可逆矩阵判定典型例题
线性代数2.4可逆矩阵

= O + 4E = 4E 所以
A
1 4
(A
−
3E )
=
E
所以
A 可逆,且
A−1 =
1 (A − 3E)
4
。
(2)因为 (A- 2E)(A − E) = A(A − E)− 2E(A − E) = A2 − A − 2A + 2E
= A2 − 3A − 4E + 6E = O + 6E = 6E
所以 (A- 2E)16 (A − E) = E 也就是 A - 2E 可逆,且 (A - 2E)−1= 1 (A − E)
( ) ( ) 求(1) A∗ (2) A-1 (3) A∗ -1 (4) A∗ ∗
解:(1)因为
21 0
A = 0 1 -3 =2
20 4
又
AA∗ = A∗A = A E
等号各边取行列式有 AA∗ = A E ,
所以 A A∗ = A 3 E = A 3 得到 A∗ = A 2 = 22 = 4
(对于n阶方阵 A ,我们有 关系式 A∗ = A n−1 )
所以 E − A 可逆,且 (E − )A −1 = E + A + A2 ++ An−1 。
例5 已知 A2 − 3A − 4E = O
证明(1)A 可逆 ,并求 A−(1 2)A - 2E 可逆,并求 (A - 2E)−1 证(1)因为 A(A − 3E) = A2 − 3A= A2 − 3A − 4E + 4E
A31= (−1)3+111 -03 = −3
A32
=
(−
)1 3+2
2 0
−03 = 6
判断矩阵可逆的练习题

判断矩阵可逆的练习题判断矩阵可逆的练习题矩阵是线性代数中的重要概念,它在各个领域中都有广泛的应用。
而判断矩阵是否可逆是矩阵理论中的一个重要问题。
本文将通过一些练习题来帮助读者更好地理解和掌握矩阵可逆性的判断方法。
在开始之前,我们先回顾一下什么是可逆矩阵。
一个n阶方阵A称为可逆矩阵,当且仅当存在一个n阶方阵B,使得AB=BA=I,其中I是n阶单位矩阵。
可逆矩阵也被称为非奇异矩阵。
练习题1:设A是一个3×3的矩阵,其行列式为2。
请判断矩阵A是否可逆,并给出可逆矩阵B。
解答:根据矩阵可逆的定义,我们知道,如果矩阵A可逆,那么它的行列式必不为0。
因此,由题意可知矩阵A是可逆的。
为了找到可逆矩阵B,我们可以利用伴随矩阵的性质。
伴随矩阵的定义是:若A是一个n阶方阵,其伴随矩阵记作adj(A),则adj(A)的元素是A的代数余子式的代数余子式。
对于3×3的可逆矩阵A,其伴随矩阵B可以通过以下公式计算得到:B = (1/2)adj(A)练习题2:设A是一个2×2的矩阵,其特征值为3和-2。
请判断矩阵A是否可逆,并给出可逆矩阵B。
解答:根据矩阵可逆的定义,我们知道,如果矩阵A可逆,那么它的特征值必不为0。
因此,由题意可知矩阵A是可逆的。
为了找到可逆矩阵B,我们可以利用逆矩阵的性质。
对于2×2的可逆矩阵A,其逆矩阵B可以通过以下公式计算得到:B = (1/det(A))adj(A)其中,det(A)表示矩阵A的行列式。
通过以上两个练习题,我们可以看出,判断矩阵可逆性的关键在于判断矩阵的行列式是否为0。
如果行列式不为0,则矩阵可逆;如果行列式为0,则矩阵不可逆。
在实际应用中,判断矩阵可逆性是非常重要的。
例如,在线性方程组求解中,如果系数矩阵可逆,那么方程组有唯一解;如果系数矩阵不可逆,那么方程组可能无解或有无穷多解。
