条件概率课件-条件概率的应用举例共19页

合集下载

人教版数学选择性必修三7.1.1条件概率课件

人教版数学选择性必修三7.1.1条件概率课件
1
3
2
5
1.已知P(B|A)= ,P(A)= ,则P(AB)等于(
A.
5
6
B.
9
10
C.
2
15
= | ⋅ = ×
)
D.

| =

1
3
C
2 2
=
5 15
1
15
2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第
一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是(
= ∪∪ = + + = 6 +
+
=
6
6
6
20
20
20
20
P(AD)=P(A),P(BD)=P(B),


P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=
+


=
13
58
类题通法
若事件B,C互斥,则P(B∪C|A)=P(B|A)+P(C|A),
令A={产品的长度合格},B={产品的质量合格},AB={产品的长




度、质量都合格}.
问题3:试探求P(B)、P(AB)、P(A|B)间的关系.
提示:P(A|B)=


.
1.条件概率




• 设A,B为两个事件,且P(A)>0,称P(B|A)=


为在事件A
产生的条件下,事件B产生的条件概率.
他在这次考试中已经通过,求他获得优秀的概率.
设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题,另一道答错”,

条件概率-课件

条件概率-课件

没有影响,P (A)
2 3
,
P (B )
1 3
思考3:一般地,对于事件A,B,如果事 件A的发生不影响事件B发生的概率,那 么P(B|A)与P(B)有什么关系?根据条件 概率计算公式可得什么结论?
P(B|A)=P(B),P(AB)=P(A) P(B).
思考4:设A,B为两个事件,如果P(AB) =P(A)P(B),则称事件A与事件B相互独 立.你能列举一个相互独立事件的实例吗?

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/32021/3/32021/3/32021/3/3
谢谢观赏
You made my day!
我们,还在路上……
探究(一):相互独立事件的概念
思考1:先后两次抛掷一枚质地均匀的骰 子,设事件A为“第一次抛掷得到点数是 1”,事件B为“第二次抛掷得到点数是 2”,那么事件A的发生对事件B发生的概 率是否有影响?事件A、B发生的概率分 别是多少?
没有影响,都为 1 . 6
思考2:某三张奖券中只有一张能中奖, 现分别由三名同学有放回地各随机抽取1 张,设事件A为“第一个同学没有抽到中 奖奖券”,事件B为“第三个同学抽到中 奖奖券”,那么事件A的发生对事件B发 生的概率是否有影响?事件A、B发生的 概率分别是多少?
2.公式P(AB)=P(A)P(B)可以理解为: 相互独立事件同时发生的概率,等于它 们的概率之积.如果事件A与B不相互独 立,那么事件A与B同时发生的概率应利 用条件概率求解.
3.两个事件互斥与两个事件相互独立 是完全不同的两个概念,若事件A与B互 斥,则P(A∪B)=P(A)+P(B),这是和 事件的加法公式;若事件A与B相互独立, 则P(AB)=P(A)P(B),这是积事件的乘 法公式.

条件概率课件-条件概率的应用举例PPT文档共21页

条件概率课件-条件概率的应用举例PPT文档共21页

6、最大的骄Βιβλιοθήκη 于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
条件概率课件-条件概率的应用举例
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

《条件概率》课件

《条件概率》课件
答案2
两次都取到白球的概率为$frac{6}{10} times frac{6}{10} = frac{36}{100} = frac{9}{25}$。解析:第一次取到白球 的概率为$frac{6}{10}$,第二次取到白球的概率为 $frac{6}{10}$,因此两次都取到白球的概率为 $frac{6}{10} times frac{6}{10} = frac{36}{100} =
《条件概率》ppt课件
contents
目录
• 条件概率的定义 • 条件概率的性质 • 条件概率的应用 • 条件概率的实例分析 • 条件概率的习题与解答
CHAPTER 01
条件概率的定义
条件概率的数学定义
定义
在事件B发生的条件下,事件A发生的概率称为条件概率,记作P(A|B)。
公式
P(A|B) = P(A∩B) / P(B)
条件概率的几何意义
条件概率P(A|B)表示在事件B发生的条 件下,事件A发生的概率,这可以表示 为在事件B发生的条件下,事件A发生 的区域与整个样本空间的比值。
CHAPTER 02
条件概率的性质
条件概率的加法性质
总结词
条件概率的加法性质是ቤተ መጻሕፍቲ ባይዱ当某一事件B发 生时,另一事件A发生的概率等于两事件 A和B同时发生的概率加上A不发生但B发 生的概率。
贝叶斯决策
贝叶斯决策是一种基于贝叶斯定理的决策方法,通过计算不 同行动方案在不同自然状态下的期望效用值,选择最优的行 动方案。贝叶斯决策中需要用到条件概率来计算不同自然状 态下的期望效用值。
在机器学习中的应用
分类器设计
在分类器设计中,常常需要计算不同类别下的条件概率,以设计最优的分类器。例如, 在朴素贝叶斯分类器中,通过计算不同特征在不同类别下的条件概率,实现分类器的设

