湖南省2017—2018学年高一数学上学期期末考试试卷(二)
湖南省高一上学期期末数学试题(解析版)

【答案】D 【解析】 【分析】根据命题的否定的定义判断. 【详解】特称命题的否定是全称命题,
因此原命题的否定是: x R, x2 2x 2 0 .
故选:D.
3. 如果函数 y f (x) 在[a, b] 上的图象是连续不断的一条曲线,那么“ f (a) f (b) 0 ”是“函数 y f (x) 在
考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.
6. 已知函数 f x 4x 2x1 4 , x 1,1 ,则函数 y f x 的值域为( ).
A. 3,
B. 3, 4
C.
3,
13 4
D.
13 4
,
4
【答案】B 【解析】 【分析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.
则 m p ,故有 m p n .
故选:B
D. p n m
【点睛】关键点点睛:本题的关键是换底公式的应用,关键是利用换底公式,变形,比较大小.
8.
设a, b
R ,定义运算 a b
a, a b, a
b b
,则函数
f (x) sin x cos x 的最小值为(
)
A. 1
B. 2 2
故选:A
【点睛】本题主要考查了充分不必要条件的判断,属于中档题.
4. 半径为 1,圆心角为 2 弧度的扇形的面积是( )
A. 1
B. 2
C. 3
D. 4
【答案】A
【解析】
【分析】
根据题中条件,由扇形的面积公式,可直接得出结果
【详解】半径为 1,圆心角为 2 弧度的扇形的面积是 S 1 lr 1 r2 1 12 2 1(其中 l 为扇形所对
湖南省益阳市2022-2023学年高一上学期期末数学试题含答案

益阳市2022年下学期期末质量检测高一数学(答案在最后)注意事项:1.本试卷包括试题卷和答题卡两部分;试题卷包括单项选择题、多项选择题、填空题和解答题四部分,共4页,时量120分钟,满分150分.2.答题前,考生务必将自己的姓名、考号等填写在本试题卷和答题卡指定位置.请按答题卡的要求在答题上上卡作答,在本试题卷和草稿纸上作答无效.3.考试结束后,将本试题卷和答题卡一并交回.试题卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}0,1,2,1,2,3A B ==,则A B ⋃=( )A.∅B.{}1,2C.{}0,1,2D.{}0,1,2,32.已知:sin sin ,:p x y q x y ==,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.函数()()e ln 21xf x x =++的定义域为( ) A.(),∞∞-+ B.()0,∞+ C.1,2∞⎛⎫-+ ⎪⎝⎭ D.1,2∞⎛⎫+ ⎪⎝⎭4.化简:1cos2cos 2x x π-=⎛⎫- ⎪⎝⎭( ) A.sin x B.cos x C.2sin x D.2cos x5.已知函数()2,0,1,0,x x x f x x x ⎧->⎪=⎨+≤⎪⎩,则()2f -=( ) A.6 B.3 C.2 D.1-6.下列函数中是奇函数,且在区间()0,∞+上是增函数的是( )A.3y x =B.ln y x =C.e e x x y -=+D.tan y x =7.为了得到函数2sin 6y x π⎛⎫=-⎪⎝⎭的图象,只要把2sin y x =的图象上的所有的点( ) A.向左平移6π个单位长度 B.向右平移6π个单位长度 C.向左平移3π个单位长度 D.向右平移3π个单位长度 8.已知函数()y f x =的部分图象大致如图所示,则其解析式可以是( )A.()()2ln 12x f x x =+-B.()()2ln 14x f x x =+- C.()2e e x x f x x -=+- D.()3e e 2x x f x x -=--二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()2sin f x x =,则( )A.()f x 是R 上的奇函数B.()f x 的最小正周期为2πC.()f x 有最大值1D.()f x 在[]0,π上为增函数10.下列命题正确的是( )A.若a b >,则22a b >B.若33a b >,则a b >C.若0,0a b >>,且6a b +=,则3ab ≤D.若1a >-,则111a a +≥+11.已知231log ,log 23a b c ===,则( ) A.a b > B.b c >C.a c >D.1ac <12.已知函数()()cos32lg 1f x x x x +-+的所有非负零点从小到大依次记为12,,,n x x x ,则( )A.8n =B.9n =C.1211049n x x x π-+++>D.121319n x x x π+++> 三、填空题:本题共4小题,每小题5分,共20分. 13.计算:32916⎛⎫= ⎪⎝⎭__________. 14.若点()3,4P -在角α的终边上,则sin α=__________.15.科学家研究发现,地震时释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+,记里氏9.0级地震、7.0级地震所释放出来的能量分别为12E E 、,则12E E =__________. 16.已知定义在R 上的奇函数()y f x =满足()1y f x =+是R 上的偶函数,且()112f =,则()()()122022f f f +++=__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(1)已知5,cos 13ABC A =,求tan A 的值. (2)求证:1sin2cos sin cos sin x x x x x+=++. 18.(本小题满分12分)设集合{}251,{1}A xx B x x a =-≤=>-∣∣. (1)当2a =时,求A B ⋂;(2)若A B ⋂≠∅,求a 的取值范围.19.(本小题满分12分)已知函数()222,f x x mx x =-+∈R (1)若()0f x >对一切实数x 都成立,求m 的取值范围;(2)已知2m =,请根据函数单调性的定义证明()f x 在(),2∞-上单调递减.20.(本小题满分12分) 已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象与y 轴交于P 点()0,1,若123,,x x x 是方程()10f x -=的三个连续的实根,且122315,88x x x x +=+=. (1)求()f x 的解析式;(2)求()f x 的单调递增区间.21.(本小题满分12分)生物爱好者甲对某一水域的某种生物在自然生长环境下的总量w 进行监测.第一次监测时的总量为0w (单位:吨),此时开始计时,时间用t (单位:月)表示.甲经过一段时间的监测得到一组如下表的数据:为了研究该生物总量与时间的关系,甲通过研究发现可以用以下的两种函数模型来表达w 与t 的变化关系:①0w dw =;①()0log 1(0a w b t w a =++>且1)a ≠.(1)请根据表中提供的前2列数据确定两个函数模型的解析式;(2)根据第3,4列数据,选出其中一个与监测数据差距较小的函数模型;甲发现总量w 由0w 翻一番时经过了2个月,根据你选择的函数模型,若总量w 再翻一番时还需要经过多少个月?(参考数据:lg30.48,lg17 1.23≈≈)22.(本小题满分12分)已知函数()e ex x a f x =-. (1)若函数()f x 是R 上的奇函数,求a 的值;(2)若函数()f x 的在R 上的最小值是,确定a 的值;(3)在(2)的条件下,设()()22e 4e (0x x mf x g x mm -+-=>且1)m ≠,若()g x 在[]0,4上的最小值为1,请确定m 的值. 益阳市2022年下学期普通高中期末考试高一数学参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.B3.C4.C5.B6.A7.B8.A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.AB 10.BD 11.ACD 12.BC三、填空题:本题共4小题,每小题5分,共20分.13.2764 14.45 15.310 16.12四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)解:(1)A 是ABC 的内角,()0,A π∴∈,又5cos 13A =,12sin 13A ∴==, sin 12tan cos 5A A A ∴== (2)证明:221sin2sin cos 2sin cos cos sin cos sin x x x x x x x x x+++=++ 2(sin cos )cos sin x x x x+=+ cos sin x x =+18.(本小题满分12分)解:{}{}2513A xx x x =-≤=≤∣∣ (1)当2a =时,{1}B x x =>-∣, {}3{1}{13}A B x x x x x x ∴⋂=≤⋂>-=-<≤∣∣∣(2),13A B a ⋂≠∅∴-<,解得:2a >-,所以,a 的取值范围是()2,∞-+.19.(本小题满分12分)解:(1)x R ∀∈,有()0f x >,即2220x mx -+>恒成立, 2Δ480,m ∴=-<解得m <<m 的取值范围是( (2)由已知有()242f x x x =-+,任取()12,,2x x ∞∈-,设12x x <,()()()()22121122121242424,f x f x x x x x x x x x -=-+-+-=-+-则()12121212,,2,0,40x x x x x x x x ∞∈-<∴-<+-<,所以()()120f x f x ->,即()()12f x f x >,()f x ∴在(),2∞-上单调递减.20.(本小题满分12分)解:(1)123,,x x x 是方程()10f x -=的三个连续的实根,且122315,88x x x x +=+=,记45,x x x x ==是三根之间从左到右的两条相邻对称轴, 则4515,1616x x ==, ()54122T x x ∴=-=,即24Tπωπ==, 再将点P代入得:1ϕ=,且2πϕ<得4πϕ=,()44f x x ππ⎛⎫∴=+ ⎪⎝⎭. (2)由()242242k x k k Z ππππππ-+≤+≤+∈ 解之得:31162162k k x -+≤≤+ ()f x ∴的单调递增区间为()31,162162k k k Z ⎡⎤-++∈⎢⎥⎣⎦. 21.(本小题满分12分)解:(1)由已知将前2列数据代入解析式①得:0024dw dw =⎧⎪⎨=⎪⎩.解之得:02,dw c =⎧⎪⎨=⎪⎩∴①2w =; 将前2列数据代入解析式①得:0024log 3a w b w =⎧⎨=+⎩,解之得:0322log w b a =⎧⎨=⎩, ①()()332log log 122log 12a w a t t =++=++.(2)当8t =时,模型①426w =+=,模型①32log 926w =+=; 当16t =时,模型①27.66w =+≈,模型①32lg172log 17227.13lg3w =+=+≈; ∴选模型①;当总量w 再翻一番时有:()382log 12t =++,解之得26t =,即再经过26-2=24个月时,总量w 能再翻一番.22.(本小题满分12分)解:(1)()f x 是R 上奇函数,()()0f x f x ∴-+=即0,1x x x x e ae e ae a ---+-=∴=;(2)当0a <时,()e e x x a f x =-≥()ln 2a x -=时取等,即2a =∴=-;当0a ≥时,()e ex x a f x =-在R 上单调递增,没有最小值;综上所述,函数()f x 在R 上的最小值是2a =-.(3)由(2)以及()f x 的单调性可知:当[]0,4x ∈时,()442f x e e -⎡⎤∈+⎣⎦, ()()()()()2224422244,x x ee mf x f x mf x x x f x e eg x m m -+----=++∴==, 记()()()24u x f x mf x =--,则()()u x g x m =在[]0,4上的最小值为1, ∴当01m <<时,()u g u m =单调递减,有()[]()max 00,4u x x =∈,当1m >时,()u g u m =单调递增,有()[]()min 00,4u x x =∈,记()t f x =,则()2444,2u t t mt t e e -⎡⎤=--∈+⎣⎦; ①当01m <<时,()22424m m u t t ⎛⎫=--- ⎪⎝⎭,其中12m <, ()u t ∴在442t e e -⎡⎤∈+⎣⎦上单调递增, ()()()24444max 2240u t e e m e e --∴=+-+-=, 解之得44444212m e ee e --=+->+(舍); ①当1m >时,122m >,(a )当m ≤2m ≤()u t 在442t e e -⎡⎤∈+⎣⎦上单调递增, ()(min 840u t u ∴==--=,解之得m =;(b )当()4422m e e -≥+时,4422m e e -≥+,此时()u t 在442t e e -⎡⎤∈+⎣⎦上单调递减,()()()24444min 2240u t e e m e e --∴=+-+-=, 解之得()44444442222m e e e e e e---=+-<++(舍);(c )当()4422m e e -<+时,4422m e e -⎡⎤∈+⎣⎦,此时()u t 在2m t ⎡⎤∈⎢⎥⎣⎦上单调递减,44,22m t e e -⎡⎤∈+⎢⎥⎣⎦上单调递增, ()22min 40242m m m u t u ⎛⎫∴==--< ⎪⎝⎭(舍);综上所述,m =.。