因此,掌握判断矩阵可逆性的方法对于解决实际问题具有重要意义。
总结起来,通过练习题的训练,我们可以更好地理解和掌握矩阵可逆性的判断方法。
判断矩阵可逆性的练习题

判断矩阵可逆性的练习题矩阵的可逆性是线性代数中一个重要的概念,它与矩阵的行列式密切相关。
在本文中,我们将通过一些练习题来帮助读者更好地理解和掌握矩阵的可逆性判断方法。
练习一:判断矩阵可逆性的基本方法给定一个2 × 2的矩阵A = [a, b; c, d],其中a、b、c、d为实数。
我们可以通过计算矩阵A的行列式来判断矩阵的可逆性。
首先,计算矩阵A的行列式D = ad - bc。
如果D ≠ 0,那么矩阵A是可逆的;如果D = 0,那么矩阵A不可逆。
练习二:判断2 × 2矩阵可逆性的具体应用现在,我们来解决一个具体的问题。
给定矩阵A = [2, 1; 3, 4],我们需要判断该矩阵是否可逆。
根据练习一的方法,我们计算矩阵A的行列式D = (2 × 4) - (1 × 3) = 8 - 3 = 5。
因为D ≠ 0,所以矩阵A是可逆的。
练习三:用逆矩阵判断矩阵可逆性除了通过行列式判断矩阵的可逆性外,我们还可以使用逆矩阵的概念来判断矩阵的可逆性。
给定一个n阶方阵A,如果存在一个n阶方阵B,使得AB = BA = I,其中I是单位矩阵,则称矩阵A是可逆的,矩阵B称为矩阵A的逆矩阵。
练习四:使用逆矩阵判断矩阵可逆性的具体应用现在,我们考虑一个3 × 3的矩阵B = [1, 2, 3; 4, 5, 6; 7, 8, 9]。
我们需要判断矩阵B的可逆性,并找出它的逆矩阵。
首先,我们计算矩阵B的行列式D = 1 × (5×9 - 6×8) - 2 × (4×9 - 6×7) + 3 × (4×8 - 5×7) = -3。
因为D ≠ 0,所以矩阵B是可逆的。
接下来,我们可以使用伴随矩阵的方法来求出矩阵B的逆矩阵。
伴随矩阵的定义是:对于一个n阶方阵A,其伴随矩阵记作adj(A),其中(adj(A))ij = (-1)^(i+j) × Mij,Mij是A的(i, j)元素的代数余子式。
可逆矩阵264191

1 1 1
例
设A 2 1
0
求 A1
1 1 0
1 1 1 1 0 0
解 A I 2 1 0 0 1 0
1 1 0 0 0 1
r2 2r1
r3 r1
1 0
1 1
1 2
1 2
0 1
0 0
0 2 1 1 0 1
r1 r2 r3 2r2
(1)r2
1 0
0 1
1 2
1 2
1 1
由初等矩阵的定义可以看出,初等矩阵
都是可逆的,且:
E 1 i, j
Ei, j
Ei
(k ) 1
Ei
(1) k
Ei, j (k)1 Ei, j (k)
高等代数
定理2.4.4 n阶方阵A是可逆矩阵的充要条件是A可以 经过初等变换化为单位矩阵 定理2.4.5 n阶方阵A是可逆矩阵的充要条件是A可 写成初等矩阵的乘积
4
0
4 .
A13 A23 A33 5 1 3
3
A1
|
1 A
|
A*
1 4
4
5
3 0 1
1 4
3 4
1
3
5
3 4 0 1
1
4
1 .
3
4 4 4
高等代数
逆矩阵的性质
定理2.4.2 若矩阵可逆,则A的逆矩阵是唯一的. 证明 若B、C都是A的逆矩阵,则
AB BA I, AC CA I.
