纳米羟基磷灰石的制备及其在医学领域的应用

合集下载

羟基磷灰石的制备与应用

羟基磷灰石的制备与应用

羟基磷灰石的制备与应用孙镇镇/文【摘要】羟基磷灰石是自然界中生物骨组织的构成要素,其微孔是由天然孔道结构形成,具有较强的表面吸附性和离子交换性,是一种具有良好应用前景的无机生物矿物材料,在生物医用材料、环境功能材料、湿敏半导体材料、催化剂载体以及抗菌功能材料等方面都有广泛的应用。

本文首先简单介绍了羟基磷灰石的基本性能,重点阐述了羟基磷灰石的制备方法,最后对其应用进行了阐述。

【关键词】羟基磷灰石;性能;制备;应用羟基磷灰石 (hydroxyapatite, HAP),化学式为Ca10(PO4)6(OH)2,是一种微溶于水的磷酸钙盐,属于六方晶系。

HAP 的结构可以描述为磷氧四面体基团的紧密结合体,图1为HAP 的晶体结构图[1]。

从图1中可以看到,P5+位于四面体的中心,并且其顶部被4个 O 原子占据。

Ca2+则被磷氧四面体所包围,在晶胞中占有2个独立的位置 Ca(I) 和 Ca(II),从而形成 2 种直径不同、互不相连的通道。

由于 HAP 结构中存在2个不同的钙位点,所以可以通过对钙位点的特定修饰来调节 HAP 的特性。

图1 羟基磷灰石的晶体结构羟基磷灰石的密度为3.156g/ cm3,熔点为1650℃,溶度积为(6.3±2.1)×10-59,晶体折射率为1.64-1.65。

其在水中溶解度约0.4 ppm,呈弱碱性,pH为7-9。

在人体骨骼中,羟基磷灰石大约占总质量的90%,其余10%为碳酸钙和其他无机盐[2-4]。

羟基磷灰石是自然界中生物骨组织的构成要素,其微孔是由天然孔道结构形成,具有较强的表面吸附性和离子交换性,随着科技和医学的不断前行,为了更大程度地发挥其性质,人工合成的羟基磷灰石也变得越来越多,它可以凭借自身的生物相容性、生物活性、骨传导性在骨治疗上发挥重要的作用。

过去的二十年中,羟基磷灰石在骨和牙齿植入、吸附重金属等领域均有报道。

但在实际应用中,不容忽视的是羟基磷灰石自身存在的机械性能不佳、使用中容易团聚、使用后回收困难等缺点,这些缺点极大的限制了它的广泛应用。

纳米羟基磷灰石的制备及其在医学领域的应用

纳米羟基磷灰石的制备及其在医学领域的应用
纳米羟基磷灰石的制备及其在 医学领域的应用
漳 州 师 范 学 院 化学与环境科学系
HA的简 的简 介
方法制 备
结论和 展望 在物理 方向上 的单独 应用
测试表 征
在医学 领域的 应用
1、羟基磷灰石简介 、
羟基磷灰石( 羟基磷灰石(Hydroxyapatite,HA)是 , ) 动物和人体骨骼的要无机矿物成分, 动物和人体骨骼的要无机矿物成分,具 有良好的生物活性和生物相容性。 有良好的生物活性和生物相容性。当羟 基磷灰石的尺寸达到纳米级时将现出一 系列的独特性能, 系列的独特性能,如具有较高的降解和 可吸收性。研究表明: 可吸收性。研究表明:超细羟基磷灰石 颗粒对多种癌细胞的生长具有抑制作用, 颗粒对多种癌细胞的生长具有抑制作用, 而对正常细胞无影响。 而对正常细胞无影响。因此纳米羟基磷 灰石的制备方法及应用研究已成为生物 医学领域中一个非常重要的课题, 医学领域中一个非常重要的课题,引起 国内外学者的广泛关注[4]
图5
n-HA粒子的SEM图
由图5可以看出采用冷冻干燥法避免了高温煅 由图 可以看出采用冷冻干燥法避免了高温煅 粉末, 烧,得到了分散性较好的 n-HA 粉末,直径为 20~25 nm,长度 ~80nm,其分散均匀, ~ ,长度75~ ,其分散均匀, 没有严重的团聚现象。 没有严重的团聚现象。
4.1 物理性质方面应用[5]
功效主要体现在: 功效主要体现在:
(1)吸附及抑菌作用。抑制牙菌斑,预防 龋 吸附及抑菌作用。抑制牙菌斑, 吸附及抑菌作用 齿。 (2)双重脱敏作用,有效防止牙本质过敏。 双重脱敏作用, 双重脱敏作用 有效防止牙本质过敏。 (3)再矿化及美白作用,修复受损牙釉质, 再矿化及美白作用, 再矿化及美白作用 修复受损牙釉质, 恢复牙齿自然光泽。 恢复牙齿自然光泽。