湖南省衡阳市耒阳市第二中学2022-2023学年高一上学期期末数学试题(含答案解析)

湖南省衡阳市耒阳市第二中学2022-2023学年高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}{}1,0,1,2,13M N x x =-=≤≤,则M N ⋂=A .{}1,0,1,2,3-B .{}1,0,1-C .{}1,2D .{}1,2,32.已知命题:,21x p x x ∃∈≤+N ,则命题p 的否定为()A .,21x x x ∃∈>+N B .,21x x x ∃∈≥+N C .,21x x x ∀∈≤+N D .,21x x x ∀∈>+N 3.若sin 0α>且tan 0α<,则2α的终边在A .第一象限B .第二象限C .第一象限或第三象限D .第三象限或第四象限4.设()35f x ax bx =+-,且()77f -=,则()7f =()A .7-B .7C .17D .17-5.设0.21()a e-=,lg 2b =,6cos π5c =,则()A .a c b <<B .c<a<b C .b<c<aD .c b a<<6.已知函数(12)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩在(,)-∞+∞上单调递减,则实数a 的取值范围是()A .12[,]23B .12()23,C .12(]23,D .12[,237.鱼塘中的鱼出现了某种因寄生虫引起的疾病,养殖户向鱼塘中投放一种灭杀寄生虫的药剂,已知该药剂融于水后每立方的含药量y (毫克)与时间t (小时)之间的关系用如图所示的曲线表示.据进一步测定,每立方的水中含药量不少于0.25毫克时,才能起到灭杀寄生虫的效果,则投放该杀虫剂的有效时间为()A .4小时B .7116小时C .7916小时D .5小时8.已知函数y =f (x )的表达式为f (x )=|log 2x |,若0<m <n 且f (m )=f (n ),则2m +n 的取值范围为()A .()1,+∞B .[)1,+∞C .()+∞D .)∞⎡+⎣二、多选题9.设a 、b 、c 为实数且a b >,则下列不等式一定成立的是()A .11a b>B .ln ln a b>C .()20221a b ->D .()()2211a c b c +>+10.已知函数()tan 3f x x π⎛⎫=+ ⎪⎝⎭,则下列关于()f x 的判断正确的是()A .在区间,6ππ⎛⎫⎪⎝⎭上单调递增B .最小正周期是πC .图象关于直线6x π=成轴对称D .图象关于点,06π⎛⎫⎪⎝⎭成中心对称11.下列结论中正确的有()A .若命题“x ∃∈R ,240x x m ++=”为假命题,则实数m 的取值范围是()4,+∞B .若,,a b c ∈R ,则“22ab cb >”的充要条件是“a c >”C .“1a >”是“11a<”的充分不必要条件D .当0x >时,2xx+的最小值为12.已知函数()223,2211,2x x x f x x x ⎧--+≥-=⎨--<-⎩若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的值可以是()A .8-B .7-C .6-D .5-三、填空题13.已知71cos 85πα⎛⎫-=⎪⎝⎭,则cos 8πα⎛⎫+= ⎪⎝⎭________.14.函数()2lg 243y kx kx =--+的定义域为R ,则实数k 的取值范围是_______________.15.已知x >0,y >0,且x +2y =xy ,若不等式x +2y >m 2+2m 恒成立,则实数m 的取值范围为________.16.已知函数())22log 31xf x e =+++,[]6,6x ∈-,若()f x 的最大值为M ,最小值为m ,则M m +=______.四、解答题17.已知全集U =R ,集合{}2|120A x x x =--≤,{}|132B x a x a =-≤≤-.(1)当3a =时,求A B ⋂;(2)若A B A ⋃=,求实数a 的取值范围.18.已知函数()2sin 24f x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和单调递减区间.(2)若0,2x π⎡⎤∈⎢⎣⎦,求()f x 的值域.19.已知函数()221x f x a =-+为奇函数,R a ∈.(1)求a 的值;(2)若()()2240f x x f x k -++--<恒成立,求实数k 的取值范围.20.漳州市某研学基地,因地制宜划出一片区域,打造成“生态水果特色区”.经调研发现:某水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()2217,02()850251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪-⎩,且单株施用肥料及其它成本总投入为2010x +元.已知这种水果的市场售价大约为10元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(1)求函数()f x 的解析式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?21.已知函数()()()2110x g x a a -=++>的图象恒过定点A ,且点A 又在函数()()f x x a =+的图象上.(1)求实数a 的值并解不等式()f x a <;(2)函数()()22h x g x =+-的图象与直线2y b =有两个不同的交点时,求b 的取值范围.22.已知函数2()21f x ax x =-+.(Ⅰ)当34a =时,求()f x 在区间[1,2]上的值域;(Ⅱ)当12a ≤时,是否存在这样的实数a ,使方程2()log 04x f x -=在区间[1,2]内有且只有一个根?若存在,求出a 的取值范围;若不存在,请说明理由.参考答案:1.C【解析】根据交集的定义,找出集合M,N 的公共元素即可.【详解】因为集合{}{}1,0,1,2,13M N x x =-=≤≤,所以{}1,2M N = ,故选C.【点睛】本题考查集合的表示方法,交集的定义与运算,属于基础题.2.D【分析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题:,21x p x x ∃∈≤+N 的否定为:,21x x x ∀∈>+N .故选:D 3.C【详解】由sin 0α>且tan 0α<,知α为二象限角,即2,2,2k k k Z παπππ⎛⎫∈++∈ ⎪⎝⎭.则,,242k k k Z αππππ⎛⎫∈++∈ ⎪⎝⎭,当k 为偶数时,2α的终边在第一象限;当k 为奇数时,2α的终边在第三象限.故选C.4.D【分析】根据f (x )=ax 3+bx -5,可得g (x )=f (x )+5=ax 3+bx 为奇函数,根据f (-7)=7,求出g (-7)的值,再根据奇函数的性质,求出g (7)的值,进而得到f (7)的值.【详解】令g (x )=f (x )+5=ax 3+bx ,∵g (-x )=a (-x )3+b (-x )=-ax 3-bx =-g (x ),∴g (x )为奇函数,∵f (-7)=7,∴g (-7)=f (-7)+5=12,又∵g (-7)=-g (7),∴g (7)=-12,又∵g (7)=f (7)+5,∴f (7)=-17,故选:D .5.D【分析】由指数函数的性质求得1a >,由对数函数的性质求得(0,1)b ∈,由三角函数的诱导公式,可得0c <,即可得到答案.【详解】由题意,根据指数函数的性质,可得0.20111((e ea ->==,由对数函数的性质,可得lg 2lg101b =<=且0b >,即(0,1)b ∈,由三角函数的诱导公式,可得6cos cos()cos 0555c ππππ==+=-<,所以c b a <<.故选:D.6.C【分析】分段函数在R 上单调递减,即:各段上都单调递减且分界点在左边解析式的函数值大于等于分界点在右边解析式的函数值.【详解】由题意,120120123121a a a a a-<⎧⎪<<⇒<≤⎨⎪-+≥⎩故选:C.7.C【分析】分01t <≤和1t >两种情况令14y ³,解不等式得到t 的范围即可得到杀虫剂的有效时间.【详解】由题图可知34,011,12t t t y t -<≤⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,当01t <≤时,令14y ³,即144t ≥,解得1116t ≤≤;当1t >时,令14y ³,即31124t -⎛⎫⎪≥⎝⎭,解得15t <≤,所以投放该杀虫剂的有效时间为17951616-=小时.故选:C.8.D【分析】根据函数的解析式和,m n 的取值范围可求出mn =1,从而利用基本不等式即可求出2m +n 的取值范围.【详解】因为f (x )=|log 2x |,0<m <n 且f (m )=f (n ),所以22log log m n =,即22log log m n -=,所以mn =1.∴2m +n ≥2m =n ,即2m n =故2m +n 的取值范围为)⎡+∞⎣.故选:D .9.CD【分析】取0a b >>,可判断A 选项;利用对数函数的基本性质可判断B 选项;利用指数函数的单调性可判断C 选项;利用不等式的基本性质可判断D 选项.【详解】对于A ,若0a b >>,则11a b<,所以A 错误;对于B ,函数ln y x =的定义域为()0,∞+,而a 、b 不一定是正数,所以B 错误;对于C ,因为0a b ->,所以()20221a b ->,所以C 正确;对于D ,因为210c +>,所以()()2211a c b c +>+,所以D 正确.故选:CD 10.ABD【分析】逐个选项进行验证,结合正切型函数的性质进行判断可得.【详解】对于选项A ,,6x ππ⎛⎫∈ ⎪⎝⎭时,4,323x πππ⎛⎫+∈ ⎪⎝⎭,此时()tan 3f x x π⎛⎫=+ ⎪⎝⎭为增函数;对于选项B ,()tan 3f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为T ωπ==π;对于选项C ,因为(0)()3f f π==,(0)(3f f π≠,所以图象不是关于直线6x π=成轴对称;对于选项D ,令32k x ππ+=,Z k ∈,得23k x ππ=-,令1k =得6x π=,所以图象关于点,06π⎛⎫⎪⎝⎭成中心对称.故选:ABD.【点睛】本题主要考查正切型函数的性质,熟记性质的求解方法是解决本题的关键.侧重考查逻辑推理的核心素养.11.ACD【分析】转化为x ∀∈R ,240x x m ++≠,计算2440m ∆=-<,可得出m 的范围,即可判断A 项;根据不等式的性质,可判断B 项;求出11a<的等价条件为1a >或a<0,即可判断C 项;根据基本不等式,即可判断D 项.【详解】对于A 项,等价于x ∀∈R ,240x x m ++≠,则2440m ∆=-<,解得4m >,故A 项正确;对于B 项,因为22ab cb >,显然20b >,210b>,所以a c >;因为a c >,若0b =,则22ab cb =,故B 项不正确;对于C 项,111a a a--=,所以11a <等价于10a a -<,即()10a a ->,所以1a >或a<0.显然“1a >”是“1a >或a<0”的充分不必要条件,故C 项正确;对于D 项,当0x >时,2xx+≥2x x=,即x D 项正确.故选:ACD.12.CD【分析】首先根据题意画出函数的图象,得到230x x +=,1(7,3]x ∈--,即可得到答案.【详解】函数()223,2211,2x x x f x x x ⎧--+≥-=⎨--<-⎩的图象图所示:设123x x x <<,因为()()()123f x f x f x ==,所以230x x +=,当2113x --=时,7x =-,2115x --=-时,3x =-,所以1(7,3]x ∈--,即1231(7,3]x x x x ++=∈--.故选:CD13.15-【分析】观察出788ππααπ⎛⎫⎛⎫++-= ⎪⎪⎝⎭⎝⎭,然后利用诱导公式求解即可.【详解】因为71cos 85πα⎛⎫-=⎪⎝⎭,所以771cos cos cos 8885πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=--=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:15-【点睛】本题考查的是三角函数的诱导公式,较简单.14.3,02⎛⎤- ⎥⎝⎦【分析】根据题意,将问题转化为22430kx kx --+>恒成立问题,结合二次函数的性质即可得解.【详解】由题意可知,22430kx kx --+>恒成立,当0k =时,30>恒成立,当0k ≠时,20Δ16240k k k <⎧⎨=+<⎩,解得302k -<<,综上:302k -<≤,故k 的取值范围为3,02⎛⎤- ⎥⎝⎦.故答案为:3,02⎛⎤- ⎥⎝⎦.15.()4,2-.【分析】利用基本不等式求出x +2y 的最小值,进而得出m 的范围.