高等代数
例如
1 0 1 0 A 1 1 , B 1 1 ,
1 0 1 0 1 0 AB 1 1 1 1 0 1 I,
BA
1 1
书后习题:逆矩阵的证明题

14. 设n阶方阵A满足:A3 4 A2 + 3 A E = 0 阶方阵A满足: 试证A可逆, 试证A可逆,并求 证: 由
A1
A3 4 A2 + 3 A E = 0 ,得到
A( A2 4 A + 3E ) = E
故A可逆, 且 可逆,
A = A 4 A + 3E
B A B = B
K 1 1
B A = B B A = 5K
K K
1
5)设矩阵A可逆,则矩阵kA可逆的充分必要条件 设矩阵A可逆,则矩阵kA可逆的充分必要条件 是 k ≠0
作业: )、2 )、4 )、10、13、 作业:1(2)、2(1)、4(2)、10、13、16 (1)、19(4)、22(2、5)、24、30(1) )、19( )、22( )、24、30(
∴ ( A ) 1 = ( A1 )
20.填空:1)设A、B是两个 阶方阵, A = 1, B = 2 .填空: ) 是两个3阶方阵 、 是两个 阶方阵, 则:2( A B ) = 2 A B
T 3 T 1 2 1 2
=8 A
T 2
B
1 2
=8 A
2 1 2 B
= 8 ×1 × 1 = 2 4
1 A = 16 , B = 2 A1 (2 A) 1 2)设A、B是两个4阶方阵, 是两个4阶方阵,
A 1 ( A 3E ) = E 2
Байду номын сангаас
A1 = 1 ( A 3 E ) 2
2. 若 AK = 0 ,则 ( E A) 1 = E + A + A2 + + AK 1 证明: 证明: 因
( E A)( E + A + A + + A
线性代数第三章矩阵的逆(习题课)

目录
• 矩阵的逆的定义和性质 • 逆矩阵的运算规则 • 逆矩阵的应用 • 习题解析与解答
01
矩阵的逆的定义和性质
定义与性质
逆矩阵的定义
如果存在一个矩阵A-1,使得A*A-1=I (单位矩阵),则称A为可逆矩阵, A-1为A的逆矩阵。
逆矩阵的性质
若A是可逆矩阵,则A的逆矩阵A-1也 是可逆矩阵,且(A-1)-1=A。同时, 若B是A的逆矩阵,则AB=BA=I。
03
逆矩阵的应用
解线性方程组
线性方程组
线性方程组是数学中一个常见的 问题,它涉及到多个未知数和方 程。通过矩阵的逆,我们可以找 到线性方程组的解。
求解步骤
首先,将系数矩阵进行转置,然 后计算其行列式值。如果行列式 值不为零,则存在唯一解。最后, 通过矩阵的逆计算出线性方程组 的解。
应用场景
线性方程组广泛应用于各个领域, 如物理、工程、经济等。通过矩 阵的逆,我们可以更高效地解决 这些领域中的问题。
综合题2解析
题目要求求一个给定矩阵的逆矩阵, 并判断其是否可逆。同时,我们需要 解决一个与该矩阵相关的问题。首先 ,我们判断矩阵是否可逆。如果可逆 ,我们再使用公式法或分块法计算逆 矩阵。然后,我们将逆矩阵应用于实 际问题中以获得解决方案。
综合题目3解析
题目要求求多个给定矩阵的乘积的逆 矩阵,并验证其正确性。同时,我们 需要解决一个与这些矩阵相关的问题 。首先,我们计算多个给定矩阵的乘 积。然后,我们使用公式法或分块法 计算其逆矩阵。最后,我们通过乘以 其原矩阵来验证逆矩阵的正确性。同 时,我们将逆矩阵应用于实际问题中 以获得解决方案。
