [J].Physical Review B,1997,56(15):9734.[21]ARIZPE-CHAVEZ H,RAMIREZ-BON R,ESPINOZA-BELTRAN F,et al.Quantum confinement effects in CdTe nanostructured films prepared by the RF sputtering technique[J].Journal of Physics and Chemistry of Solids,2000,61(4):511-518. [22]VOSSMEYER T,KATSIKAS L,GIERSIG M,et al.CdS nanoclusters:synthesis,characterization,size dependent oscillator strength,temperature shift of the excitonic transition energy,and reversible absorbance shift[J].The Journal of Physical Chemistry,1994,98(31):7665-7673.[23]GORER S,HODES G.Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films[J].The Journal of Physical Chemistry,1994,98(20):5338-5346.[24]LI Y,ZHONG H,LI R,et al.High yield fabrication and electrochemical characterization of tetrapodal CdSe,CdTe,and Cd-SexTe1-xnanocrystals[J].Advanced Functional Materials,2006,16(13):1705-1716.[25]ZHONG X,HAN M,DONG Z,et position-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability[J].Journal of the American Chemical Society,2003,125(28):8589-8594.[26]PETROV D,SANTOS B,PEREIRA G,et al.Size and band-gap dependences of the first hyperpolarizability of CdxZn1-xS nanocrystals[J].The Journal of Physical Chemistry B,2002,106(21),5325-5334.[27]SWAFFORD L A,WEIGAND L A,BOWERS M J,et al.Homogeneously alloyed CdSxSe1-xnanocrystals:synthesis,characterization,and composition/size-dependentband gap[J].Journal of the American Chemical Society,2006,128(37):12299-12306.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Single-electron quantum dot in Si/SiGe with integrated charge-sensingC.B.Simmons,Madhu Thalakulam,Nakul Shaji,Levente J.Klein,Hua Qin,R.H.Blick,D.E.Savage,gally,S.N.Coppersmith,M.A.ErikssonUniversity of Wisconsin-Madison,Madison,WI 53706Single-electron occupation is an essential component to measurement and manipulation of spin in quantum dots,capabilities that are important for quantum information processing.Si/SiGe is of interest for semiconductor spin qubits,but single-electron quantum dots have not yet been achieved in this system.We report the fabrication and measurement of a top-gated quantum dot occupied by a single electron in a Si/SiGe heterostructure.Transport through the quantum dot is directly correlated with charge-sensing from an integrated quantum point contact,and this charge-sensing is used to confirm single-electron occupancy in the quantum dot.Semiconductor quantum dots provide highly tunable structures for trapping and manipulating individual electrons,1,2with significant potential for integration and scaling,and therefore are promising candidates as qubits for quantum computation.3−6Because silicon has small spin-orbit coupling and an abundant isotope with zero nuclear spin,electron spins in silicon quantum dots have been predicted to have extremely long coherence times,7,8a large advantage for spin-based quantum computing and for spintronics applications.These features have moti-vated efforts to develop quantum dots in silicon using a wide variety of confinement techniques.9−18Here we report the achievement of a single-electron quantum dot in a Si/SiGe modulation-doped heterostruc-ture,in which an integrated charge-sensing quantum point contact 11,19−23is used to monitor electron tran-sitions in and out of the dot and to verify the elec-tron number.Analogous single-electron quantum dots in GaAs/AlGaAs heterostructures have been used to form spin qubits –quantum dots with spin states that can be manipulated and measured.24−27To achieve single-electron quantum dots in Si/SiGe heterostructures,one must overcome complications that do not arise in GaAs/AlGaAs heterostructures,includ-ing:(1)smaller Schottky barriers,leading to difficulty in the fabrication of low-leakage gates,(2)the need to im-plement strain management in Si/SiGe heterostructures,leading to disorder in the form of dislocations,mosaic tilt,and surface roughness,and (3)the larger effective mass of carriers in Si compared to GaAs,which decreases the tunneling rate through otherwise equivalent barri-ers to the leads.Further,mobility in Si/SiGe is typi-cally smaller than in III-V systems.Our work builds