羟基磷灰石纳米颗粒在骨修复领域中的应用

羟基磷灰石纳米颗粒在骨修复领域中的应用

羟基磷灰石纳米颗粒在骨修复领域中的应用羟基磷灰石(Hydroxyapatite)是一种人工骨 substitute,因具有与天然骨类似的化学成分和微观结构,因此在骨科领域中得到广泛应用。

然而,由于其颗粒大小较大,可能导致治疗过程中出现植入部位与周围组织之间的间隙,进而影响植入效果。

近年来,羟基磷灰石纳米颗粒(Hydroxyapatite Nanoparticles,HANPs)的出现,为骨修复领域带来了新的发展机遇。

一、羟基磷灰石纳米颗粒的制备磷酸二氢钙和氢氧化铵可作为羟基磷灰石纳米颗粒的前体。

先将磷酸二氢钙在氢氧化铵水溶液中沉淀,再在高温下烘烤,即可形成羟基磷灰石纳米颗粒。

此外,还可以利用溶剂热法、微波法等制备 HANPs。

二、羟基磷灰石纳米颗粒的优点1. 纳米级别的颗粒大小使其在植入过程中更容易与周围组织结合,因此能够有效解决传统羟基磷灰石颗粒可能导致的空隙问题。

2. 纳米颗粒具有更大的比表面积,这使得它具有更多的活性位点和更大的表面反应活性,有效促进骨细胞的吸附和增殖。

3. 纳米颗粒可以形成纳米级别的多向架构,这样可以更好地模仿自然骨的结构,促进骨细胞的生长。

三、羟基磷灰石纳米颗粒在骨修复中的应用1. 骨填充剂:由于其优秀的生物相容性和生物活性,HANPs 的应用在骨填充领域中具有相当的应用潜力。

HANPs 可以作为骨填充材料,替代传统的人工骨substitute,可促进自然骨的再生。

2. 羟基磷灰石纳米颗粒修复骨缺损:HANPs 可以在人工牙齿、牙髓和骨修复中发挥良好的效果。

通过纳米材料增加生物材料在短时间内的生物活性,从而在骨修复过程中起到加速骨组织生长的作用。

3. 骨植入体涂层剂:由于其生物相容性和优越的生物活性,HANPs 可以作为人工植入体的涂层剂。

此外,HANPs 在植入体涂层剂中作为生物材料的增加,可以提高植入体和骨组织的结合力,从而改善人工植入体的长期稳定性。

四、未来展望随着纳米技术的进一步发展,我们相信 HANPs 在骨修复领域中的应用前景不可限量。

羟基磷灰石的制备及应用研究

羟基磷灰石的制备及应用研究

羟基磷灰石的制备及应用研究羟基磷灰石是目前应用最广泛的生物材料之一。