量βi;最后,计算P^(-1)AP=B。
分块法证明矩阵可逆例题

分块法证明矩阵可逆例题哎呀,说到矩阵可逆,大家的第一反应是不是都是一脸懵?别担心,今天咱们就用一个大家能理解的方式来聊聊这个话题,顺便捋顺了。
咱们从头说起,这个“分块法”其实就是一种很巧妙的技巧,挺像是拆解难题的方式。
像是做数学题,平时一眼看上去有点复杂,结果你发现其实可以分成几个小块来解决,每个小块都不难,合起来就能搞定大问题。
先给大家普及一下,什么叫矩阵可逆?就是有一个矩阵,它能够找出自己的“逆”矩阵,咱们把这个逆矩阵和原矩阵相乘,结果是一个单位矩阵。
简单点说,像是你和好朋友玩合力游戏,两个人互相帮忙,最后把大难题都解决了。
这时候,原矩阵和逆矩阵就是一对“搭档”。
如果矩阵有逆矩阵,那就代表它是可逆的,反之就不行。
这时候,分块法就登场了。
啥是分块法呢?简单说,就是把一个大矩阵分成几个小矩阵,逐个突破,搞定它。
就像是你去吃火锅,菜品太多,直接一次性下锅肯定吃不完,可你可以先把火锅分成一小部分,慢慢来嘛!就这意思,把矩阵分成几个块儿,逐步搞定。
说到这里,我猜你可能会想,这分块法是怎么帮助我们证明矩阵可逆的呢?别急,接着往下看。
分块法的核心思想是,把一个大矩阵拆成多个小矩阵,每个小矩阵负责一个小部分的计算。
这样一来,虽然整个问题看起来有点复杂,但通过分块之后,问题就小了,大家各自攻克。
就像你拆了大块的砖石,每块砖都能轻松搬运,累了也能休息一会儿,慢慢就能把整栋楼修好了。
假设我们有一个矩阵A,假设它可以拆分成4个小块,形式看起来就像是这样:A = begin{pmatrixA_{11 & A_{12A_{21 & A_{22end{pmatrix这个矩阵A就被分成了四个小块,A₁₁,A₁₂,A₂₁,A₂₂。
然后,我们的目标就是要证明这个矩阵A是可逆的,怎么做呢?要不然你也可以试着求它的逆矩阵,看它和A相乘能不能得到单位矩阵。
行了,别着急,咱们一步步来。
我们需要假设A₁₁和A₂₂都是可逆的,大家可以理解成它们是两块坚固的砖头,不容易被砸坏。
可逆矩阵习题

解 1)在 2A1B B 4E的两边左乘A,得 2B AB 4AE
(A 2E)B 4A
A 2E B 43 A 0
所以A-2E可逆.
2) A 2B(B 4E)1 下面求B -4E 的逆.
B 4E
3 2 0 1 0 0
E
1
2
0
1
A=
2
,
1
求B.
解 由|A|≠0,所以A可逆,由A*BA=2BA-4E,
左乘A右乘A-1得-2 B-2 AB=-4E,即(A+E)B=2E,故
2
1 1
B 2( A E)1 2
1
2
2
1
矩阵的秩
概念
k阶子式.
___A1
__
0 0 1 2
0 0 1
1
1 2 0
0
2 5 0 0
0 0
0 0
1/ 3 1/ 3
12//33
3.矩阵A
0 0
8
0 5 0
2 0 的 逆 矩 阵A1 0
0 0 1/ 2
0 1/ 5
3 4
5 t ,
且AB
O,则
3 5 3
t 4
例 设矩阵
1 1 2 2 1
A=
0 2
2 0
1 3
5 1
1 3
,
1 1 0 4 1
求R(A)及A的一个最高阶非零子式.