on much recent progress in overcoming many of these issues in Si/SiGe,including the fabrication of gated quantum dots,10−14the observation of the Kondo and Fano ef-fects in such a dot,15and the demonstration of transport through spin-channels in Si/SiGe double dots.28The quantum dot used in this work was formed in a two-dimensional electron gas located 60nm below the surface in a Si/SiGe heterostructure containing a Si quantum well.Details of the sample can be found in reference.28The sample was illuminated for 20seconds while at a temperature of 4.2Kelvin at thebeginningFIG.1:(a)Scanning electron micrograph of a device with a design identical to the one used in this experiment.Ohmic contact positions are indicated schematically as white squares,and the two current paths,through the dot and through the quantum point contact,are indicated schematically by white arrows.(b)Gray-scale plot of the current through the dot as a function of the applied voltage across the dot and the gate voltage V G .The data were acquired by sweeping V G from more negative to less negative voltage for each value of V SD .of the experiment before cooling the dilution refrigerator to base temperature,in order to decrease the resistance of the Ohmic contacts.The results we report below de-pend critically on the ability to apply large gate voltages without causing leakage currents.The quantum dot was formed on a mesa 10microns wide by 20microns long.The Schottky gates were formed by Pd deposition imme-diately following the removal of the native oxide by brief immersion in hydrofluoric acid.The resulting Schottky gates supported applied voltages as large as -3.25V rel-ative to the electron gas.A scanning electron micrograph of the top-gate design is shown in Fig.1(a).Negative voltages applied to the top gates deplete the underlying electron gas,forming both a single quantum dot defined by gates top (T),left (L),right (R),and the plunger gate (G),and an integrated charge-sensing quantum point contact (QPC)formed by the charge sensor gate (CS)and gate R.Ohmic contacts to the 2DEG (shown schematically on the micro-graph by superimposed white squares)were fabricated by evaporation of an Au:Sb (1%)alloy with subsequent an-nealing at 550◦C.A dc bias voltage across the top pair ora r X i v :0710.3725v 3 [c o n d -m a t .m e s -h a l l ] 1 N o v 20072the right pair of these Ohmic contacts causes current to flow through the quantum dot(I Dot)or through the QPC (I QPC)respectively.Throughout this paper,the voltage on gate G(V G)is used to control the number of electrons in the dot,and for the data presented here the measured electron temperature during the experiment was30±20 mK.Figure1(b)shows a Coulomb diamond plot of the source-drain current as a function of V G and the source-drain bias(V SD).Based on the electron counting dis-cussed below,we estimate that the electron number in the regime of Fig.1(b)is approximately30.As V G is made more negative,electrons are pushed offthe dot one by one.However,more negative V G also increases the potential barriers between the dot and the source and drain reservoirs,reducing the tunnel coupling between the leads and the dot.This reduced tunnel coupling is visible in Fig.2(b),where the Coulomb peaks decrease in height as V G is made more negative,until they are below the noisefloor of the current measurement,which was70fA for the data presented here.At this point,no further transitions in electron number can be monitored using direct current through the dot,and the introduc-tion of a charge-sensing technique using the coupled QPC is essential.It is interesting to note that the larger ef-fective mass in Si(0.19m e)compared with GaAs(0.067 m e)decreases the transparency of the tunnel barriers in Si as opposed to GaAs for the same electrostatic barrier shape and height.This may be one of the reasons that past measurements of Coulomb blockade in Si/SiGe have shown a relatively small number of Coulomb peaks.15For this reason,we focus in this paper on charge-sensing to confirm single-electron occupation.Applying a negative voltage to gate CS,in combination