OneWayANOVA单因素方差分析
单因素方差分析(one-wayANOVA)

单因素方差分析(one-wayANOVA)单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⽅)单因素⽅差分析概念是⽅来研究⽅个控制变量的不同⽅平是否对观测变量产⽅了显著影响。
这⽅,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⽅的⽅育率,研究学历对⽅资收⽅的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⽅)单因素⽅差分析步骤第⽅步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⽅⽅育率、⽅资收⽅;控制变量分别为施肥量、地区、学历。
第⽅步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⽅的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽅数学形式表述为:SST=SSA+SSE。
第三步是通过⽅较观测变量总离差平⽅和各部分所占的⽅例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽅例较⽅,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽅例⽅,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽅平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽅差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽅的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽅的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽅平,并作出决策(五)单因素⽅差分析的进⽅步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⽅个重要分析,主要包括⽅差齐性检验、多重⽅较检验。
SPSS中的单因素方差分析(One-Way Anova)

SPSS统计分析软件应用一、SPSS中的单因素方差分析(One-Way Anova) (一)基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
(二)实验工具SPSS for Windows(三)试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
(四)不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
(五)输出结果及分析灯泡使用寿命的单因素方差分析结果该表各部分说明如下:第一列:方差来源,Between Groups是组间变差,Within Groups 是组内变差,Total是总变差。
第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。
01.单因素方差分析(简洁版)

6、延伸阅读
单因素方差分析也可以通过Analyze > Compare Means > One-Way ANOVA进行,将ALT送入Dependent List框 中,将Group送入Factor框中,其结果与本例的操作是一样的。 单因素方差分析适用于只有一个处理因素的完全随机设计,处理因素可以有2个及以上的处理水平,观察指 标为连续变量。适用条件包括: 1)观测指标满足独立性; 2)各组观测指标均来自正态分布总体; 3)各组观测指标方差相等。 在实际中由于方差分析具有稳健性,因此对正态性的条件要求不是很严格,但是对方差齐的要求比较严格。
Tests of Between-Subjects Effects表格给出了方差分析的结果。 在方差齐的条件下,Group一行结果显示,F值=68.810, P(Sig.)<0.001。
Multiple Comparisons表格给出了部分方法的多重比较结果, 分别列出了每个组和其他组比较的均数的差值(Mean Difference (I-J))、标准误(Std. Error)、P值(Sig.)和均数 差值的95%置信区间(95% Confidence Interval)。检验水准α 设为0.05,组间差异有统计学意义的结果已用*标出。 不同多重比较方法的选择,需要结合研究设计和每个方法各自 的特点及适用条件。我们以Bonferroni法和Dunnett法的结果 为例,进行解读: (1)Bonferroni法结果显示,A组与B组的ALT水平相比,Mean Difference=-15.160 U/L,P(Sig.)<0.001;A组与C组相比, Mean Difference=1.133 U/L,P(Sig.)=1.000;B组与C组相 比,Mean Difference=16.293 U/L,P(Sig.)<0.001。
Minitab单因素方差分析

Minitab单因素方差分析
什么是单因素方差分析?
单因素方差分析〔One-way ANOVA〕是统计学中一种常见的假设检
验方法,用于比拟多个组或处理之间的均值差异是否显著。
在许多实验和研究中,我们经常需要比拟不同组或处理条件下的平
均值是否存在显著差异。
这时,方差分析就是我们常用的工具之一。
在Minitab中,进行单因素方差分析非常简单。
如何在Minitab中进行单因素方差分析?
要在Minitab中进行单因素方差分析,我们需要先准备好要分析的
数据,并按照一定的格式输入到Minitab软件中。
下面是一个例如数据集,我们将使用这个数据集来进行后续的分析:
Treatment Value
Group 1 12.5
Group 1 10.8
Group 1 11.2
Group 1 9.5
Group 2 8.7
Group 2 9.2
Group 2 10.1
Group 2 11.3
Group 3 7.6
Group 3 8.2
Group 3 9.0
Group 3 10.5
在Minitab中,我们可以按照以下步骤进行单因素方差分析:
1.翻开Minitab软件,并导入数据集;
2.在菜单栏中选择。
02.单因素方差分析(详细版)

箱线图是一种比较简单和流行的异常值检验方法, 当然同样存在一些更为复杂的方法,这里不过多 介绍。
如何处理数据中存在的异常值
导致数据中存在异常值的原因有3种: (1) 数据录入错误:首先应该考虑异常值是否由于数据录入错误所致。如果是,用正确值进行替换并重新进行检验; (2) 测量误差:如果不是由于数据录入错误,接下来考虑是否因为测量误差导致(如仪器故障或超过量程);
SPSS中将距离箱子边缘超过1.5倍箱身长度的数 据点定义为异常值,以圆点表示; 将距离箱子边缘超过3倍箱身长度的数据点定义 为极端值(极端异常值),以星号(*)表示。 为容易识别,在Data View窗口异常值均用其所 在行数标出。 本例数据箱线图无圆点或星号,因此无异常值。 假如数据中存在异常值和极端异常值,其箱线图 如右:
2、对问题的分析
研究者想分析不同group间的coping_stress得分差异,可以采用单因素方差分析。 单因素方差分析适用于2种类型的研究设计: 1)判断3个及以上独立的组间均数是否存在差异; 2)判断前后变化的差值是否存在差异。 使用单因素方差分析时,需要考虑6个假设。 假设1:因变量为连续变量; 假设2:有一个包含2个及以上分类、且组别间相互独立的自变量; 假设3:每组间和组内的观测值相互独立; 假设4:每组内没有明显异常值; 假设5:每组内因变量符合正态分布; 假设6:进行方差齐性检验,观察每组的方差是否相等。
(5) 点击Continue,返回One-Way ANOVA对话框。
(6)点击Post Hoc,出现One-Way ANOVA: Post
Hoc Multiple Comparisons对话框:
对话框根据方差齐性检验的假设是否满足, 分为2个主要区域:
(7)在Equal Variances Assumed模块内勾选Tukey,在
真的!单因素方差分析你用错了!