解 对矩阵A作初等行变换变成行阶梯型矩阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题(二)方阵可逆的判定例1 设A 是n 阶方阵, 试证下列各式:(1)若, 则;(2)若A 、B 都是n 阶可逆矩阵, 则; (3); (4)若, 则; (5); (6)若, 则(l 为自然数); (7). 证 (1)因为, 故A 是可逆矩阵, 且两边同时取转置可得故由可逆矩阵的定义可知是A T 的逆矩阵. 即(2)利用方阵与其对应的伴随矩阵的关系有(2-7)另一方面(2-8)比较式(2-7)、(2-8)可知又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘可得(3)设n 阶方阵A 为于是可得A 的伴随矩阵为注意到A 的转置矩阵为0||≠A T T A A )()(11--=***)(A B AB =TT A A )()(**=0||≠A *11*)()(--=A A *1*)1()(A A n --=-0||≠A l l A A )()(11--=*1*)(A k kA n -=0||≠A E AA =-1E E A A AA T T T T ===--)()()(11T A )(1-11)()(--=T T A A E AB AB AB ||)()(*=B I A B B A A B AB A B )|(|)())((*****==E AB E B A B B A |||| ||||*===))(()()(***AB A B AB AB =1)(-AB ***)(A B AB =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211*A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn n n n n A A A A A A A A A A 212221212111*可推出的伴随矩阵为比较与可知(4)因为, 故A 可逆, A 的逆矩阵为, 并且由可知由于, 可逆且可得另一方面, 由由矩阵可逆的定义知, 可逆, 并且(5)对于(3)给出的矩阵A , 有即的代数余子式为故⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn nnn n T a a a a a a a a a A 212221212111TA ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn n n n n T A A A A A A A A A A212222111211*)(*A *)(T A **)()(T T A A =0||≠A 1-A E A A A ||*=1*||-=A A A 0||≠A 1-A E A A A ||)(1*11---=AA A ||1)(*1=-E A A A A A A ==--||1||)(1*1**A *11*)()(--=A A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---------=-nn n n n n a a a a a a a a a A212222111211ij a -nnnj nj n n i j i j i i n i j i j i i n j j ji a a a a a a a a a a a a a a a a ----------------+-+++-++-+----+-+111111111111111111111111)1(), ,2 ,1,( )1(1n j i A ij n =-=-(6)因为, 故A 可逆, 并且(7)对于(3)给出的矩阵A , 有类似于(5)可知的代数余子式为, 故例2 设A 是n 阶非零矩阵, 并且A 的伴随矩阵满足, 证明A 是可逆矩阵. 证 根据矩阵A 与其对应的伴随矩阵的关系式, 有反证, 假设A 不可逆, 故有, 由上式及条件, 有(2-6)设矩阵A 为由式(2-6)可知比较上式两边矩阵对角线上的元素有故*1121112122112111211111*)1()1()1()1()1()1()1()1()1()1()(AA A A A A A A A A A n nn n n n n n n n n n n n n n -----------=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---------=- 0||≠A l l A A A A A AA A )()()(111111------=== ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn n n n n ka ka ka ka ka ka ka ka ka kA 212222111111ij ka ijn A k 1-*A TA A =*E A A A AA ||**==0||=A TA A =*O AA AA T ==*⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn n n n n nn n n n n T a a a a a a a a a a a a a a a a a a AA 212221212111212222111211O a a a a a a a a a a a a a a a n i ni n i i ni n i i ni n i ni i n i i n i i i ni ni i n i i i n i i =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑∑∑∑=========1212111212211211121121 ), ,2 ,1( 012n j ani ji==∑=), ,2 ,1( 021n j a a a jnj j =====l 个 l 个因此有A = O , 与A 是n 阶非零矩阵矛盾, 故A 是可逆矩阵. 