with the effect of gate R,forms a QPC in close proximity to the quantum dot.By precisely tuning the gate volt-age V CS,the conductance of the QPC can befixed on a steep transition in the pinch-offcurve.In this config-uration,the QPC functions as a sensitive electrometer for the neighboring quantum dot,because changes in the electron occupation of the dot result in measurable shifts in the QPC pinch-offcurve.Numerically differentiating I QPC with respect to V G turns these discrete shifts into peaks,and such a differentiated curve is plotted in Fig. 2(a).The horizontal axes for the two plots are identical, and the data for each plot were acquired sequentially. There is a clear correspondence between the peaks in the two curves,demonstrating that the QPC functions as a reliable detector of charge transitions in the quantum dot.Importantly,this sensitivity is preserved even when transport through the dot is not measurable,as shown in Fig.2.The QPC is most sensitive to charge transitions in the quantum dot when its conductance varies rapidly as a function of gate voltage–and hence also as a function of the charge on the dot.However,changing V G to re-move electrons from the dot also changes the potential of the coupled QPC.The result is that,for aparticu-FIG.2:(a)The derivative of the quantum point contact cur-rent with respect to the gate voltage d I QPC/d V G as a function of the gate voltage V G.The peaks correspond to changes in the number of electrons in the dot.(b)The current through the quantum dot as a function of the gate voltage V G.The peaks in(a)are well aligned with those in(b),indicating that the charge-sensing quantum point contact and the Coulomb blockade peaks in transport through the dot correspond to the same quantum dot charging phenomena.lar value of V CS,there is afinite range over which V G can vary for which the QPC is sensitive to charge tran-sitions on the dot.Outside this range,the slope of the QPC conductance,which determines the sensitivity to charge transitions in the quantum dot,is too small to allow charge-sensing of single electrons.In our system, transitions cannot be detected when d I QPC/d V G is below 1(TΩ)−1.This provides an effective operational range of approximately300mV in V G.When the dot contains of order30electrons,this range is large enough to ob-serve many charge transitions in the dot,because the spacing between the transitions is relatively small(∼22 mV).In the few electron regime,however,the spacing be-tween transitions is larger and this range is not sufficient to observe more than three transitions with confidence. Nonetheless,a large dynamic range can still be obtained by compensating the effect of V G on the QPC by chang-ing V CS in the opposite sense,keeping the QPC in the most sensitive operating point.An example of this type of compensation is shown in Fig.3(a).The voltage on gate G is swept through a range much larger than that corresponding to the sensi-tive region of the QPC.By changing V CS,high sensitiv-ity is maintained across the entire range of V G,so that many charge transitions can be monitored on a single image plot.These charge transitions appear as the dark vertical lines in Fig.3(a).The spacing in gate voltage3FIG.3:(a)Gray-scale plot of the current through the charge-sensing quantum point contact.The dark vertical lines cor-respond to changes in the quantum dot electron occupation. No further transitions occur for V G<-1.68V,indicating that the quantum dot is empty of electrons in this regime.