【详解】∵x >0,y >0,x +2y =xy ,∴21x y+=1,∴2142(2)()4428x y x y x y x y y x +=++=++≥+,当且仅当4x yy x=,即4,2x y ==时等号成立,∴2x y +的最小值为8,由228m m +<解得42m -<<,∴实数m 的取值范围是()4,2-故答案为:()4,2-.16.8【分析】先对()f x 变形得())21log 41xxe f x e -=+++,再构造函数)21()log 1xxe g x x e -=++,判断()g x 为奇函数,从而由奇函数的性质可得答案【详解】由题意可得()))2221log 3log 411xx xe f x e e -=++=++++,令)21()log 1xxe g x e-=++,则()()4f x g x =+,[]6,6x ∈-因为)21()log 1xxe g x e ----=++21log +1x xe e -=121log )1xxe e --=-+21[log )]()1xxe g x e -=-+=-+所以)21()log 1xxe g x e ----=++为奇函数,所以()g x 在[6,6]-最大值与最小值之和为0,所以8M m +=.故答案为:8【点睛】关键点点睛:此题考查函数奇偶性的应用,解决本题的关键是将函数()f x 变形,得到())21log 41xxe f x e -=+++后,判断函数)21()log 1xxe g x x e -=++为奇函数,考查计算能力,属于中档题17.(1){}|24A B x x =≤≤ (2)(],2-∞【分析】(1)先解二次不等式化简集合A ,再根据集合的交集运算即可求得答案;(2)根据题意得到B A ⊆,分类讨论B =∅和B ≠∅两种情况,列出关于a 的不等式组,解之即可.【详解】(1)由2120x x --≤可得34x -≤≤,所以{|34}A x x =-≤≤,又当3a =时,{|27}B x x =≤≤,所以{|24}A B x x ⋂=≤≤.(2)因为A B A ⋃=,所以B A ⊆,当B =∅时,321a a -<-,可得12a <;当B ≠∅时,32113324a a a a -≥-⎧⎪-≥-⎨⎪-≤⎩,可得122a ≤≤;综上:2a ≤,即a 的取值范围为(],2-∞.18.(1)T π=;37,88k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(2)⎡⎤⎣⎦【解析】(1)由2T πω=得到最小正周期,由3222242k x k πππππ+≤-≤+,k ∈Z ,得到()f x 的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎣⎦得到32444x πππ-≤-≤,从而得到()f x 的值域.【详解】(1)函数()2sin 24f x x π⎛⎫=- ⎪⎝⎭,最小正周期为22T ππ==,由3222242k x k πππππ+≤-≤+,k ∈Z ,得37()88k x k k Z ππππ+≤≤+∈,k ∈Z ,所以()f x 的单调递减区间为37,88k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(2)因为0,2x π⎡⎤∈⎢⎣⎦,所以32444x πππ-≤-≤,所以sin 214x π⎛⎫-≤ ⎪⎝⎭,()2sin 24f x x π⎛⎫⎡⎤=-∈ ⎪⎣⎦⎝⎭,即()f x的值域为⎡⎤⎣⎦.【点睛】本题考查求正弦型函数的周期,单调区间和值域,属于简单题.19.(1)1a =(2)()2,+∞【分析】(1)根据()00f =得1a =,再检验即可;(2)先证明函数()f x 在R 上是增函数,再根据奇偶性得224x x k -+<恒成立,再结合二次函数性质求解即可.【详解】(1)解:∵函数()f x 是定义在R 上的奇函数,∴()00f =,即02021a -=+,解得1a =;∴()22112121x x x f x -=-=++,∴()()21221112x xx x f x f x ----===-++-,满足奇函数定义,∴1a =(2)解:设12,x x 是R 上的任意两个值,且12x x <,∴()()121222112121⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭x x f x f x ()()()1221122222221212121x x x x x x -=-=++++,∵12x x <,∴1222x x <,1211x +>,2211x +>,12220x x -<,∴()()120f x f x -<,即()()12f x f x <,∴()f x 在R 上是增函数;∵()()2240f x x f x k -++--<∴()()224f x x f x k -+<---,∵()f x 为奇函数,∴()()224f x x f x k -+<+,∵()f x 为R 上单调递增函数,∴224x x x k -+<+,即224x x k -+<恒成立,∴()2max 24x x k -+<,∵()2224212x x x -+=--+,∴当1x =时,224x x -+取得最大值为2,∴2k >,即实数k 的取值范围为()2,+∞.20.(1)22020330,02()8049020,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪-⎩;(2)3千克,最大利润是390元.【解析】(1)根据题意可以直接得到利润表达式;(2)根据定义域求每段函数的利润最大值比较后可得答案.【详解】(1)由已知()()10()2010f x W x x =-+,∴()22017(2010),02()80500(2010),251x x x f x x x x ⎧+-+≤≤⎪=⎨--+<≤⎪-⎩,∴22020330,02()8049020,251x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪-⎩.(2)由(1)得当02x ≤≤时,221()2020330203252f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,∴当02x ≤≤时,()()2370f x f ≤=;当25x <≤时,8080()4902049020(1)2011f x x x x x ⎡⎤=--=-+-+⎢⎥--⎣⎦8047020(1)1x x ⎡⎤=-+-⎢⎥-⎣⎦470390≤-=,当且仅当()802011x x =--时,即3x =时等号成立,∵370390<,∴当3x =时,max ()390f x =,即当施用肥料为3千克时,该水果树的单株利润最大,最大利润是390元.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.21.(1)1a =,不等式的解集为()1,0-(2)10,2⎛⎫ ⎪⎝⎭【分析】(1)由指数函数的性质可求得定点,再将定点代入())f x x a =+即可求得a ,再解不等式()f x a <即可求得结果.(2)由(1)求得()g x ,再求得()h x 的解析式,画出图像,由图像可得b 的取值范围.【详解】(1)函数()g x 的图象恒过定点A ,当20x -=时,即2,2x y ==,∴A 点的坐标为()2,2,又A 点在()f x 上,∴()()222f a =+=,解得1a =,()f x a <,∴()10x +<=,∴011x <+<,∴10x -<<,∴不等式的解集为()1,0-;(2)由(1)知()()221x g x g x -==+,∴()()22212x h x g x b =+-=-=,分别画出()y h x =与2y b =的图象,如图所示:由图象可知:021b <<,故b 的取值范围为10,2⎛⎫ ⎪⎝⎭.22.(Ⅰ)1,03⎡⎤-⎢⎥⎣⎦;(Ⅱ)存在,102a <≤.【解析】(Ⅰ)先把34a =代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数2()log 4x y f x =-在区间[]1,2内有且只有一个零点,转化为函数2()log h x x =和2()23g x ax x =-+的图象在[]1,2内有唯一交点,根据()g x 中a 是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当34a =时,23()214f x x x =-+,对称轴为:43x =,所以函数()f x 在区间41,3⎡⎤⎢⎥⎣⎦单调递减,在区间4,23⎛⎤ ⎥⎝⎦单调递增;则()()()min max 41,2033f x f f x f ⎛⎫==-== ⎪⎝⎭,所以()f x 在区间[1,2]上的值域为1,03⎡⎤-⎢⎥⎣⎦;(Ⅱ)由222()log 23log 4x y f x ax x x =-=-+-,令0y =,可得2223log 0ax x x -+-=,即2223log ax x x -+=,令2()23g x ax x =-+,2()log h x x =,[]1,2x ∈,函数2()log 4x y f x =-在区间[]1,2内有且只有一个零点,等价于两个函数()g x 与()h x 的图象在[]1,2内有唯一交点;①当0a =时,()23g x x =-+在[]1,2上递减,2()log h x x =在[]1,2上递增,而()()()()1101,2112g h g h =>==-<=,所以函数()g x 与()h x 的图象在[]1,2内有唯一交点.②当a<0时,()g x 图象开口向下,对称轴为10x a=<,()g x 在[]1,2上递减,2()log h x x =在[]1,2上递增,()g x 与()h x 的图象在[]1,2内有唯一交点,当且仅当(1)(1)(2)(2)g h g h ≥⎧⎨≤⎩,即10411a a +≥⎧⎨-≤⎩,解得112a -≤≤,所以10a -≤<.③当102a <≤时,()g x 图象开口向上,对称轴为12x a =≥,()g x 在[]1,2上递减,2()log h x x =在[]1,2上递增,()g x 与()h x 的图象在[]1,2内有唯一交点,(1)(1)(2)(2)g h g h ≥⎧⎨≤⎩,即10411a a +≥⎧⎨-≤⎩,解得112a -≤≤,所以102a <≤.综上,存在实数11,2a ⎡⎤∈-⎢⎥⎣⎦,使函数2()log 4x y f x =-于在区间[]1,2内有且只有一个点.【点睛】关键点睛:本题主要考查了求一元二次函数的值域问题,以及函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数图象的交点个数问题,结合函数的性质求解是解答的关键,着重考查转化思想,以及推理与运算能力.。
【全国百强校】湖南省2017-2018学年高一上学期期末考试数学试题

2017-2018学年湖南省高一(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.设集合,则=A. B. C. D.2.已知向量 ,,若向量⊥,则实数的值为()A. 1B. 2C. 3D. -33.如图,边长为2的正方形ABCD中,P,Q分别是边BC,CD的中点,若=x+y,则x=()A. 2B.C.D.4.函数f(x)=ax3+2bx+a-b是奇函数,且其定义域为[3a-4,a],则f(a)=()A. 4B. 3C. 2D. 15.已知,则tanα=()A. 2B. 3C.D.6.在函数y=sin|x|、y=sin(x+)、y=cos(2x+)、y=|sin2-cos2|中,最小正周期为π的函数的个数为()A. 1B. 2C. 3D. 47.设是方程的两个根,则的值为()A. -3B. -1C. 1D. 38.设偶函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,|KL|=1,则f()的值为()A. B. C. D.9.点O在△ABC所在平面内,给出下列关系式:(1);(2);(3);(4).则点O依次为△ABC的()A. 内心、外心、重心、垂心 B. 重心、外心、内心、垂心C. 重心、垂心、内心、外心D. 外心、内心、垂心、重心10.当0<x≤时,4x<log a x,则a的取值范围是A. (0,)B. (,1)C. (1,)D. (,2)11.已知为单位向量,,则的最大值为()A. 6B. 5C. 4D. 312.定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有<0,且函数y=f(x+1)的图象关于点(-1,0)成中心对称,若当1≤s≤4时,s,t满足不等式-f()≥f(t)≥f(s),则的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)13.函数y=tan(+),x∈(0,]的值域是______.14.已知向量=(2,6),=(-1,λ),若,则λ=______.15.已知函数f(x)=的图象上关于y轴对称的点恰好有4对,则实数a=______.16.不超过实数x的最大整数称为x整数部分,记作[x].已知f(x)=cos([x]-x),给出下列结论:①f(x)是偶函数;②f(x)是周期函数,且最小正周期为π;③f(x)的单调递减区间为[k,k+1)(k∈Z);④f(x)的值域为(cos1,1].其中正确命题的序号是______(填上所以正确答案的序号).三、解答题(本大题共6小题,共52.0分)17.已知全集U=R,集合A={–1≤x<3},B={x|2x+2≥x+4},(1)求A∩B;(2)若C={x|2x–a>0},且B∪C=B,求实数a的取值范围.18.已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求的解析式及的值;(2) 若锐角满足,求的值.19.已知函数,.(1)设是函数图象的一条对称轴,求的值.(2)求函数的单调递增区间.20.已知三点的坐标分别为其中.(1)若求角的值;(2)若求的值.21.已知非零向量,满足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且仅有唯一一个元素.(1)求向量,的夹角θ;(2)若关于t的不等式|-t|<|-m|的解集为空集,求实数m的值.22.已知函数f(x)=log a(a>0且a≠1)是奇函数,(1)求实数m的值;(2)若a=,并且对区间[3,4]上的每一个x的值,不等式f(x)>()x+t恒成立,求实数t的取值范围.(3)当x∈(r,a-2)时,函数f(x)的值域是(1,+∞),求实数a与r的值.。