真的!单因素方差分析你用错了!方差分析简介方差分析(analysis of variance,简写为ANOVA)是进行多个均数比较的常用方法。
这种方法的基本思路是通过对变异进行分解和分析,从而达到统计推断之目的。
由于该方法是由英国统计学家R.A.Fisher于1923年首先提出的,因此又称为F检验。
最简单的方差分析,就是单因素方差分析(one-way anova),用于分析含有一个分类变量、一个定量变量的资料,用于多个样本均数的比较中。
方差分析对原始数据的要求与t检验一样,即要求资料满足独立性、正态性和方差齐性。
来个判断题,求围观!!因为单因素方差分析要求资料满足方差齐、正态性的条件,故当方差齐或正态性的条件不满足且经过变量变换也不满足时,应当采用非参数检验(如Kruskal-Wallis test)。
这句话对吗?这是有些传统统计教材中的说法,但是我很负责任的告诉你,上面的观点是错误的。
近日,在国外生物统计学方法相关资料中发现了针对单因素方差分析不满足应用前提(正态性、方差齐)的推荐处理方法,完全颠覆了我的以往思路。
现总结归纳如下一、当资料不满足正态性,由于单因素方法分析结果对资料不满足正态性的情况并不敏感,仍推荐使用单因素方差分析,不推荐非参数检验(Kruskal-Wallis test)。
二、当资料不满足方差齐性,推荐采用Welch's ANOVA,不推荐非参数检验(Kruskal-Wallis test)。
下面详细解释为什么不推荐非参数检验(Kruskal-Wallis test)的原因。
1不满足正态性的情况当资料中含有一个分类变量、一个定量变量,我们常常采用单因素方差分析。
但当不同组中的定量变量不满足正态性的条件,Kruskal–Wallis test往往被人们用为替代方法。
因为他们认为除非样本量非常大并且满足正态分布,否则就应该采用Kruskal–Wallis test;而且当数据正态性的条件不满足时,使用单因素方差分析是错误和危险的。
医学统计学课件单因素方差分析-SPSS

局限性
对数据前提假设的依赖
单因素方差分析的结果受数据前提假设的影响较大,如果数据不满足 前提假设,分析结果可能会出现偏差。
无法处理非参数数据
单因素方差分析主要适用于参数数据,对于非参数数据,可能需要采 用其他统计方法进行处理。
对极端值和离群点的敏感性
单因素方差分析对极端值和离群点的敏感性较高,可能会影响到结果 的稳定性。
详细描述
选取一定数量的高血压患者,等量随机分为四组,分别给予四种不同的药物治疗。在一定时间后,比较各组患者 血压的变化情况,利用单因素方差分析比较各组之间的差异。
实例二:不同运动方式对血脂水平的影响
总结词
研究不同运动方式对血脂水平的影响,有助于指导人们选择合适的运动方式来降低血脂水平,预防心 血管疾病。
F检验
F检验用于检验组间方差是否显著,如 果F检验的P值小于0.05,则说明各组 之间的方差存在显著差异。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
单因素方差分析的应用 实例
实例一:不同药物治疗高血压的效果比较
总结词
通过比较不同药物治疗高血压的效果,可以评估各种药物对血压的控制程度,为临床医生制定治疗方案提供依据。
详细描述
选取一定数量的志愿者,等量随机分为四组,分别进行四种不同的运动方式。在一定时间后,检测各 组志愿者血脂水平的变化情况,利用单因素方差分析比较各组之间的差异。
实例三:不同产地茶叶中营养成分的含量比较
总结词
比较不同产地茶叶中营养成分的含量,有助于了解不同产地茶叶的特点和品质,为消费 者提供参考。
REPORT
CATALOG
DAARY
SPSS中的单因素方差分析(One-Way Anova)