《条件概率》课件

《条件概率》课件

在机器学习中的应用
01
分类器设例如,朴素贝
叶斯分类器就是基于条件概率的分类器之一,它可以根据已知特征的概
率分布来预测未知样本的类别。
02
聚类分析
在聚类分析中,条件概率可以帮助我们确定不同数据点之间的相似性或
差异性。例如,基于密度的聚类算法可以利用条件概率密度函数来评估
数据点之间的相似性或差异性。
03
强化学习
在强化学习中,条件概率可以帮助我们确定在不同状态下采取不同行动
的概率。例如,Q-learning算法可以利用条件概率来评估在不同状态下
采取不同行动的期望回报。
04 条件概率的实例分析
抛硬币实验的条件概率分析
总结词:直观理解
详细描述:通过抛硬币实验,理解条件概率的概念。假设硬币是均匀的,那么正 面朝上的概率是0.5。在硬币已经连续出现几次正面朝上的情况下,下一次抛掷 仍然是正面朝上的概率仍然是0.5,即条件概率不变。
全概率公式与贝叶斯公式
总结词
全概率公式和贝叶斯公式是条件概率的 两个重要公式,全概率公式用于计算一 个事件的概率,而贝叶斯公式则用于更 新一个事件的概率。
VS
详细描述
全概率公式将一个事件的概率分解为若干 个互斥事件的概率之和,而贝叶斯公式则 是在已知先验概率和新信息的情况下,更 新一个事件的概率。这两个公式在统计学 、机器学习和数据分析等领域有着广泛的 应用。
B
题目2答案与解析
出现一个正面和一个反面的概率为0.75。解 析:出现一个正面和一个反面意味着出现 HH、HT、TH、TT四种情况中的三种,其
D
概率为C(2,1) / C(2,2) * C(2,1) / C(2,2) =
3/4。

高中数学 新人教A版选择性必修第三册 第七章 7.1.1条件概率 课件

高中数学 新人教A版选择性必修第三册 第七章 7.1.1条件概率 课件

【解析】选C.设A为“某人检验呈阳性”,B为“此人患病”.则“某人检验呈阳性时 他确实患病”为B|A,
又P(B|A) =PP((AAB)) =99%0.×20%.1% =49.5%.
2.气象资料表明,某地区每年七月份刮台风的概率为35 ,在刮台风的条件下, 下大雨的概率为190 ,则该地区七月份既刮台风又下大雨的概率为( ) A.23 B.2570 C.190 D.130
1.若P(A∩B)=35 ,P(A)=34 ,则P(B|A)=( ) A.54 B.45 C.53 D.43
2.下列式子成立的是( A.P(A|B)=P(B|A) C.P(AB)=P(B|A)·P(A)
) B.0<P(B|A)<1 D.P(AB|A)=P(B)
【解析】选C.由P(B|A)=PP((AAB)) 得P(AB)=P(B|A)·P(A),而P(A|B)=PP((ABB)) 知 A不正确,C正确;当P(B)为零时知P(B|A)=0,所以B不正确;D选项应是P(AB|A) =P(B|A),故D不正确.
第七章 随机变量及其分布 7.1 条件概率与全概率公式
7.1.1 条 件 概 率
基础预习初探
主题1 条件概率的概念及性质 3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取.
(1)问最后一名同学抽到中奖奖券的概率是否比其他同学小?
提示:由古典概型可知,最后一名同学抽到中奖奖券的概率为 1 ,与其他同学
(2)设“点数a,b之和不大于5”为事件B, 包含(1,1),(1,2),(1,3),(1,4),(2,1), (2,2),(2,3),(3,1),(3,2),(4,1),共10个基本事件; 设“a,b中至少有一个为2”为事件C, 包含(1,2),(2,1),(2,2),(2,3),(3,2),共5个基本事件,故“在点数a,b 之和不大于5的条件下,a,b中至少有一个为2”的概率:P=nn((BBC)) =150 =12 .