湖南省益阳市2017-2018学年高一上学期期末考试数学试题

益阳市2017年下学期期末统考试卷高一数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关于集合的关系式正确的是( )A .0{0}∈B .{0}∅=C .0=∅D .{2,3}{3,2}≠ 2.若直线l 的倾斜角为45,且经过点()2,0,则直线l 的方程是( )A .2y x =+B .2y x =-C .y =D .y -3.已知函数()22,(0)2,(0)x x f x x x x ≤⎧=⎨->⎩,则[(3)]f f 的值是( ) A .-24 B .-15 C .-6 D .12 4.已知三个变量123,,y y y 随变量x 变化数据如下表:则反映123,,y y y 随x 变化情况拟合较好的一组函数模型是( ) A .21232,2,log x y x y y x === B .212322,,log x y y x y x === C.21223log ,,2x y x y x y === D .212232,log ,x y y x y x === 5.设3log 2a =,21log 3b =,32log 2c =,则a 、b 、c 的大小关系是( ) A .a b c << B .b a c << C.b c a << D .c a b <<6.已知空间直角坐标系Oxyz 中,点()1,1,3A 关于z 轴的对称点为A ',则A '点的坐标为( ) A .()1,1,3--- B .()1,1,3-- C.()1,1,3-- D .()1,1,3-7.函数()f x 的大致图像如图所示,则它的解析式是( )A .()1()12x f x =- B .()()2log 1f x x =+C.()2f x x =D .()f x 8.下列命题错误的是( ) A .平行于同一直线的两个平面平行 B .平行于同一平面的两个平面平行C.一个平面同时与两个平行平面相交,则它们的交线平行 D .一条直线与两个平行平面中的一个相交,则它必与另一个相交9.如图,在正方体1111ABCD A B C D -中,1AC 与平面1AB 所成角的余弦值是( )A D 10.某几何体的三视图如图所示,则该几何体的体积是( )A .203B .8 C.20 D .24 11.若曲线222:24430C x y ax ay a +--+-=上所有的点都在x 轴上方,则a 的取值范围是( ) A .(),1-∞- B .()(),11,-∞-⋃+∞ C.()1,+∞D .()0,112.已知函数()f x 是R 上的奇函数,且对任意实数a 、b 当0a b +≠时,都有()()0f a f b a b+>+.如果存在实数[]1,3x ∈,使得不等式2()()0f x c f x c -+->成立,则实数c 的取值范围是( ) A .()3,2- B .[]3,2- C.()2,1- D .[]2,1-二、填空题(每题5分,满分20分,将答案填在答题纸上)13.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为 .14.方程147220x x ++⋅-=的解为 .15.已知过()3,4P 点的直线l 与x 轴,y 轴在第二象限围成的三角形的面积为3,则直线l 的方程为 .16.已知函数()()f x x R ∈满足()()2f x f x -=-,若函数11y x =-与()y f x =图像的交点为11(,)x y ,22(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,则11223344x y x y x y x y +++++++= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{|36}A x x =-≤≤,{|4}B x x =<,{|523}C x m x m =-<<+. (1)求A B ⋂;(2)若A C ⊆,求实数m 的取值范围.18.已知ABC ∆的三个顶点是()()()1,1,1,3,3,2A B C --,直线l 过C 点且与AB 边所在直线平行. (1)求直线l 的方程; (2)求ABC ∆的面积.19.已知关于x 的函数()225f x x ax =-+. (1)若函数()f x 是偶函数,求实数a 的值;(2)当1a >时,对任意[]1,t a ∈,记()f t 的最小值为n ,()f t 的最大值为m ,且3n m +=,求实数a 的值.20.如图,在四棱锥P ABCD -中,4AD =,2BC CD ==,PA PC PD ==,//AD BC 且AD DC ⊥,,O M 分别为,AC PA 的中点.(1)求证://BM 平面PCD ; (2)求证:PO ⊥平面ACD ;(3)若二面角P CD A --的大小为60,求四棱锥P ABCD -的体积.21.已知函数()2211log 211x x xf x x-+=++-. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由; (3)若函数()23(1)()2xg x f x f =-+,求函数()g x 的零点. 22.已知点()2,1P 是圆22:8O x y +=内一点,直线:4l y kx =-. (1)若圆O 的弦AB 恰好被点()2,1P 平分,求弦AB 所在直线的方程;(2)若过点()2,1P 作圆O 的两条互相垂直的弦,EF GH ,求四边形EGFH 的面积的最大值; (3)若12k =,Q 是l 上的动点,过Q 作圆O 的两条切线,切点分别为,C D .证明:直线CD 过定点.试卷答案一、选择题1-5:ABCBB 6-10:CDADC 11、12:CA二、填空题13.3π 14.2x =- 15.2360x y -+= 16.4三、解答题17.解:(1){|36}A B x x ⋂=-≤≤⋂{|4}{|34}x x x x <=-≤< (2)因为{|36}A x x =-≤<,{|523}C x m x m =-<<+,所以当A C ⊆时,有53236m m -<-⎧⎨+>⎩,解得322m <<,所以实数m 的取值范围是322m <<. 18.解:(1)由题意可知:直线AB 的斜率为:31211k +==---, ∵//l AB ,直线l 的斜率为-2,∴直线l 的方程为:()223y x -=--,即280x y +-=.(2)∵||AB =点C 到直线AB 的距离d 等于点A 到直线l 的距离,∴d ==,∴ABC ∆的面积11||722ABC S AB d ∆=⋅=⨯=. 19.解:(1)因为函数()f x 是偶函数,所以()()f x f x -=,即222525x ax x ax ++=-+,所以0a =. (2)当1a >时,函数()225f x x ax =-+在[]1,a 上单调递减, 所以()22255n f a a a a a ==-⋅+=-,()112562m f a a ==-+=-, 又3n m +=,所以25623a a -+-=,即2280a a +-=, 解得2,4a a ==-(舍),所以2a =.20.解:(1)取PD 的中点N ,连接,MN CN , ∵M 为PA 中点,∴1//2MN AD ,由已知1//2BC AD , ∴//MN BC ,∴四边形MNCB 为平行四边形,∴//BM CN .又BM ⊄平面PCD ,CN ⊂平面PCD ,∴//BM 平面PCD .(2)连接OD ,∵AD CD ⊥,∴OD OA OC ==,又PA PC PD ==,∴POC POD ∆∆≌ 又PA PC =,O 为AC 中点,∴PO AC ⊥,∴PO OD ⊥,∵AC OD O ⋂=,∴PO ⊥平面ACD . (3)取CD 的中点F ,连接,OF PF .∴//OF AD ,122OF AD ==, ∵CD AD ⊥,∴OF CD ⊥,又PC PD =,F 为CD 的中点, ∴PF CD ⊥,故PFO ∠为二面角P CD A --的平面角. ∴60PFO ∠=,∵PO ⊥平面ABCD,∴PO =,由已知,四边形ABCD 为直角梯形,∴1()62ABCD S AD BC CD =+⋅=梯形, ∴13P ABCD ABCD V S PO -=⋅梯形163=⨯⨯=21.解:(1)要使函数()f x 有意义,x 必须满足101xx+>-,∴11x -<<, 因此,()f x 的定义域为()1,1-. (2)函数()f x 为奇函数.∵()f x 的定义域为()1,1-,对()1,1-内的任意x 有:2211()log 211x x x f x x -----=+++()2121log 121x x xf x x-+=-=-+-, 所以,()f x 为奇函数.(3)函数()g x 的零点即方程()0g x =的根.即23(1)()02xf x f -+=的根, 又()f x 为奇函数,所以223()(1)(1)2xf f x f x =--=-. 任取()12,1,1x x ∈-,且12x x <,12()()f x f x -=11121121(log )211x x x x +-++-22222121(log )211x x x x +--++-12122(22)(21)(21)x x x x -=+++1221211log ()11x x x x +-⋅-+ ∵12x x <,∴1222x x <,∴12122(22)0(21)(21)x x x x -<++ ∵()12,1,1x x ∈-且12x x <,∴1212(1)(1)(1)(1)x x x x -+-+-212()0x x =->,∴1212110111x x x x +-<⋅<-+,∴1221211log ()011x x x x +-⋅<-+, ∴12()()0f x f x -<,即12()()f x f x <,∴()f x 在定义域()1,1-上为增函数,∴由223()(1)(1)2x f f x f x =--=-得2312x x =-解得2x =或12x =-, 验证当2x =时,211x -<-不符合题意,当12x =-时,符合题意,所以函数()g x 的零点为12x =-.22.解:(1)由题意知AB OP ⊥,∴1AB OP k k ⋅=-,∵12OP k =,∴2AB k =-,因此弦AB 所在直线方程为()122y x -=--,即250x y +-=.(2)设点O 到直线EF 、GH 的距离分别为12,d d ,则22212||5d d OP +==,||EF ==||GH =∴1||||2EGFH S EF GH =⋅=四边形,=11,当12d d =时取等号. 所以四边形EGFH 面积的最大值为11.(3)由题意可知C 、D 两点均在以OQ 为直径的圆上,设(,4)2tQ t -, 则该圆的方程为1()(4)02x x t y y t -+-+=,即:221(4)02x tx y t y -+--=.又C 、D 在圆22:8O x y +=上,所以直线CD 的方程为1(4)802tx t y +--=,即1()4(2)02t x y y +-+=, 由10220x y y ⎧+=⎪⎨⎪+=⎩得12x y =⎧⎨=-⎩,所以直线CD 过定点()1,2-.。
湖南省湘西州2021-2022学年高一上学期期末数学试题含解析

所以 的定义域为 ,关于原点对称.
又因为 ,
所以函数 是奇函数.
因为 在 上单调递增, 在 上单调递减,
所以函数 在 上单调递增.
(2)对任意 ,存在 ,使得不等式 成立,
等价于 ,
由(1)知 在 上单调递增,则 在 上单调递增,
,
函数 的对称轴为 ,
当 时, ,则 ,
(2)利用平移变换,得到 ,再令 求解;
【小问1详解】
解:数据补充完整如下表:
0
0
5
0
-5
0
函数f(x)的解析式为; .
【小问2详解】
将 图象上所有点向左平移 个单位长度,
得到
由 ,可解得:
当 时,可得:
从而可得离原点O最近的对称中心为:
18.已知函数 .
(1)当 时,求关于 的不等式 的解集;
(2)求关于 的不等式 的解集;
对于选项D,指数式 化为对数式为 ,故D正确.
故选:ACD.
9.已知实数 , 满足等式 ,下列式子可以成立的是()
A. B. C. D.
【答案】ABD
【解析】
【分析】分别画出 , 的图象,结合图象即可判断
【详解】分别画出 , 的图象,如示意图:
实数 , 满足等式 ,
可得: ,或 ,或 .
故选:ABD.
17.某同学将“五点法”画函数 在某一个时期内的图象时,列表并填入部分数据,如下表:
(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数 的解析式;
(2)将 图象上所有点向左平移 个单位长度,得到 图象,求 的图象离原点O最近的对称中心.