(b) An average of7line-cuts taken diagonally down the sensitive slice in part(a).The sharp peaks correspond to changes in the electron occupation of the dot.between the peaks is not uniform,as is expected for a dot with very few electrons.The dot is empty of elec-trons for the most negative values of V G,as indicated by the absence of dark lines on the left half of thefigure.A rigid shift was applied to each horizontal line-scan in Fig.3(a)to remove two effects.First,before the shift is applied the cross-capacitance between gate CS and the quantum dot causes the vertical lines in Fig.3(a)to slope to more negative V G for less negative V CS with a lever arm of26%.In addition,random chargefluctua-tions cause shifts from line-scan to line-scan with RMS magnitude3.9mV,which can be compared to the aver-age spacing of62.1mV between the peaks.Figure3(b)shows an average of7diagonal line cuts taken parallel to the sensitive slice in Fig.3(a). The charge transitions appear as5sharp peaks,cor-responding to the removal of the last5electrons from the dot.The sequence of peaks terminates at V G= -1.68V,indicating that beyond this value of the gate voltage the dot is empty of electrons.It is possible to then reduce the magnitude of V G,refilling the dot with a known number of electrons starting from zero, something we have done many times over the course of the measurements reported here.The authors thank Lisa McGuire,Mark Friesen,and Robert Joynt for helpful discussions.This work was supported by NSA and ARO under contract number W911NF-04-1-0389,by NSF under grant numbers DMR-0325634and DMR-0520527,and by DOE under grant number DE-FG02-03ER46028.1L.P.Kouwenhoven,T.H.Oosterkamp,M.W.S.Danoesastro, M.Eto,D.G.Austing,T.Honda,and S.Tarucha,Science278,1788 (1997).2L.P.Kouwenhoven,C.M.Marcus,P.L.McEuen,S.Tarucha,R.M. Westervelt,and N.S.Wingreen,in Mesoscopic Electron Transport, edited by L.L.Sohn,L.P.Kouwenhoven and G.Schn(Kluwer,1997), Vol.345,p.105.3D.Loss and D.P.DiVincenzo,Physical Review A57,120(1998).4B.E.Kane,Nature393,133(1998).5M.Friesen,P.Rugheimer,D.E.Savage,gally,D.W.van der Weide,R.Joynt,and M. A.Eriksson,Physical Review B67, 121301(2003).6X.D.Hu,B.Koiller,and S.D.Sarma,Physical Review B71,235332 (2005).7R.de Sousa and S.Das Sarma,Phys.Rev.B68,115322(2003).8C.Tahan,M.Friesen,and R.Joynt,Physical Review B66,035314 (2002).9L.P.Rokhinson,L.J.Guo,S.Y.Chou,and D.C.Tsui,Physical Review B63,035321(2001).10L.J.Klein,K.A.Slinker,J.L.Truitt,S.Goswami,K.L.M.Lewis, S.N.Coppersmith,D.W.van der Weide,M.Friesen,R.H.Blick,D.E.Savage,gally,C.Tahan,R.Joynt,M.A.Eriksson,J.O. Chu,J.A.Ott,and P.M.Mooney,Applied Physics Letters84,4047 (2004).11M.R.Sakr,H.W.Jiang,E.Yablonovitch,and E.T.Croke,Applied Physics Letters87,223104(2005).12K. A.Slinker,K.L.M.Lewis, C. C.Haselby,S.Goswami,L. J.Klein,J.O.Chu,S.N.Coppersmith,R.Joynt,R.H.Blick,M. Friesen,and M.A.Eriksson,New Journal of Physics7,246(2005).13L.J.Klein,K.L.M.Lewis,K.A.Slinker,S.Goswami,D.W.van der Weide,R.H.Blick,P.M.Mooney,J.O.Chu,S.N.Coppersmith, M.Friesen,and M.A.Eriksson,Journal of Applied Physics99,023509 (2006).14T.Berer, D.Pachinger,G.Pillwein,M.Muhlberger,H.Lichten-berger,G.Brunthaler,and F.Schaffler,Applied Physics Letters88, 162112(2006).15L.J.Klein, D. E.Savage,and M. A.Eriksson,Applied Physics Letters90,033103(2007).16H.W.Liu,T.Fujisawa,Y.Ono,H.Inokawa, A.Fujiwara,K. Takashina,and Y.Hirayama,arXiv:0707.351317J.Gorman, D.G.Hasko,and D. A.Williams,Physical Review Letters95,090502(2005).18S.J.Angus,A.J.Ferguson,A.S.Dzurak,and R.G.Clark,Nano Letters7,2051(2007).19M.Field, C.G.Smith,M.Pepper, D.A.Ritchie,J.E.F.Frost, G.A.C.Jones,and D.G.Hasko,Physical Review Letters70,1311 (1993).20E.Buks,R.Schuster,M.Heiblum, D.Mahalu,and V.Umansky, Nature391,871(1998).21J.M.Elzerman,R.Hanson,J.S.Greidanus,L.H.W.van Beveren, S.De Franceschi,L.M.K.Vandersypen,S.Tarucha,and L.P. Kouwenhoven,Physical Review B67,161308(2003).22T.Fujisawa,T.Hayashi,R.Tomita,and Y.Hirayama,Science312, 1634(2006).23Y.Hu,H.O.H.Churchill,D.J.Reilly,J.Xiang,C.M.Lieber,and C.M.Marcus,Nature Nanotechnology2,622(2007).24J.M.Elzerman,R.Hanson,L.H.W.van Beveren,B.Witkamp,L. M.K.Vandersypen,and L.P.Kouwenhoven,Nature430,431(2004). 25J.R.Petta,A.C.Johnson,J.M.Taylor,ird,A.Yacoby,M.D.Lukin,C.M.Marcus,M.P.Hanson,and A.C.Gossard,Science 309,2180(2005).26F.H.L.Koppens, C.Buizert,K.J.Tielrooij,I.T.Vink,K. C. Nowack,T.Meunier,L.P.Kouwenhoven,and L.M.K.Vandersypen, Nature442,766(2006).27R.Hanson,L.P.Kouwenhoven,J.R.Petta,S.Tarucha,and L.M. K.Vandersypen,Reviews of Modern Physics79,1217(2007).28N.Shaji,C.B.Simmons,M.Thalakulam,L.J.Klein,H.Qin,H. Luo,D.E.Savage,gally,A.J.Rimberg,R.Joynt,M.Friesen, R.H.Blick,S.N.Coppersmith,and M.A.Eriksson,arXiv:0708.0794。