因其良好的生物相容性和生物活性,在骨科和牙科领域得到了广泛的应用。

本文将就羟基磷灰石的制备及应用进行研究和探讨。

1.羟基磷灰石的制备羟基磷灰石的制备主要有湿法合成和干法合成两种方法。

其中湿法合成又包括共沉淀法、溶胶-凝胶法、水热法等几种方法。

而干法合成主要有高能球磨法等方法。

1.1 湿法合成共沉淀法:羟基磷灰石的共沉淀法制备过程中利用钙、磷两个离子在一定条件下共沉淀作用,形成了羟基磷灰石。

共沉淀法具有制备工艺简单,反应速度快等优点。

但是其产品具有较大的晶体粒径和不稳定等缺陷。

溶胶-凝胶法:在溶胶-凝胶法制备羟基磷灰石过程中,通过到达成熟态的化学缓慢水解发生反应,羟基磷灰石在凝胶中形成。

该方法得到的羟基磷灰石晶体粒度分布小,晶体形态好,内部结构均匀致密等优点。

但是该方法的制备过程复杂,且需要较长时间,成本较高。

水热法:在水热法制备羟基磷灰石过程中,通过水热反应来形成羟基磷灰石。

该方法具有制备工艺简单等优点。

但是制备效率较低且羟基磷灰石的结晶度较低,易形成杂多晶和非晶态。

1.2 干法合成高能球磨法:在高能球磨法制备羟基磷灰石过程中,通过高能钨钢球的强制研磨来形成羟基磷灰石。

该方法具有制备简单,易于大规模生产等优点。

但是制备过程中需要严格控制球的大小,否则会影响羟基磷灰石的晶体粒度和分布。

2.羟基磷灰石的应用2.1 骨科领域羟基磷灰石可作为一种生物陶瓷,应用于骨科领域。

其良好的生物相容性和生物活性使得其能够与人体骨组织相容性良好。

在人工骨替代和组织修复中,羟基磷灰石能够促进骨细胞的生长和分化,提高骨修复的质量。

2.2 牙科领域在牙科领域,磷酸羟基磷灰石可以用于制备牙科修补材料,其生物相容性好,与人体牙齿组织具有相似的化学成分和物理性质。

磷酸羟基磷灰石的应用还可以提高口腔修复质量。

3.羟基磷灰石的未来展望随着骨科和牙科行业的飞快发展,羟基磷灰石的应用范围也在不断扩大。

羟基磷灰石医用材料

羟基磷灰石医用材料

羟基磷灰石医用材料
摘要:
一、羟基磷灰石的基本概念与特性
二、羟基磷灰石在生物医学领域的应用
三、羟基磷灰石的制备方法与工艺
四、羟基磷灰石产品的市场现状与前景
正文:
羟基磷灰石(HAP)是一种生物活性无机材料,化学式为
Ca5(OH)(PO4)3,它是人体和动物骨骼的主要成分。