【答案】(1)表格见解析,
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2022-2023学年湖南省衡阳市雁峰区名校高一年级上册学期期末考试数学试卷【含答案】
衡阳市雁峰区名校2022-2023学年高一上学期期末考试数 学考试时间:120分钟 试卷满分:150分一、单选题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.与角终边相同的角是()20-︒A .B .C .D .300-︒280-︒320︒340︒2.不等式的解集是()2320x x --≥A .B .C .D .213x x ⎧⎫-≤≤⎨⎬⎩⎭213x x ⎧⎫-≤≤⎨⎬⎩⎭213x x x ⎧⎫≤-≥⎨⎬⎩⎭或213x x x ⎧⎫≤-≥⎨⎬⎩⎭或3.“”是“”的()1x >11x <A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数的零点所在的一个区间是()()152xf x x ⎛⎫=-- ⎪⎝⎭A .B .C .D .()3,2--()2,1--()1,0-()0,15.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大()xf x a =()f x 为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象()g x ()g x 2恰好与函数的图象重合,则a 的值是()()f xA .B .CD .32236.函数(,)的部分图象如图所示,则 ()()()2sin f x x ωϕ=+0ω>2πϕ<()f π=A .B .CD 7.已知函数在上单调递减,则实数的取值范围1()ax f x x a -=-(2,)+∞a 是()A .,,B .(-∞1)(1-⋃)∞+(1,1)-C .,,D .,,(-∞1)(1-⋃2](-∞1)(1-⋃2)8.已知,,,则a ,b ,c 的大小关系为()2022a=2223b =c a b =A .B .C .D .c a b >>b a c >>a c b >>a b c>>二、多选题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列说法中正确的是( )A .若a >b ,则B .若-2<a <3,1<b <2,则-3<a -b <12211a bc c >++C .若a >b >0,m >0,则D .若a >b ,c >d ,则ac >bd m m a b <10.下列各式中,值为的是( )12A .B .C .D5πsin62sin 45122-21011.已知函数,,则( )()1212xxf x -=+())lg g x x =-A .函数为偶函数B .函数为奇函数()f x ()g x C .函数在区间上的最大值与最小值之和为0()()()F x f x g x =+[]1,1-D .设,则的解集为()()()F x f x g x =+()()210F a F a +--<()1,+∞12.已知函数,则( )()sin 24f x x π⎛⎫=+ ⎪⎝⎭A .函数的最小正周期为|()|y f x =πB .直线是图象的一条对称轴58x π=()y f x =C.是图象的一个对称中心3(,0)8π()y f x =D .若时,在区间上单调,则的取值范围是或0ω>()f x ω,2ππ⎡⎤⎢⎥⎣⎦ω10,8⎛⎤⎥⎝⎦15,48⎡⎤⎢⎥⎣⎦3、填空题(本大题共4小题,每小题5分,共20分. 把答案填在答题卡中的横线上)13.若函数的最小正周期是,则的取值可以是______.(写()()tan()03f x x πωω=+≠2πω出一个即可).14.已知函数,若,则_____________.()sin 1f x a x bx =++()12f -=()1f =15. 已知:{} ,max , .a ab a b b a b ≥⎧=⎨<⎩设函数,若关于的方程有三个不相等的实数解,(){}1max 2,42x f x x -=--x ()f x t=则实数的取值范围是.16.设函数,若对于任意实数,在区间上()()()2sin 10f x x ωϕω=+->ϕ()f x 3,44ππ⎡⎤⎢⎥⎣⎦至少有2个零点,至多有3个零点,则的取值范围是ω四、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (α)=.2sin ()cos(2)tan()sin()tan(3)παπαπαπααπ-⋅-⋅-+-+⋅-+(1)化简f (α);(2)若α=,求f (α)的值.313π-18.(本小题满分12分)已知集合A ={x ∈R |≥},集合B ={x ∈R |(x ﹣1)(x ﹣a )<0}.a ∈R 22log x 2log 2x ()(1)求集合A ;(2)若B ⊆∁R A ,求a 的取值范围.19.(本小题满分12分)已知函数,,且该函数的图象经过点,.()bf x ax x =+,a b R ∈()1,0-32,2⎛⎫ ⎪⎝⎭(1)求a ,b 的值;(2)已知直线与x 轴交于点T ,且与函数的图像只有一个公共点.求()1y kx m k =+≠()f x 的最大值.(其中O 为坐标原点)OT20.(本小题满分12分)比亚迪是我国乃至全世界新能源电动车的排头兵,新能源电动车汽车主要采用电能作为动力来源,目前比较常见的主要有两种:混合动力汽车、纯电动汽车.有关部门在国道上对比亚迪某型号纯电动汽车进行测试,国道限速.经数次测试,得到该纯电动汽车60km/h 每小时耗电量(单位:)与速度(单位:)的数据如下表所示:Q wh x km/hx0104060Q142044806720为了描述该纯电动汽车国道上行驶时每小时耗电量与速度的关系,现有以下三种函数Q x 模型供选择:①;②;.3211()250Q x x x cx =-+22()13xQ x ⎛⎫=- ⎪⎝⎭3()300log aQ x x b =+(1)当时,请选出你认为最符合表格中所列数据的函数模型(不需要说明理由),060x ≤≤并求出相应的函数表达式;(2)现有一辆同型号纯电动汽车从衡阳行驶到长沙,其中,国道上行驶,高速上行驶50km .假设该电动汽车在国道和高速上均做匀速运动,国道上每小时的耗电量与速度300km Q 的关系满足(1)中的函数表达式;高速路上车速(单位:)满足,x x km/h [80,120]x ∈且每小时耗电量(单位:)与速度(单位:)的关系满足N wh x km/h ).则当国道和高速上的车速分别为多少时,该车辆的2()210200(80120)N x x x x =-+≤≤总耗电量最少,最少总耗电量为多少?21.(本小题满分12分)已知,.sin cos x x t +=t ⎡∈⎣(1)当且是第四象限角时,求的值;12t =x 33sin cos x x -(2)若关于的方程有实数根,求的取值范围.(x ()sin cos sin cos 1x x a x x -++=a )()3322()a b a b a ab b -=-++22.(本小题满分12分)已知函数的定义域为,若存在实数,使得对于任意都存在满足()f x D a 1x D ∈2x D ∈,则称函数为“自均值函数”,其中称为的“自均值数”.()122x f x a +=()f x a ()f x (1)判断函数是否为“自均值函数”,并说明理由:()2x f x =(2)若函数,为“自均值函数”,求的取值范围;()sin()(0)6g x x πωω=+>[0,1]x ∈ω(3)若函数,有且仅有1个“自均值数”,求实数的值.2()23h x tx x =++[0,2]x ∈衡阳市雁峰区名校2022-2023学年高一上学期期末考试数 学参考答案:1.D【分析】由终边相同的角的性质即可求解.【详解】因为与角终边相同的角是,,20-︒20360k -︒+︒Z k ∈当时,这个角为,1k =340︒只有选项D 满足,其他选项不满足.Z k ∈故选:D.2.C【分析】利用一元二次不等式的解法求解即可.【详解】解:232(32)(1)0x x x x --=+-≥解得:.213x x ≤-≥或故选:C.3.A【分析】首先解分式不等式,再根据充分条件、必要条件的定义判断即可.【详解】解:因为,所以,,,11x <10xx -<(1)0x x ∴-<(1)0x x ∴->或,0x ∴<1x >当时,或一定成立,所以“”是“”的充分条件;1x >0x <1x >1x >11x <当或时,不一定成立,所以“”是“”的不必要条件.0x <1x >1x >1x >11x <所以“”是“”的充分不必要条件.1x >11x <故选:A 4.B【分析】由零点的存在性定理求解即可【详解】∵,,()360f -=>()210f -=>,,()120f -=-<()040f =-<根据零点的存在性定理知,函数的零点所在区间为.()f x ()2,1--故选:B 5.D【分析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的a 等式,进而可求得实数的值.a 【详解】由题意可得,再将的图象向右平移个单位长度,得到函数()3xg x a =()g x 2,()23x f x a -=又因为,所以,,整理可得,()xf x a =23x x a a -=23a =因为且,解得0a >1a ≠a =故选:D.6.A【解析】由函数的部分图像得到函数的最小正周期,求出,代入求出()f x ()f x ω5,212π⎛⎫⎪⎝⎭值,则函数的解析式可求,取可得的值.ϕ()f x x π=()f π【详解】由图像可得函数的最小正周期为,则.()f x 521212T πππ⎡⎤⎛⎫=⨯--= ⎪⎢⎥⎝⎭⎣⎦22T πω==又,则,5552sin 22sin 212126f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5sin 16⎛⎫+= ⎪⎝⎭πϕ则,,则,,5262k ϕπ=π+π+Z k ∈23k πϕπ=-Z k ∈,则,,则,22ππϕ-<<0k =3πϕ=-()2sin 23f x x π⎛⎫=- ⎪⎝⎭()2sin 22sin 33f ππππ⎛⎫∴=-=-= ⎪⎝⎭故选:A.【点睛】方法点睛:根据三角函数的部分图像()()sin 0,0,2f x A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭求函数解析式的方法:(1)求、,;A ()()max min:2f x f x b A -=()()max min2f x f x b +=(2)求出函数的最小正周期,进而得出;T 2T πω=(3)取特殊点代入函数可求得的值.ϕ7.C【分析】先用分离常数法得到,由单调性列不等式组,求出实数的取值范21()a f x a x a -=+-a 围.【详解】解:根据题意,函数,221()11()ax a x a a a f x ax a x a x a --+--===+---若在区间上单调递减,必有,()f x (2,)+∞2102a a ⎧->⎨⎩ 解可得:或,即的取值范围为,,,1a <-12a < a (-∞1)(1-⋃2]故选:C .8.D【详解】分别对,,两边取对数,得,,2022a =2223b =c a b =20log 22a =22log 23b =.log a c b =.()22022lg 22lg 20lg 23lg 22lg 23log 22log 23lg 20lg 22lg 20lg 22a b -⋅-=-=-=⋅由基本不等式,得:,()222222lg 20lg 23lg 460lg 484lg 22lg 20lg 23lg 222222⎛⎫+⎛⎫⎛⎫⎛⎫⋅<=<==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以,()2lg 22lg 20lg 230-⋅>即,所以.0a b ->1a b >>又,所以.log log 1a a c b a =<=a b c >>故选:D .9.AC【分析】利用不等式的性质对各选项逐一分析并判断作答.【详解】对于A ,因c 2+1>0,于是有>0,而a >b ,由不等式性质得,A 211c +2211a bc c >++正确;对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,B 错误;对于C ,因为a >b >0,所以,又因为m >0,所以,C 正确;11a b <m m a b <对于D ,且,而,即ac >bd 不一定成立,D 错误.12->-23->-(1)(2)(2)(3)-⋅-<--故选:AC10.ABD【分析】利用诱导公式、指数幂的运算以及特殊角的三角函数值计算各选项中代数式的值,可得出合适的选项.【详解】对于A 选项,;5πππ1sinsin πsin 6662⎛⎫=-==⎪⎝⎭对于B 选项,;221sin 452==对于C 选项,122-==对于D.()121018030302=+=== 故选:ABD.11.BCD【分析】根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案【详解】对于A :,定义域为,,()1212x x f x -=+R ()()12121212x xx xf x f x -----==-=-++则为奇函数,故A 错误;()f x 对于B :,定义域为,())lgg x x=R ,()()))()lglgg x x x g x -=-=-=-则为奇函数,故B 正确;()g x 对于C :,,都为奇函数,()()()F x f x g x =+()f x ()g x 则为奇函数,()()()F x f x g x =+在区间上的最大值与最小值互为相反数,()()()F x f x g x =+[]1,1-必有在区间上的最大值与最小值之和为0,故C 正确;()F x []1,1-对于D :,则在上为减函数,()1221221122121x x x x xf x ⎛⎫-+-==-=- ⎪+++⎝⎭()f x R在上为减函数,())lg g x x ==()g x R 则在上为减函数,()()()F x f x g x =+R 若即,()()210F a F a +--<()()21F a F a <+则必有,解得,21a a >+1a >即的解集为,故D 正确;()()210F a F a +--<()1,+∞故选:BCD 12.BCD【详解】因为函数的最小正周期为,()sin 24f x x π⎛⎫=+ ⎪⎝⎭22T ππ==而函数周期为,故A 错误;|()|y f x =2π当时,,58x π=553()sin 2sin(18842f ππππ⎛⎫=⨯+==- ⎪⎝⎭所以直线是图象的一条对称轴,故B 正确;58x π=()y f x =故C 正确38x π=33()sin 2sin()0884f ππππ⎛⎫=⨯+== ⎪⎝⎭时,在区间上单调,0ω>()sin(24f x x πωω=+,2ππ⎡⎤⎢⎥⎣⎦即,2,2444x πππωωπωπ⎡⎤+∈++⎢⎥⎣⎦所以或04242πωπππωπ⎧+>⎪⎪⎨⎪+≤⎪⎩423242ππωπππωπ⎧+≥⎪⎪⎨⎪+≤⎪⎩解得或,故D 正确.108ω<≤1548ω≤≤故选:BCD.