《条件概率公开课》课件

《条件概率公开课》课件
条件概率在贝叶斯网络中的应用
在贝叶斯网络中,条件概率用于描述随机变量之间的依赖关系,以及在给定父 节点状态下子节点的概率分布。
条件概率与隐马尔可夫模型
隐马尔可夫模型简介
隐马尔可夫模型是一种统计模型,用于描述 一个隐藏的马尔可夫链生成的状态序列和观 测序列。
条件概率在隐马尔可夫模 型中的应用
在隐马尔可夫模型中,条件概率用于描述在 给定隐藏状态下的观测状态概率,以及状态
在日常生活中的应用
医学诊断
在医学诊断中,我们常常需要计 算在给定某些症状下患某种疾病 的可能性,这需要用到条件概率

法律审判
在法律审判中,我们常常需要计 算在给定某些证据下被告人有罪 或无罪的条件概率,以便做出公
正的裁决。
市场营销
在市场营销中,我们常常需要计 算在给定某些购买行为下顾客再 次购买的可能性,这需要用到条
学习效率和性能。
条件概率的未来展望
1 2
跨领域应用
随着大数据和机器学习的普及,条件概率的应用 领域将越来越广泛,例如自然语言处理、生物信 息学、金融等领域。
理论完善
随着应用的深入,条件概率的理论基础也需要不 断完善和发展,以更好地指导实际应用。
3
教育推众对其的认识和应用能力,也是未来值得关 注的问题。
在机器学习中的应用
分类器设计
强化学习
在分类问题中,我们常常需要计算某 个样本属于某个类别的条件概率,以 便做出正确的分类决策。
在强化学习中,我们常常需要计算在 给定状态下采取某个行动的条件概率 ,以便更好地选择最优行动。
聚类分析
在聚类分析中,我们常常需要计算在 给定聚类结果下各个样本属于某个聚 类的条件概率,以便更好地评估聚类 效果。

《条件概率》课件

《条件概率》课件

公式
联合概率公式
P(A和B) = P(A) * P(B|A)
边缘概率公式
P(A) = ∑[P(A和Bi)], 其中Bi为所 有可能的B事件
条件概率公式
P(A|B) = P(A和B) / P(B)
性质
1 加法法则
P(A或B) = P(A) + P(B) - P(A和B)
3 全概率公式
P(A) = ∑[P(A|Bi) * P(Bi)], 其中Bi为所有可 能的B事件
《条件概率》PPT课件
欢迎大家来到本次关于《条件概率》的PPT课件。今天我们将学习条件概率 的概念、公式、性质以及一些实例应用,让您更深入地了解这个重要的数学 概念。
概念
概率的定义
概率是指在一次随机事件中,某一结果发生的可能性或频率。
条件概率的定义
条件概率是指在给定一定条件下,某一事件发生的概率。
3
桶中含有苹果的概率问题
根据已知条件,计算从一个桶中取出的苹果为某种特定类型的概率。

机器判定眼疾的概率问题
根据机器判定结果和已知数据,评估机器正确判定眼疾的概率。
总结
1 一些注意点
理解条件概率的背后的数学原理以及如何应用条件概率进行问题求解。
2 重点回顾
重要的公式和性质,如联合概率公式、乘法法则、全概率公式和贝叶斯定理。
2 乘法法则
P(A和B) = P(A) * P(B|A) = P(B) * P(A|B)
4 贝叶斯定理
P(B|A) = P(A|B) * P(B) / P(A)
实例应用
1
疾病与人群的关系
了解一个人是否患有某种疾病的概率,基于该人在特定人群中的概率。
2
投骰子的概率问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档