在生物医学领域,羟基磷灰石因其独特的物理和化学性质,被广泛研究和应用。

羟基磷灰石具有优良的生物相容性,能与机体组织在界面上实现化学键结合。

其在体内有一定的溶解度,能释放对机体无害的离子,参与体内代谢,对骨质增生有刺激或诱导作用,能促进缺损组织的修复,显示出生物活性。

在生物医学领域,羟基磷灰石主要用于制备生物医学材料及其制品,包括羟基磷灰石生物陶瓷及其复合材料、热喷涂涂层、电泳沉积、物理气相沉积等。

此外,羟基磷灰石也可用作高纯试剂。

羟基磷灰石的制备方法有多种,如湿化学法、干化学法、沉淀法、水热法等。

其中,超临界流体干燥法(SCFD)是一种常用的制备纳米羟基磷灰石的方法。

这种方法具有制备过程简单、能耗低、产品纯度高等优点。

在市场应用方面,羟基磷灰石产品在我国医疗、生物医学领域有着广泛的应用。

随着科技的发展和需求的增长,羟基磷灰石在医疗领域的应用将进一步
拓展。

目前,我国已经有不少企业致力于羟基磷灰石相关产品的研发和生产,积极推动其在医疗、生物医学领域的应用。

总之,羟基磷灰石作为一种具有生物活性的无机材料,在我国生物医学领域具有广阔的应用前景。

羟基磷灰石的制备与应用研究

羟基磷灰石的制备与应用研究

羟基磷灰石的制备与应用研究1.引言羟基磷灰石(HA)是一种广泛应用于医学领域的生物材料,具有与骨骼组织相似的化学成分和结构。

因此,HA材料被广泛应用于骨修复、植入物、药物缓释等领域。

本文旨在介绍羟基磷灰石的制备方法和应用研究。

2.羟基磷灰石的制备2.1 化学合成法化学合成是制备HA材料的一种常用方法。

主要步骤包括磷酸和Ca(OH)2的反应,生成磷酸钙沉淀物,进一步反应形成HA。

其中,磷酸和Ca(OH)2的摩尔比例是重要的,影响着HA的形态和结构。

2.2 热沉淀法热沉淀法是一种常用制备HA材料的方法。

该方法主要步骤包括磷酸和CaCl2混合并调节pH值,然后在高温条件下使其反应生成HA。

这种方法可以制备出具有大量孔隙和高比表面积的HA材料。

2.3 生物制备法生物制备法是利用微生物、植物、动物等生物体通过其生理代谢产生的有机酸或其他物质来制备HA材料。

这种方法制备的HA 材料更具有生物相容性,并且制备成本更低。

3.羟基磷灰石的应用研究3.1 骨科材料由于HA与骨骼结构相似,因此它是一种在骨科领域广泛应用的生物材料。

HA材料可以用于骨修复、骨填充、植入物等领域。

HA材料具有生物相容性高、吸附能力好、力学性能良好等优点,已经成为骨科领域的重要材料。

3.2 药物缓释HA材料具有很好的生物相容性和化学稳定性,可以被用于药物缓释领域。

HA材料的微孔可以吸附药物,然后缓慢释放出来。

这种方法可以使药物在缓慢释放的过程中保持其活性,同时也可以延长药物的作用时间。

3.3 医用传感器HA材料也可以作为医用传感器的基础材料。

许多现代医疗设备和技术都需要传感器来搜集医学数据。

利用HA材料的导电性能特点,可以研制出具有高灵敏度、稳定性和生物相容性的传感器。

4.总结羟基磷灰石是一种具有广泛应用的生物材料,目前已经在医药领域得到了广泛的应用。

本文介绍了HA材料的制备方法和应用研究,展示了它的潜力和前景。

HA材料在医疗领域中将继续发挥重要作用。

羟基磷灰石的制备及应用研究

羟基磷灰石的制备及应用研究

羟基磷灰石的制备及应用研究羟基磷灰石是一种生物医用材料,具有良好的生物相容性和生物活性。

在牙科、骨科、普外科等领域被广泛应用,特别是在人造骨修复方面发挥着重要作用。

1. 羟基磷灰石的制备方法羟基磷灰石的制备方法有多种,其中包括化学合成、水热法、共沉淀法等。

其中,共沉淀法是目前最为常用的制备方法之一。

共沉淀法是通过将含有Ca2+和PO4^3-的化合物,如CaCl2和Na2HPO4混合在一起,并在水中搅拌,使其形成沉淀。

沉淀经过干燥和高温煅烧,即可得到羟基磷灰石。

通过调节反应条件,如pH值、反应温度和时间等参数,可以得到不同形态和性质的羟基磷灰石。

2. 羟基磷灰石的应用研究羟基磷灰石的应用研究主要集中在生物医用材料领域。

它具有良好的生物相容性和生物活性,可以与组织细胞良好地结合,促进骨组织的生长和再生。

在牙科领域中,羟基磷灰石被广泛应用于牙髓炎和牙根被破坏的治疗中。

在骨科领域中,羟基磷灰石则被用于骨修复和骨再生。

在普外科领域中,羟基磷灰石则被用于人造关节的制作,以及其他重大手术中的骨缺损修复。