【点睛】(1)应用公式时注意方程思想的应用,对于sinα+cosα,sinα-cosα,sinαcosα这三个式子,利用(sinα±cosα)2=1±2sinαcosα可以知一求二.(2)关于sinα,cosα的齐次式,往往化为关于tanα的式子.13.2或-2 (写一个即可)14. 015.24t <<【分析】根据函数新定义求出函数解析式,画出函数的图象,利用转化的思想将()f x ()f x 方程的根转化为函数图象的交点,根据数形结合的思想即可得出t 的范围.【详解】由题意知,令,解得,1242x x -=--20x x x ==,根据,得,{}max a a ba b b a b ≥⎧=⎨<⎩,,,121220()4202x x x f x x x x x x--⎧≤⎪=--<<⎨⎪≥⎩,,,作出函数的图象如图所示,()f x 由方程有3个不等的根,()0f x t -=得函数图象与直线有3个不同的交点,()y f x =y t =由图象可得,当时函数图象与直线有3个不同的交点,24t <<()y f x =y t =所以t 的取值范围为.24t <<故答案为:24t <<16.:.1643ω≤<【分析】,只需要研究的根的情况,借助于和的图像,根t x ωϕ=+1sin 2t =sin y t =12y =据交点情况,列不等式组,解出的取值范围.ω【详解】令,则()0f x =()1sin 2x ωϕ+=令,则t x ωϕ=+1sin 2t =则问题转化为在区间上至少有两个,至少有三个t ,使得,sin y t =3,44ππωϕωϕ⎡⎤++⎢⎥⎣⎦1sin 2t =求的取值范围.ω作出和的图像,观察交点个数,sin y t =12y =可知使得的最短区间长度为2π,最长长度为,1sin 2t =223ππ+由题意列不等式的:3222443πππωϕωϕππ⎛⎫⎛⎫≤+-+<+ ⎪ ⎪⎝⎭⎝⎭解得:.1643ω≤<【点睛】研究y =Asin (ωx +φ)+B 的性质通常用换元法(令),转化为研究t x ωϕ=+的图像和性质较为方便.sin y t =17、解:(1)f (a )===sin α•cos α…5分(2)∵α=﹣=﹣6×,∴f (﹣)=cos (﹣)sin (﹣)=cos (﹣6×)sin (﹣6×)=cossin==﹣…10分18、解:(1)根据题意,集合A ={x ∈R |2log 2x ≥log 2(2x )},即,则,得x ≥2,则集合A ={x ∈R |x ≥2},(2)∁R A ={x ∈R |x <2},又集合B ={x ∈R |(x ﹣1)(x ﹣a )<0},①当a =1时,(x ﹣1)2<0,则无解,故B =∅,满足B ⊆∁R A ,②当a >1时,由(x ﹣1)(x ﹣a )<0,得1<x <a ,若B ⊆∁R A ,则a ≤2,得1<a ≤2,③当a <1时,由(x ﹣1)(x ﹣a )<0,得a <x <1,显然满足B ⊆∁R A ,综上所述,a 的取值范围是(﹣∞,2].19.(Ⅰ); (Ⅱ)1.11a b =⎧⎨=-⎩【分析】(Ⅰ)根据已知点的坐标,利用函数的解析式,得到关于的方程组,求解即得;,a b (Ⅱ)设,则直线方程可以写成, 与函数(),0T t ()1y kx m k =+≠()y k x t =-联立,消去,利用判别式求得,利用二次函数的性质求得()1y f x x x ==-y 22114t k k ⎛⎫=- ⎪⎝⎭取得最大值1,进而得到的最大值.2t OT 【详解】(Ⅰ)由已知得,解得;03222a b b a --=⎧⎪⎨+=⎪⎩11a b =⎧⎨=-⎩(Ⅱ)设,则直线方程可以写成,与函数(),0T t ()1y kx m k =+≠()y k x t =-联立,消去,并整理得()1y f x x x ==-y ()2110k x ktx --+=由已知得判别式,()22410k t k --=22114,t k k ⎛⎫=- ⎪⎝⎭当时,取得最大值1,所以.112k =2t maxmax 1OT t ==20.【分析】(1)利用表格中数据进行排除即可得解;(2)在分段函数中分别利用均值不等式和二次函数求出最值即可得解.【详解】(1)解:对于③,当时,它无意义,故不符合题意,3()300log a Q x x b =+0x =对于②,当时,,又,22()13xQ x ⎛⎫=- ⎪⎝⎭10x =1022(10)13Q ⎛⎫=- ⎪⎝⎭100122033<⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝=⎭所以,故不符合题意,故选①,1022(10)113Q ⎛⎫=-< ⎪⎝⎭3211()250Q x x x cx=-+由表中的数据可得,,解得3211021010142050c ⨯-⨯+⨯=160c =∴.(不需要说明理由,写对解析式即可)321()216050Q x x x x =-+(2)解:高速上行驶,所用时间为,300km 300hx 则所耗电量为,()2300300100()()2102006003000f x N x x x x x x x ⎛⎫=⋅=⋅-+=+- ⎪⎝⎭由对勾函数的性质可知,在上单调递增,()f x [80,120]∴,min 100()(80)60080300045750wh80f x f ⎛⎫==⨯+-= ⎪⎝⎭国道上行驶,所用时间为,50km 50hx 则所耗电量为,32250501()()2160100800050g x Q x x x x x x x x ⎛⎫=⋅=⋅-+=-+ ⎪⎝⎭∵,∴当时,,060x ≤≤50x =min ()(50)5500wh g x g ==∴当这辆车在高速上的行驶速度为,在国道上的行驶速度为时,80km/h 50km/h 该车从衡阳行驶到长沙的总耗电量最少,最少为.45750550051250wh +=21.(1)(2)[)1,+∞【分析】(1)由同角三角函数的平方关系求出、的值,再结合立方差sin cos x x sin cos x x -公式可求得所求代数式的值;(2)由已知可得出,,分、211022t at -+-=t ⎡∈⎣0=t 0t <≤时直接验证即可,在时,由参变量分离法可得出,结合基本不0=t 0t <≤112a t t ⎛⎫=+ ⎪⎝⎭等式可求得实数的取值范围,综合可得结果.a 【详解】(1)解:因为,即,则,12t =1sin cos 2x x +=()21sin cos 12sin cos 4x x x x +=+=即,3sin cos 8x x =-所以.()27sin cos 12sin cos 4x x x x -=-=因为是第四象限角,则,,所以,所以x sin 0x <cos 0x >sin cos 0x x -<sin cos x x -=所以()()33223sin cos sin cos sin sin cos cos 18x x x x x x x x ⎛⎫-=-++=-= ⎪⎝⎭(2)解:由,可得,()2sin cos 12sin cos x x x x+=+()21sin cos 12x x t =-则方程可化为,.()sin cos sin cos 1x x a x x -++=211022t at -+-=t ⎡∈⎣①当时,,显然方程无解;0=t 12-≠②当时,方程等价于.0t ≠211022t at -+-=112at t ⎛⎫=+ ⎪⎝⎭当,当且仅当时,等号成立,0t <≤111122t t ⎛⎫+≥⨯= ⎪⎝⎭1t =又,10,t t t →+→+∞故,1112a t t ⎛⎫=+≥ ⎪⎝⎭所以要使得关于的方程有实数根,则.x sin cos (sin cos )1x x a x x -++=1a ≥故的取值范围是.a [)1,+∞22.(1)不是,理由见解析;(2);5[,)6π+∞(3).12-【分析】(1)假定函数是 “自均值函数”,由函数的值域与函数的值()2xf x =2()f x 12y a x =-域关系判断作答.(2)根据给定定义可得函数在上的值域包含函数在上的值域,由此2()g x [0,1]12y a x =-[0,1]推理计算作答.(3)根据给定定义可得函数在上的值域包含函数在上的值域,再借2()h x [0,2]12y a x =-[0,2]助a 值的唯一性即可推理计算作答.(1)假定函数是 “自均值函数”,显然定义域为R ,则存在,对于,()2x f x =()2xf x =R a ∈1x ∀∈R 存在,有,2R x ∈2122x x a+=即,依题意,函数在R 上的值域应包含函数在R 上的值2122x a x =-22()2x f x =12y a x =-域,而当时,值域是,当时,的值域是R ,显然不2R x ∈2()f x (0,)+∞1R x ∈12y a x =-(0,)+∞包含R ,所以函数不是 “自均值函数”.()2xf x =(2)依题意,存在,对于,存在,有,即R a ∈1[0,1]x ∀∈2[0,1]x ∈12()2x g x a +=,21sin()26x a x πω+=-当时,的值域是,因此在的值域1[0,1]x ∈12y a x =-[21,2]a a -22()sin(6g x x πω=+2[0,1]x ∈包含,[21,2]a a -当时,而,则,2[0,1]x ∈0ω>2666x πππωω≤+≤+若,则,,此时值域的区间长度不超过,而区间62ππω+≤2min 1()2g x =2()1g x ≤2()g x 12长度为1,不符合题意,[21,2]a a -于是得,,要在的值域包含,62ππω+>2max()1g x =22()sin()6g x x πω=+2[0,1]x ∈[21,2]a a -则在的最小值小于等于0,又时,递减,22()sin()6g x x πω=+2[0,1]x ∈23[,]622x πππω+∈2()g x 且,()0π=g 从而有,解得,此时,取,的值域是包含于在6πωπ+≥56πω≥12a =12y a x =-[0,1]2()g x 的值域,2[0,1]x ∈所以的取值范围是.ω5[,)6π+∞(3)依题意,存在,对于,存在,有,即R a ∈1[0,2]x ∀∈2[0,2]x ∈12()2x h x a +=,2221232tx x a x ++=-当时,的值域是,因此在的值域1[0,2]x ∈12y a x =-[22,2]a a -2222()23h x tx x =++2[0,2]x ∈包含,并且有唯一的a 值,[22,2]a a -当时,在单调递增,在的值域是,0t ≥2()h x [0,2]2()h x 2[0,2]x ∈[3,47]t +由得,解得,此时a 的值不唯一,不符合[22,2][3,47]a a t -⊆+223247a a t -≥⎧⎨≤+⎩57222a t ≤≤+要求,当时,函数的对称轴为,0t <2222()23h x tx x =++21x t =-当,即时,在单调递增,在的值域是,12t -≥102t -≤<2()h x [0,2]2()h x 2[0,2]x ∈[3,47]t +由得,解得,要a 的值唯一,当且仅当[22,2][3,47]a a t -⊆+223247a a t -≥⎧⎨≤+⎩57222a t ≤≤+,即,则,57222t =+15,22t a =-=12t =-当,即时,,,,102t <-<21t <-2max 11()()3h x h t t =-=-2min ()min{(0),(2)}h x h h =(0)3h =,(2)47h t =+由且得:,此时a 的值不唯一,不符合要求,1[22,2][3,3]a a t -⊆-112t -≤<-531222a t ≤≤-由且得,,要a 的值唯一,当且仅当1[22,2][47,3a a t t -⊆+-1t <-9312222t a t +≤≤-,此时;9312222t t +=-t =a =综上得:或,12t =-t =所以函数,有且仅有1个“自均值数”,实数的值是2()23h x tx x =++[0,2]x ∈12-【点睛】结论点睛:若,,有,则的值域是[]1,x a b ∀∈[]2,x c d ∃∈()()12f x g x =()f x 值域的子集.()g x。
湖南省高一上学期期末考试数学试题(解析版)
一、单选题1.已知集合,,则( ){}24M x x =≤{}24xN x =<M N ⋂=A . B . {}2x x ≤-{}22x x -≤<C . D .{}22x x -≤≤{}02x x <<【答案】B【分析】化简集合即得解.M N 、【详解】由题得, {}22,{|2}M x x N x x =-≤≤=<所以. M N ⋂={}22x x -≤<故选:B2.”是“”的( ) b >2a b >A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B【分析】根据不等式性质,结合特殊值,从充分性和必要性进行分析,即可判断和选择.【详解】取,但不满足,故充分性不满足; 4,3a b ==-b >2a b >当,故满足必要性; 20a b >≥b >综上所述,”是“”的必要不充分条件. b >2a b >故选:B.3.函数的定义域为,则的定义域为( ) ()21y f x =-[]0,1()y f x =A . B .C .D .[]1,1-1,12⎡⎤⎢⎥⎣⎦[]0,1[]1,0-【答案】A【分析】由的取值范围求得的范围,即得所求 x 21x -【详解】因为,所以, 01x ≤≤1211-≤-≤x 所以的定义域为 ()y f x =[]1,1-故选:A.4.某同学在研究函数时,分别给出下面四个结论,其中正确的结论是( )2()||1x f x x =+A .函数是奇函数B .函数的值域是()f x ()f x ()1,+∞C .函数在R 上是增函数D .方程有实根()f x ()2f x =【答案】D【分析】由函数的奇偶性,单调性等对选项逐一判断【详解】对于A ,,故是偶函数,,不是奇函数,2()()()||1x f x f x x --==-+()f x (1)(1)1f f -==()f x 故A 错误,对于B ,当时,,由对勾函数性质知,0x ≥21()1211x f x x x x ==++-++()()00f x f ≥=而是偶函数,的值域是,故B 错误,()f x ()f x [0,)+∞对于C ,当时,,由对勾函数性质知在上单调递增,0x >21()1211x f x x x x ==++-++()f x (0,)+∞而是偶函数,故在上单调递减,故C 错误,()f x ()f x (,0)-∞对于D ,当时,,即,解得,故D 正确, 0x >()2f x =2220x x --=1x =+故选:D5.已知函数若,则实数的取值范围是( )()33,0,0x x f x x x -⎧≤=⎨->⎩()()22f a f a -≥-a A . B .C .D .