SPSS中的单因素方差分析(One-Way Anova)SPSS中的单因素方差分析(One-Way Anova) 一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
二、实验工具SPSS for Windows三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡 1 2 3 4 5 6 7 8 灯丝甲 1600 1610 1650 1680 1700 1700 1780乙 1500 1640 1400 1700 1750丙 1640 1550 1600 1620 1640 1600 1740 1800丁 1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament变量,数值型,取值1、2、3、4分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament即进入Factor框中。
(5)在主对话框中,单击“OK”提交进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
65.8
326.5 65.3
63.9
322.0 64.4
68.5
336.5 67.3
71.0
354.0 70.8
67.5
343.0 68.6
•因变量(响应变量):连续型的数值变量株高 •因素(Factor):影响因变量变化的客观条件 •一个因素:“品系” 单因素方差分析 •水平(Level):因素的不同等级 不同“处理” •五个水平:品系I-V •重复(Repeat):在特定因素水平下的独立试验 •五次重复
i 1 j 1 i 1 j 1
a
n
2
x
i 1 j 1
a
n
ij
xi xi x xi x xij xi 0
i 1 j 1
a
n
x
i 1 j 1
a
n
ij
x n xi x xij xi
固定效应模型
平方和与自由度的分解
x
i 1 j 1 a n i 1 j 1 a n ij
x xij xi xi x
i 1 j 1 a 2 n
2
a
n
2
xij xi 2 xij xi xi x xi x
(by RA Fisher)
例 调查5个不同小麦品系株高是否差异显著
品 I II III 系 IV V
1
2 3 4
64.6
65.3 64.8 66.0
64.5
65.3 64.6 63.7
67.8
66.3 67.1 66.8
71.8
72.1 70.0 69.1
69.2
68.2 69.8 68.3
5
和 平均数
第八章 单因素方差分析
Chapter 8: One-factor Analysis of Variance
方差分析:从总体上判断多组数据平均数 (K≥3) 之间的差异是否显著
方差分析将全部数据看成是一个整体,分析构成变 量的变异原因,进而计算不同变异来源的总体方 差的估值。然后进行F测验,判断各样本的总体 平均数是否有显著差异。若差异显著,再对平均 数进行两两之间的比较。
单因素方差分析的数据形式
X因素的a个不同水平(处理)
每 个 处 理 下 n 个 重 复
xi xij ,
j 1 a n
n
xi
x xij ,
i 1 j 1
1 xi , i 1, 2, , a n 1 x x an
方差分析原理
线性统计模型:
2 ),此时F na
值显著大于1,各组均数间的差异有统计学意义。故依据 F
值的大小可判断各组之间平均数有无显著差别。
固定效应模型
平方和的简易计算
SST xij x
i 1 j 1 a a n 2
x2 x na i 1 j 1
a n 2 ij
SS A n xi x
an 1
SS A
+
处理平方和
SSe
误差平方和
+ df A 处理自由度 df e 误差自由度
a 1
an a
MS A SS A / df A
处理均方
MSe SSe / df e
误差均方
固定效应模型
单因素固定效应模型的方差分析表
处理效应对均方的贡献
固定效应模型
方差分析统计量: Fdf
固定效应模型
xij i ij i 1, 2, , a j 1, 2, , n
其中αi是处理平均数与总平均数的离差,因这些离 差的正负值相抵,因此
i 1
n
i
0
如果不存在处理效应,各α i都应当等于0,否则至少 有一个α i≠0。因此,零假设为: H0:α1=α2= … =αa=0 备择假设为: HA:αi ≠ 0(至少有一个i)
65.3 64.6 63.7
67.8
66.3 67.1 66.8
71.8
72.1 70.0 69.1
69.2
68.2 69.8 68.3
5
和 平均数
65.8
326.5 65.3
63.9
322.0 64.4
68.5
336.5 67.3
71.0
354.0 70.8
方差分析原理
①因素的a个水平是人为特意选择的。 ②方差分析所得结论只适用于所选定的a个水平。
固定因素:
固定效应模型:处理固定因素所使用的模型。
随机因素:
①因素的a个水平是从水平总体中随机抽取的。 ②从随机因素的a个水平所得到的结论,可推广到该 因素的所有水平上。 随机效应模型:处理随机因素所使用的模型。
A , df e
MS A MSe
若零假设成立,不存在处理效应,则组内变异和组间变异都 只反映随机误差( 2 )的大小,此时处理均方 ( MS A)和误差 均方( MSe )大小相当,F 值则接近1,各组均数间的差异没 有统计学意义;反之,如果存在处理效应,则处理变异不仅 包含随机误差,还有处理效应引起的变异 (
i 1
2
1 a 2 x2 xi n i 1 na
减少计算误差 利于编程
x2 C na
C称为校正项。误差平方和 SSe = SST-SSA
例 调查5个不同小麦品系株高,结果见下表:
品 I II III 系 IV V
1
2 3 4
64.6
65.3 64.8 66.0
64.5
xij i ij i 1, 2, , a j 1, 2, , n
模型中的xij是在第i次处理下的第j次观测值。μ是总 平均数。α i是对应于第i次处理的一个参数,称为 第i次处理效应(treatment effect)。ε ij是随机误差, 是服从N(0,σ 2)的独立随机变量。
2 i 1 i 1 j 1
2
a
a
n
2
固定效应模型
x
i 1 j 1 a n ij
x n xi x xij xi
2 i 1 i 1 j 1
2
aan源自2平方和 的分割 自由度 的分割
= SS T 总平方和
= df T 总自由度