不仅如此,羟基磷灰石还可以通过表面修饰、掺杂和复合等方法,来改善其性能和功能,例如提高降解速率、增强力学性能、抗菌、降解药物等。

这些方法均可以扩展羟基磷灰石的应用范围和提高其性能,推动其在生物医用材料领域的进一步发展。

3. 羟基磷灰石的发展前景近年来,随着医疗技术的发展和人们健康意识的提高,生物医用材料的需求量越来越大。

而作为一种重要的生物医用材料,羟基磷灰石将在未来得到进一步的应用和发展。

未来,羟基磷灰石的发展将更加注重材料的智能化、定制化和可持续发展。

通过纳米材料、生物材料等新技术的应用,将实现羟基磷灰石在组织工程、医学影像等领域的广泛应用。

同时,在病理诊断与治疗中更广泛地运用,例如在肿瘤的预防、诊断和治疗中的应用,将会取得更为广泛和重要的应用和发展。

总之,羟基磷灰石是一种生物医用材料,具有广泛的应用前景和发展空间。

纳米羟基磷灰石和微米级羟基磷灰石

纳米羟基磷灰石和微米级羟基磷灰石

纳米羟基磷灰石和微米级羟基磷灰石下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!纳米羟基磷灰石和微米级羟基磷灰石:一场微观世界的探索引言在当今材料科学领域,纳米技术正成为一种引人瞩目的前沿技术,其在各个领域的应用潜力备受关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米羟基磷灰石的制备及其在医学领域的应用漳州师范学院化学与环境科学系08科学教育摘要:生物陶瓷纳米羟基磷灰石在自然界中以自然骨、牙中的无机矿物成分为主要形式。

人工合成的纳米羟基磷灰石材料具有与自然矿物相似的结构、形态、成分,表现出良好的生物相容性和生物活性,广泛应用于医学领域。

本文综合论述了纳米羟基磷灰石在物理化学方面的应用并对其在医学领域的应用进行了详细的论述和展望。

关键词:纳米羟基磷灰石、医学领域、合成方法及应用Abstract:Biological nanometer hydroxyapatite ceramics in nature to natural bone and tooth the inorganic mineral composition as the main form. Synthetic nano hydroxyapatite orbital implant material has and natural mineral similar structure、shape、composition、show good biocompatibility and biological activity,widely used in medical field. The paper discusses the nano hydroxyapatite in physical chemistry and its application in medical field of applied discussed in detail and prospected.Keywords: nano hydroxyapatite,medical field,synthesis method and application1.n-HA简介羟基磷灰石的化学式为Ca10 ( PO4) 6 (OH)2,简称HA,属六方晶系,晶格参数为a = b = 0 .9421nm、c = 0 . 6882nm。

密度为3.16g/cm3,性脆,折射率是1.64~1.65。

微溶于纯水,呈弱碱性(pH = 7~9),易溶于酸而难溶于碱。

HA是强离子交换剂,分子中Ca2 +易被Cd2 +、Hg2 +等有害金属离子和Sr2 +、Ba2 +、Pd2 +等重金属置换,还可与含羧基(COOH)的氨基酸、蛋白质、有机酸等交换反应。

按照分子式计算HA的理论Ca/P 值为1.67[1]。

羟基磷灰石晶体为六方晶系,属L6PC对称型和P63/m空间群,其结构为六角柱体,与C轴垂直的面是一个六边形,a、b轴夹角120°,晶胞参数a0=0.943~938 nm,c0=0.688~0.686 nm,单位晶胞含有10个Ca2+、6个PO43-和2个OH-。

其中OH-位于晶胞的4个角上,10个Ca2+分别占据2种位置,4个Ca2+占据CaⅠ位置,即z=0和z=1/2位置各2个,该位置处于6个O组成的Ca-O八面体的中心。