[2,1]-1,12⎡⎤⎢⎥⎣⎦(,1]-∞1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】根据分段函数每一段的单调性及端点值判断函数在定义域内的单调性,再利用单调性解抽象不等式即可.【详解】因为,当时单调递减,且,()33,0,0x x f x x x -⎧≤=⎨->⎩0x ≤()3x f x -=()1f x ≥当时,单调递减,且,0x >3()f x x =-()0f x <所以函数在定义域上单调递减,因为,()33,0,0x x f x x x -⎧≤=⎨->⎩()22()f a f a -≥-所以,解得,即实数的取值范围为:. 22a a -≤-21a -≤≤a [2,1]-故选:A.6.已知函数的值域与函数的值域相同,则实数a 的取值范围是22(1),1()3,1a x a x f x x x ⎧-+<=⎨≥⎩y x =( ) A .B .(,1)-∞(,1]-∞-C .D .[1,1)-(,1][2,)-∞-+∞ 【答案】B【分析】根据的值域为列不等式,由此求得的取值范围.()f x R a 【详解】依题意,,22(1),1()3,1a x a x f x x x ⎧-+<=⎨≥⎩当时,,1x ≥2()33=≥f x x 函数的值域与函数的值域相同,即为,()f x y x =R 需满足,解得.∴()211310a a a ⎧-⨯+≥⎨->⎩1a ≤-所以实数a 的取值范围是. (,1]-∞-故选:B7.已知函数则下述关系式正确的是( )()e 31e 111e ,log ,log ,log ,3e 9xf x a f b f c f -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A . B . b a c >>b c a >>C . D .c a b >>a b c >>【答案】A【分析】根据,为偶函数,在(0,+∞)上单调递减求解. ||()x f x e -=【详解】解:∵,||()x f x e -=∴f (x )为偶函数,且f (x )在(0,+∞)上单调递减,∴.e e 331e 111(log (log 3),(log )(log e),(log )3e 9======a f f b f f c f e (log 9)f ∵, 3e e 0log e 1log 3log 9<<<<∴, b a c >>故选:A.8.已知,函数在上存在最值,则的取值范围是( )0ω>()sin f x x ω=π,π3⎛⎫⎪⎝⎭ωA . B . C . D .13,22⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭1339,,2222⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ 133,,222⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭【答案】D【分析】根据的最值点为,进而根据不等式得到,由()sin f x x ω=ππ+2,k x k ω=∈Z 1132k ωω<+<的取值范围即可求解.ωk ,【详解】当取最值时,.()sin f x x ω=ππ+,2x k k ω=∈Z 即, ππ+2,k x k ω=∈Z 由题知,故. ππ+π2<<π3ωk 1132k ωω<+<即.33,2Z 1,2k k k ωω⎧<+⎪⎪∈⎨⎪>+⎪⎩因为时,;时,; 0,0k ω>=1322ω<<1k =3922ω<<显然当时,,此时在上必有最值点.32ω>2πππ2=π32232T ωω==<()sin f x x ω=π,π3⎛⎫⎪⎝⎭综上,所求.133,,222ω⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭ 故选:D .二、多选题9.已知函数,将的图象向右平移个单位长度后得到函数的图()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭()f x π6()g x 象,则( )A .的图象关于轴对称B .的最小正周期是 ()g x y ()g x πC .的图象关于点对称D .在上单调递减()g x π,06⎛⎫- ⎪⎝⎭()g x π7π,1212⎡⎤⎢⎥⎣⎦【答案】BCD【分析】根据余弦函数图象的平移变换可得的解析式,结合余弦函数的奇偶性、周期、对称()g x 性以及单调性一一判断各选项,即可得答案. 【详解】将的图象向右平移个单位长度后得到的图象,则()f x π6()g x ,()πππ2cos 22cos 2666g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦该函数不是偶函数,最小正周期为,则A 错误,B 正确. 2ππ2=令,,解得,,当时,, ππ262x k π-=+Z k ∈ππ23k x =+Z k ∈1k =-π6x =-即的图象关于点对称,则C 正确.()g x π,06⎛⎫- ⎪⎝⎭令,,解得,,π2π22ππ6k x k ≤-≤+Z k ∈π7πππ1212k x k +≤≤+Z k ∈当时,即得在上单调递减,则D 正确.0k =()g x π7π,1212⎡⎤⎢⎥⎣⎦故选:BCD.10.下列说法正确的是( )A .若不等式的解集为,则220ax x c ++>{}12x x -<<2a c +=B .若命题,则的否定为 ():0,,1ln p x x x ∞∀∈+->p ()0,,1ln x x x ∃∈+∞-≤C .在中,“”是“”的充要条件ABC A sin cos sin cos A A B B +=+A B =D .若对恒成立,则实数的取值范围为 2320mx x m ++<[]0,1m ∀∈x ()2,1--【答案】ABD【分析】由一元二次不等式的解法可判断A ;由全称量词命题的否定可判断B ;由充要条件的判断可判断C ;变元转化为一次函数恒成立可判断D【详解】对于A :不等式的解集为,220ax x c ++>{}12x x -<<则和是方程的两个根,故,1-2220ax x c ++=()()021212a a c a ⎧⎪<⎪⎪-+=-⎨⎪⎪-⨯=⎪⎩解得,所以,故A 正确; 2,4a c =-=2a c +=对于B :命题, ():0,,1ln p x x x ∞∀∈+->则的否定为,故B 正确;p ()0,,1ln x x x ∃∈+∞-≤对于C :由可得, sin cos sin cos A A B B +=+2sin cos 2sin cos A A B B ⋅=⋅所以, sin2sin2A B =又, 0<222πA B +<所以或, π2A B +=A B =所以“”不是“”的充要条件,故C 错误;sin cos sin cos A A B B +=+A B =对于D :令,由对恒成立,()()223f m x m x +=+()0f m <[]0,1m ∀∈则,解得, ()()20301320f x f x x ⎧=<⎪⎨=++<⎪⎩2<<1x --所以实数的取值范围为,故D 正确; x ()2,1--故选:ABD11.下列说法正确的是( )A .如果是第一象限的角,则是第四象限的角 αα-B .如果,是第一象限的角,且,则 αβαβ<sin sin αβ<C .若圆心角为的扇形的弧长为,则该扇形面积为3ππ23πD .若圆心角为的扇形的弦长为23π83π【答案】AD【分析】由象限角的概念判断A ;举反例判断B ;由扇形弧长、面积公式计算判断C ,D 作答. 【详解】对于A ,是第一象限的角,即,则α22,Z 2k k k ππαπ<<+Î,22,Z 2k k k ππαπ--<<-Î是第四象限的角,A 正确;α-对于B ,令,,是第一象限的角,且,而,B 不正确; 11,66ππαβ=-=αβαβ<sin sin αβ=对于C ,设扇形所在圆半径为r ,则有,解得,扇形面积,C 不正3r ππ=3r =13322S ππ=⨯⨯=确;对于D ,设圆心角为的扇形所在圆半径为,依题意,,扇形弧长23πr '4r '==2833l r ππ'==,D 正确. 故选:AD12.已知函数,,,有,()()23log 1f x x =-()22g x x x a =-+[)12,x ∃∈+∞21,33x ⎡⎤∀∈⎢⎥⎣⎦()()12f x g x ≤则实数a 的可能取值是( ) A . B .1 C .D .31252【答案】CD【分析】将问题转化为当,时,,然后分别求出两函数的[)12,x ∈+∞21,33x ⎡⎤∈⎢⎥⎣⎦()()12min min f x g x ≤最小值,从而可求出a 的取值范围,进而可得答案【详解】,有等价于当,时,[)12,x ∃∈+∞21,33x ⎡⎤∀∈⎢⎥⎣⎦()()12f x g x ≤[)12,x ∈+∞21,33x ⎡⎤∈⎢⎥⎣⎦.()()12min min f x g x ≤当时,令,则,因为在上为增函数,在定义[)2,x ∞∈+21t x =-3log y t =21t x =-[2,)+∞3log y t =域内为增函数,所以函数在上单调递增,所以.()()23log 1f x x =-[2,)+∞()()min 21f x f ==的图象开口向上且对称轴为, ()22g x x x a =-+1x =∴当时,,1,33x ⎡⎤∈⎢⎥⎣⎦()()min 11g x g a ==-∴,解得. 11a ≤-2a ≥故选:CD .三、填空题13.函数的定义域为___________.3tan 24y x π⎛⎫=-- ⎪⎝⎭【答案】 5|,Z 82k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭【分析】先得到使函数有意义的关系式,求解即可. 32,Z 42x k k πππ-≠+∈【详解】若使函数有意义,需满足:, 32,Z 42x k k πππ-≠+∈解得; 5,Z 82k x k ππ≠+∈故答案为: 5|,Z 82k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭14.函数的单调递减区间是______.()20.8log 43y x x =-+-【答案】(]1,2【分析】先求得函数的定义域,结合二次函数、对数函数的单调性,利用复合函数单调性的判定方法,即可求解.【详解】由题意,函数,()20.8log 43y x x =-+-令,即,解得,2430x x -+->243(1)(3)0x x x x -+=--<13x <<又由函数的对称为,可得在区间单调递增,在单调递减, 2=+43y x x --2x =(1,2](2,3)又因为函数为定义域上的单调递减函数,0.8log y x =根据复合函数的单调性的判定方法,可得函数的单调递减区间是.()20.8log 43y x x =-+-(1,2]故答案为:.(1,2]15.已知是第四象限角,且___________.αcos α=()()sin cos cos sin 22πααππαα++-=⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】3-【分析】利用同角三角函数关系可得.sin α=【详解】由题设, sin α==. ()()sin cos cos sin 3sin cos cos sin 22πααααππαααα++--===-+⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭故答案为:3-16.命题“对任意的,总存在唯一的,使得”成立的充要条件是[]1,1m ∈-[]0,3x ∈2210x x am ---=______.【答案】11a -<<【分析】方程变形为,转化为函数与与有且仅有一个交点,依221x x am -=+22y x x =-1y am =+据,,分类讨论,数形结合,求解a 的范围即可 0a =0a >a<0【详解】由得:;2210x x am ---=221x x am -=+当时,,则,解得:∵,,满足题意; 0a =11am +=221x x -=1x =[]10,3[]10,3当时,;若存在唯一的,使得成立,则0a >[]11,1am a a +∈-+[]0,3x ∈221x x am -=+22y x x =-与有且仅有一个交点,在平面直角坐标系中作出在上的图象如下图所1y am =+22y x x =-[]0,3示,由图象可知:当时,与有且仅有一个交点,∴,解013am <+≤22y x x =-1y am =+0131aa<-⎧⎨≥+⎩得:,则;1a <01a <<当时,,结合图象可得:,解得:,则;a<0[]11,1am a a +∈+-0131aa <+⎧⎨≥-⎩1a >-10a -<<综上所述:原命题成立的充要条件为, 11a -<<故答案为:-1<a <1.四、解答题17.设集合,.{}24120A x x x =--={}20B x ax =-=(1)若,求a 的值; {}2,1,6A B =- (2)若,求实数a 组成的集合C . A B B = 【答案】(1) 2a =(2)11,0,3C ⎧⎫=-⎨⎬⎩⎭【分析】(1)求出集合,根据,即可得出,从而即得; A A B ⋃1B ∈(2)由题可知,然后分类讨论,从而得出实数组成的集合. B A ⊆a 【详解】(1)由,解得或,所以, 24120x x --=2x =-6x ={}2,6A =-因为, {}2,1,6A B =- 所以,则, 1B ∈120a ⋅-=所以;2a =(2)因为,则, A B B = B A ⊆当时,; B =∅0a =当时,;{}2B =-1a =-当时,,{}6B =13a =综上可得集合.11,0,3C ⎧⎫=-⎨⎬⎩⎭18.已知函数. ()()222log log 2f x x x =--(1)若 , 求 的取值范围; ()0f x …x (2)当时, 求函数 的值域. 184x ≤≤()f x【答案】(1);1,42⎡⎤⎢⎥⎣⎦(2). 9,44⎡⎤-⎢⎥⎣⎦【分析】(1)利用换元法令,列不等式先解出的范围,再解出的范围即可; 2log x t =t x (2)利用(1)中的换元,先得到的范围,再根据的范围求值域即可.t t 【详解】(1)令,,可整理为,则即,解得2log x t =R t ∈()f x 22y t t =--()0f x ≤220t t --≤,所以,解得, 12t -≤≤21log 2x -≤≤142x ≤≤所以.1,42x ⎡⎤∈⎢⎥⎣⎦(2)当时,,因为,且当,有最小值;184x ≤≤23t -≤≤22y t t =--12t =94-当或3时,有最大值4; 2t =-所以的值域为.()f x 9,44⎡⎤-⎢⎥⎣⎦19.设函数.()2,4f x x x R π⎛⎫=-∈ ⎪⎝⎭(1)求函数的最小正周期和单调递增区间;()f x (2)求函数在区间上的最小值和最大值,并求出取最值时的值.