例3 设A 、B 都是n 阶可逆矩阵, 证明:的充要条件是证 必要性:因为因此即充分性:因为, 故. 例4 设A 是一个n 阶方阵, n 为奇数, 且, 证明不可逆.证 因为, 故因此有所以故是不可逆矩阵.例5 设A 是n 阶方阵且对某个正整数k 满足, 证明是可逆矩阵, 并求.证 由于故对于方阵A 的多项式, 仍有注意到, 故有 因此可逆, 并且例6 设A 是阶方阵,是A 的伴随矩阵的伴随矩阵, 证明:(1);(2).证 (1)利用矩阵A 与矩阵A 的伴随矩阵的关系, 有即从而有对两边取行列式, 有若A 可逆, , 故, 于是有111)(---=B A AB BA AB =1111)()(----==BA B A AB )())(()())((11BA BA AB BA AB AB --=BA AB =BA AB =1111)()(----==B A BA AB 1,1||-==A A A T )(A I -1-=A A T E AA AA T ==-1|)(|||||E A A A AA A E T T -=-=-|||)(| ||E A E A A T-=-=||||)1(A E A E n--=--=0||=-A E A E -O A k=A E -1)(--A E )1)(1(112-++++-=-k k x x x x x ))((12-++++-=-k k A A A E A E A E O A k=E A A A E A E k =++++--))((12 )(A E -121)(--++++=-k A A A E A E )2(>n n **)(A *A A A A n 2**||)(-=2)1(**|||)(|-=n A A E A AA ||*=E A A A ||)(****=A A A A A A A A AA ||])([)(||)(*********===E A AA ||*=n A E A A A AA ||||||||||||**===0||≠A 1*||||-=n A A若A 不可逆, 则, 的秩小于或等于1, 故, 仍有 (2)对两边取行列式, 有若A 可逆, 所以, 从而有, 于是可知 若A 不可逆, 则例7 设A 、B 是同阶方阵, 已知B 是可逆矩阵, 且满足, 证明A 和都是可逆矩阵, 并求它们的逆矩阵.证 因为, 由于所以,因而有 可逆.由可知由可知.例8 设A 、B 均是n 阶方阵, 且可逆, 则也可逆, 并且证 考察两个矩阵的乘积因此可逆, 并且例9 设n 阶矩阵A 、B 和均可逆, 证明:(1)也可逆, 且(2)证 (1)因为两边取行列式有因为 A 、B 、可逆, 故所以有故 是可逆矩阵.AA A A A A n 2***||||)(-==0||=A *A 0)(**=A A A A n 2**||)(-=E A A A ****||)(=n A E A A A A A |||||||)(||||)(|********===0||≠A 0||||1*≠=-n A A 2)1(111***||)|(||||)(|----===n n n n A A A A 2)1(**||0|)(|-==n A A O B AB A =++22B A +22)(B B A A AB A -=+=+0||)1(|||||||)(|22≠-=-=+=+B B B A A B A A n 0||≠A 0||≠+B A B A A +,E B A A B =+--)()(12A B B A 121)()(---=+E B B A A =+--12))((121))((--+-=B B A A AB E +BA E +A AB E B E BA E 11)()(--+-=+A AB E BAB A AB E B BA E A AB E B E BA E 111)()())()((---+-+-+=+-+])()[(11A AB E AB A AB E B BA E --+++-+=A AB E AB E B BA E 1))((-++-+=E BA BA E =-+=)(BA E +A AB E B E BA E 11)()(--+-=+B A +11--+B A A B A B B B A A B A 11111)()()(-----+=+=+1111111111111)()()(-------------+-=+-=+B B A B B A B A A A B A 1)()(1111111-+=+=+-------BB A A BB B A A A B A ||||||||1111----+=+B B A A B A B A +0||1≠-A 0||1≠-B 0||≠+B A 0||11≠+--B A 11--+B A B B A A B E B B A A B A 11111))((])()[(-----++=++111)]()[(---++=B A B A B E故同理可证 .(2)因为故同理可证.E A B E A B E =++=---111))((B B A A B A 1111)()(----+=+A B A B B A 1111)()(----+=+])()[(])()[(1111111111----------+-+=+-+BA B A A A A B A A B A A A B A 11])()[(--+-+=A B B A I B A I AA A B B A ==-+=--11)(1111111)()(-------+-=+A B A A A B A 1111111)()(-------+-=+B B A B B B A。