6个Ca2+处于CaⅡ位置,即z=1/4和z=3/4位置各有3个,位置处于3个O组成的三配位体中心。

6个PO43-四配位体分别位于z=1/4和z=3/4的平面上,这些PO43-四面体的网络使得羟基磷灰石结构具有较好的稳定性,如图1[2]。

羟基磷灰石(Hydroxyapatite,HA)是动物和人体骨骼的要无机矿物成分,具有良好的生物活性和生物相容性。

当羟基磷灰石的尺寸达到纳米级时将现出一系列的独特性能,如具有较高的降解和可吸收性。

研究表明:超细羟基磷灰石颗粒对多种癌细胞的生长具有抑制作用,而对正常细胞无影响。

因此纳米羟基磷灰石的制备方法及应用研究已成为生物医学领域中一个非常重要的课题,引起国内外学者的广泛关注[4]。

2.纳米羟基磷灰石的合成2.1合成方法简介:纳米羟基磷灰石的制备方法纳米羟基磷灰石的制备方法有许多种,通常可分为湿法和干法。

湿法包括沉淀法、水热法、溶胶-凝胶法、超声波合成法及微乳液法等。

干法为固态反应法等[2 ]。

2.2 纳米HA的制备[3]2.2 .1 实验药品磷酸:北京化工厂;氢氧化钙:上海凌峰化学试剂有限公司;溴化钾、乙醇:北京化工厂。

以上均为分析纯。

2.2.2 实验仪器数显电动搅拌机: D SX290 型,杭州仪表电机有限公司;恒流泵:Sxl23278 型,金坛市金城国胜实验仪器厂;透射电子显微镜: HITACHI2800型,日本日立公司生产;X 射线衍射仪: D/ ma x .2500 . PC 型,日本Ri ga k u公司生产;红外光谱仪: Pre sti ge221型,美国尼高丽公司;冷冻干燥机: D55053 型,美国西蒙公司。

2.2.3 n-HA 制备称取一定量的Ca(OH)2加入到500mL蒸馏水中,用搅拌器强烈搅拌使之混合均匀直至Ca(OH)2在蒸馏水中不团聚,而呈更细小颗粒分布,形成0 . 25 mol/ L 石灰水悬浮液。

设定反应体系n( Ca )∶n ( P) > 1 .67 的情况下,用恒流泵将200 mL C( H3PO4)= 0.3 mol/L的磷酸水溶液以1mL / min的速度滴入高速搅拌的C Ca ( O H )2= 0.25mol/L的500mL氢氧化钙/水悬浊液中,整个反应体系恒温在50~55℃。

反应中控制加料速度以维持一定的 pH 值,待全部滴加完毕后再恒温搅拌10h ,然后将反应液的温度降至室温陈化 12h 。

将白色胶状沉淀过 滤后用去离子水洗涤3次完全除去残留的可溶性杂质(PO 43-和Ca 2+等),过滤后在-50℃ 的冷冻干燥机中冻干48 h ,得到白色的 n-H A 。

反应方程式 : 10Ca(OH)2+6H 3PO 4=Ca 10 ( PO 4 ) 6 (OH) 2+18H 2O2.3测试表征[3]X 射线衍射(XRD)测试条件为:铜靶K α射线(λ= 0.154 nm),管压40 kV ,管流 200 mA ,扫描速5°/ min ,测量范围为10°~60°;傅立叶变换红外光谱:采用溴化钾压片法,分辨率 4cm -1,扫描范围为400~4000cm - 1;扫描电镜电子显微镜:将n-HA 粉末喷金处理,在扫描电子显微镜进行观察并拍照。

图2为不同搅拌速率下合成的HA 粉末的FT-IR 谱图。

3430cm -1处的吸收峰是由氢键缔合的OH -伸缩振动峰,566、604和 1040cm -1处的强吸收峰源于 PO 4 3 -基团振动引起的 ,而吸收峰的强度非常强。

1630和3640cm - 1附近的吸收峰归属于HA 表面吸附的水引起的,这可能是由于纳米HA 表面容易吸收空气中的水分。

值得注意的是,图2(a) (b)中 876 cm- 1处的吸收峰是 PO 42-造成的,1430 cm -1附近出现了CO 32-的吸收峰,表明CO 32-进入了 HA 晶格,取代了 HA 晶格中的PO 4 3 -基团 ,但含量很少天然骨中的无机组分HA 晶体是含有CO 32-的碳酸盐磷灰石(CHA) ,这说明实验中制得的 HA 纳米晶体与人骨的组分更为相似。

有研究发现晶格中图2 不同搅拌熟虑下合成HA 的FT-IR 谱图 a=700r/min b=1000r/min c=2000r/minCO32-离子对HA颗粒具有加速生物降解的作用,使HA材料在人体生理环境下会发生物理化学溶解,或发生化学变化而分解成较小的颗粒。