()f x 3,84ππ⎡⎤⎢⎥⎣⎦x 【答案】(1),;(2)见解析 T π=3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【分析】(1)根据正弦函数性质求函数的最小正周期和单调递增区间; ()f x (2)先确定取值范围,再根据正弦函数性质求最值及其对应自变量.24t x π=-【详解】(1)函数的最小正周期为 , ()f x 22T ππ==由的单调增区间是可得sin y x =2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,解得222242k x k πππππ-+≤-≤+388k x k ππππ-+≤≤+故函数的单调递增区间是. ()f x 3,,88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)设,则,24t x π=-3,84x ππ⎡⎤∈⎢⎥⎣⎦50,4t π⎡⎤∈⎢⎥⎣⎦由在上的性质知,当时,即,y t =50,4t π⎡⎤∈⎢⎥⎣⎦2t π=38x π=max f当时,即, . 54t π=34x π=min 1f ⎛=- ⎝【点睛】本题考查正弦函数周期、单调区间、最值,考查基本分析求解能力,属中档题. 20.已知定义域为R 的函数是奇函数, ()221x f x a =++(1)求的值.a (2)判断函数在上的单调性并加以证明;()f x R (3)若对于任意不等式恒成立,求的取值范围. ,t R ∈()()22620f t t f t k -+-<k 【答案】(1);(2)减函数;(3)1a =-(),3-∞-【详解】试题分析:(1)可利用如果奇函数在处有意义,一定满足,代入即可解得;(2)用单调性定义证明,特别注意“变形”这一步中,需通过通分、分解因式等手段,达到能判断差式的符号的目的;(3)含参数的不等式恒成立问题,我们往往可以采用分离参数的办法,将其转化为求函数的最值问题,从而求得参数的取值范围.试题解析:(1)因为是R 上的奇函数,则()f x ()00=f 即所以 20,11a +=+1a =-又成立,所以()()f x f x -=-1a =-(2)证明:设, 12x x <()()()()()21121212222221121212121x x x x x x f x f x --=--+=++++因为,所以,故12x x <1222x x <()()12f x f x >所以是R 上的减函数且为奇函数()f x (3)由于是R 上的减函数且为奇函数()f x 故不等式可化为()()22620f t t f t k -+-<()()2262f t t f k t -<-所以 即恒成立2262t t k t ->-()2236313k t t t <-=--所以 ,即的取值范围为3k <-k (),3∞--21.某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的曲线.当p t 时,曲线是二次函数图象的一部分,当时,曲线是函数(]0,14t ∈[]14,40t ∈图象的一部分.根据专家研究,当注意力指数大于80时学习效果()()log 5830,1a y x a a =-+>≠p 最佳.(1)试求的函数关系式;()p f t =(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.【答案】(1)(2)1232t -≤≤【详解】【解】(1)当时, [014]t ∈,设,2()(12)82(0)p f t c t c ==-+<所以当时,. [014]t ∈,21()(12)824p f t t ==--+当时,将(14,81)代入,得 [1440]t ∈,()log 583a y x =-+1.3a =于是(2)解不等式组得1214.t -<解不等式组得131440{log (5)8380t t ≤≤-+>,1432.t ≤<故当时,,1232t -<<()80p t >答:老师在时段内安排核心内容能使得学生学习效果最佳.()1232t ∈-22.若函数对定义域内的每一个值,在其定义域内都存在,使成立,()y T x =1x 2x ()()121T x T x ⋅=则称该函数为“圆满函数”.已知函数;()sin ,()224x x f x x g x π-==-(1)判断函数是否为“圆满函数”,并说明理由;()y f x =(2)设,证明:有且只有一个零点,且. 2()log ()h x x f x =+()h x 0x 05sin 46x g π⎛⎫< ⎪⎝⎭【答案】(1)不是“圆满函数”,理由见解析;(2)证明见解析.【解析】(1)取特殊值,代入“圆满函数”的定义,判断是否有实数能满足123x =2x ;(2)当时,利用零点存在性定理讨论存在零点,以及当22sin()sin 1434x ππ⎛⎫⋅⋅⋅= ⎪⎝⎭(]0,2x ∈时,证明在上没有零点,再化简,转化为证明不等式()2,x ∈+∞()h x ()2,∞+0sin 4x g π⎛⎫ ⎪⎝⎭00156x x -<.【详解】解:(1)若是“圆满函数”.取,存在,使得 ()sin 4f x x π=123x =2x R ∈,即,整理得,但是,矛盾,所以()()121f x f x =2sinsin 164x ππ⋅=2sin 24x π=2sin 14x π≤()y f x =不是“圆满函数”. (2)易知函数的图象在上连续不断. ()2log sin 4h x x x π=+()0+∞,①当时,因为与在上单调递增,所以在上单调递增.(]0,2x ∈2log y x =sin 4y x π=(]0,2()h x (]0,2因为,, 2222221log sin log log 033632h π⎛⎫=+=+=< ⎪⎝⎭()1sin 04h π=>所以.根据函数零点存在定理,存在,使得, ()2103h h ⎛⎫< ⎪⎝⎭02,13x ⎛⎫∈ ⎪⎝⎭()00h x =所以在上有且只有一个零点.()h x (]0,20x ②当时,因为单调递增,所以,因为.所以()2,x ∈+∞2log y x =22log log 21y x =>=sin 14y x π=≥-,所以在上没有零点.()110h x >-=()h x ()2,∞+综上:有且只有一个零点. ()h x 0x 因为,即,()0020log sin 04x h x x π=+=020sin log 4x x π=-所以,. ()2020log log 020001sin log 224x x x g g x x x π-⎛⎫=-=-=- ⎪⎝⎭02,13x ⎛⎫∈ ⎪⎝⎭因为在上单调递减,所以,所以. 1y x x =-2,13⎛⎫ ⎪⎝⎭001325236x x -<-=05sin 46x g π⎛⎫< ⎪⎝⎭【点睛】关键点点睛:本题第二问的关键是根据零点存在性定理先说明零点存在,并且存在,使得,再利用,化简,利用02,13x ⎛⎫∈ ⎪⎝⎭()00h x =020sin log 4x x π=-()020sin log 4x g g x π⎛⎫=- ⎪⎝⎭,利用函数的最值证明不等式.. 02,13x ⎛⎫∈ ⎪⎝⎭。
湖南省 高一数学第一学期期末考试试卷
高一第一学期期末考试试卷(数学)注意事项:1、本试卷分选择题和非选择题两部分,共4页。
时量100分钟,满分100分。
答题前,考生既要将自己的姓名、考号填写在本试卷上,还要将自己的姓名、考号填写在答题卡上,并且用2B 铅笔在答题卡信息码上,将自己的考号对应的数字涂黑。
2、回答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷和草稿纸上无效。
3、回答非选择题时,用0.5毫米黑色墨水签字笔将答案按题号写在答题卡上。
写在本试卷和草稿纸上无效。
4、考试结束时,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分。
每小题给出的四个选项中,只有一个选项是符合题目要求的。
)1. 设集合A ={x | -1<x <2},集合B ={x | 1<x <3},则A ∪B 等于A. { x | 2<x <3}B. {x | -1<x <3}C. {x | -1<x <2}D. {x | -1<x <1}2. 下列函数中,在区间(0,1)上是增函数的是A. y =|x |B. y =2-xC. y =1xD. y =-x 2+4 3. 函数f (x )=2x-3的零点所在的区间是A. (3,4)B. (2,3)C. (1,2)D. (0,1)4. 函数y =(a 2-3a +3)a x 是指数函数,则有A. a =1或a =2B. a =1C. a =2D. a >0且a ≠15. 小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形B. 圆柱C. 立方体D. 圆锥 6. 若直线与平面所成的角为0︒,则该直线与平面的位置关系是A. 平行B. 相交C. 直线在平面内D. 平行或直线在平面内7. 若直线l 1:(a -1)x +4y -3=0与l 2:(a -2)x -5y +a -3=0互相垂直,则实数a 的值为A. -3或6B. 3或–6C. –3D. 3或68. 方程(12)x =|log 1–2x |的实根的个数为 A. 1个 B. 2个 C. 3个 D. 4个9. 一个球与正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为323π,那么该三棱柱的体积是 A. 96 3 B. 16 3 C. 24 3 D. 48 310. 两圆相交于点A(1, 3),B(m, -1)两圆的圆心均在直线x -y +c =0上,则m +c 的值为A. –1B. 2C. 3D. 0二、填空题(本大题共5小题,每小题4分,共20分)11. 点(1,2,3)关于原点的对称点的坐标为___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省2017—2018学年高一数学上学期期末考试试卷(二)
(考试时间90分钟满分100分)
一、单项选择题(每小题4分,共40分)
1.已知集合U={﹣1,0,1,2},A={﹣1,2},则∁U A=()
A.{0}B.{1}C.{0,1}D.{﹣1,0,1}
2.点(2,1)到直线3x﹣4y+2=0的距离是()
A.B.C.D.
3.下列函数中,在区间(0,+∞)上是减函数的是()
A.y=x2﹣1 B.y=x3C.y=log2x D.y=﹣3x+2
4.圆x2+y2﹣2x+4y﹣4=0的圆心坐标是()
A.(﹣2,4)B.(2,﹣4)C.(﹣1,2)D.(1,﹣2)
5.幂函数f(x)的图象过点,那么f(8)的值为()
A.B.64 C. D.
6.过点M(﹣2,m)、N(m,4)的直线的斜率等于1,则m的值为()
A.1 B.4 C.1或3 D.1或4
7.设f(x)=3x+3x﹣8,用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中得f (1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()
A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定
8.三个数a=3,b=()3,c=log3的大小顺序为()
A.b<c<a B.b<a<c C.c<a<b D.c<b<a
9.函数f(x)=ln(x2+1)的图象大致是()
A. B.C.
D.
10.已知f(x)=,则等于()
A.﹣2 B.4 C.2 D.﹣4
二、填空题(每小题4分,共20分)
11.函数y=的定义域是______.
12.直线过点(﹣3,﹣2)且在两坐标轴上的截距相等,则这条直线方程为______.13.使不等式23x﹣1﹣2>0成立的x的取值范围______(用集合表示)
14.函数y=2|x|﹣x﹣2的零点个数为______.
15.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为______.
三、解答题(每小题8分,共40分)
16.已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)当m=3时,求集合A∩B;
(2)若B⊆A,求实数m的取值范围.
17.已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB边所在的直线方程;
(2)求AB边的高所在直线方程.
18.计算:
(1)4x(﹣3x y)÷(6x y);
(2)log312﹣log32.
19.已知圆C的圆心在坐标原点,且过点M(1,).
(1)求圆C的方程;
(2)若直线l经过点M(1,)且与圆C相切,求直线l 的方程.
(3)已知点P是圆C上的动点,试求点P到直线x+y﹣4=0的距离的最大值.
20.已知函数f(x)=是奇函数.
(1)求实数a的值;
(2)证明y=f(x)在区间(1,+∞)上单调递减;
(3)解不等式f(x2﹣x+2)<f(4).
参考答案
一、单项选择题
1.C.2.A.3.D.4.D 5.A.6.A 7.B.8.D.9.A 10.B.
二、填空题
11.答案为:[1,+∞).
12.答案为:2x﹣3y=0或x+y+5=0.
13.答案为:{x|x}.
14.答案为:2.
15.答案为:﹣4.
三、解答题
16.解:(1)当m=3时,B={x|4≤x≤5}
则A∩B={x|4≤x≤5}
(2)①当B为空集时,得m+1>2m﹣1,则m<2
当B不为空集时,m+1≤2m﹣1,得m≥2
由B⊆A可得m+1≥﹣2且2m﹣1≤5
得2≤m≤3
故实数m的取值范围为m≤3
17.解:(1)∵A(﹣1,5)、B(﹣2,﹣1),
∴由两点式方程可得=,
化为一般式可得6x﹣y+11=0
(2)∵直线AB的斜率为=6,
∴由垂直关系可得AB边高线的斜率为﹣,
故方程为:y﹣3=﹣(x﹣4),
化为一般式可得x+6y﹣22=0
18.解:(1)4x(﹣3x y)÷(6x y)=﹣3×4÷6
=﹣2x;
(2)log312﹣log32=log3=log33=
19.解:(1)由题意,r==2,
∴圆C的方程为x2+y2=4;
(2)由题意M为切点,∴直线l 的方程x+y=4;
(3)圆心到直线的距离为d==2
∴点P到直线x+y﹣4=0的距离的最大值为2+2.
20.解:(1)∵函数f(x)=是奇函数,故有f(0)==0,∴a=0.
(2)证明:∵y=f(x)=,∴f′(x)=,
∵当x>1时,f′(x)<0,
∴f(x)在区间(1,+∞)上单调递减.
(3)由′(x)=,
可得函数f(x)的增区间为(﹣1,1),减区间为(1,+∞)、(﹣∞,﹣1)
∵x2﹣x+2=+≥,
故由不等式f(x2﹣x+2)<f(4),可得x2﹣x+2>4,求得x<﹣1,或x>2,故不等式的解集为{x|x<﹣1,或x>2}.。