这一特性有利于CHA作为骨组织工程材料在临床上的应用。

而在图2中这两个吸收峰非常微弱,表明提高搅拌速率,生成的产物比较纯净。

图3 为不同搅拌速率下合成的HA粉末的XRD谱图。

由图3可知,不同搅拌速率合成的HA的衍射图谱在衍射峰的位置和数量上基本一致,与标准谱图(CPDS 0920432)对照表明生成的产物均为HA。

不同搅拌速率下合成HA 颗粒的平均结晶尺寸可用公式(1)计算,结果见表2。

由表2可知,搅拌速率< 1000 r/min时生成的HA粒子不是纳米粒子,当搅拌速率>1000r/min时,HA颗粒的结晶尺寸随搅拌速率的增大而减小,表明晶体在较高的搅拌速度下成核速率快,核生长速度慢,晶核的粒度小,结晶多。

反之,搅拌速率低,晶体的粒度变大。

2.4 最佳工艺条件下n-HA的表怔反应温度控制在50~55℃,搅拌速率为2000 r/min时所得产品冷冻干燥后的XRD和SEM结果见图4、图5。

从图 4 可以看出各衍射峰已经基本没有重叠现象,衍射峰变得较为尖锐,峰形较强,也没有其它杂质的衍射峰出现。

这说明此时粉体的结晶程度已经很高,晶型也很完善。

由图5可以看出采用冷冻干燥法避免了高温煅烧,得到了分散性较好的n2HA 粉末,直径为20~25 nm ,长度75~80nm ,其分散均匀 ,没有严重的团聚现象。

3.纳米羟基磷灰石的应用[4]3.1纳米羟基磷灰石作为药物载体HAP 粒子有良好的组织相容性、无毒、无免疫原性比表面积大,生物粘附性强且能结合和传递大分子药物吸附药物量大,具备了药物载体的基本要求。

羟基磷灰石作为药物载体系统能提高药物在生物膜中的透图4 n-HA 粉体的X 射线衍射图图5 n-HA 粒子的 SEM 图过性,有利于药物透皮吸收并发挥在细胞内的药效。

纳米羟基磷灰石作为药物载体十分安全,因为其与人或动物的骨骼、牙齿成分相同,且不为胃肠液所解,在释放药物后可降解吸收或全部随粪便排出,此外,纳米羟基磷灰石在生成过程中很方便引入放射性元素,可用于癌细胞的灭活。

3 . 2纳米HAP的抗肿瘤机制纳米HAP可以作用于细胞膜,可增加细胞液中Ca2+的浓度。

当肿瘤细胞外存在HAP等纳米粒子钙池时,其超强钙摄入能力可导致过多Ca2+摄入,出现毒性,从而抑制其生长;还可诱导细胞周期阻滞和凋亡,HAP使Bel-7402人肝癌细胞增殖阻滞G1期,阻断细胞周期的进展,导致肿瘤细胞胀亡;对端粒酶活性也有影响,纳米HAP有抑制肿瘤细胞的端粒酶基因的表达,下调端粒酶活性的作用。

3.3作为硬组织修复材料纳米HAP—高分子复合材料通过对天然硬组织的模仿,成功地解决了常规HAP生物陶瓷抗弯强度低、脆性大、在生理环境下抗疲劳性不好等临床应用中遇到的问题,因此在硬组织修复领域有着广阔的应用前景。

3 .4纳米羟基磷灰石与天然高分子材料的生物复合纳米羟基磷灰石/天然高分子复合生物材料,包括纳米羟基磷灰石与胶原、骨形态发生蛋白、多糖类材料进行的复合,因各天然高分子材料的特性不同,复合而成的生物材料也具有各自的特点。

黄永辉等指出纳米羟基磷灰石-胶原骨具有良好的生物相容性,是安全的新型骨缺损填充材料。

纳米人工骨材料植入骨缺损3~6个月可形成骨性连接,6~ 12个月骨结构塑形改建,且局部无不良反应。

相关文档
最新文档