2020-2021高三数学上期中试题(带答案)(5)

合集下载

2020-2021高三数学上期中试题(带答案)

2020-2021高三数学上期中试题(带答案)

2020-2021高三数学上期中试题(带答案)一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形2.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--3.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+4.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .165.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .166.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-38.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .7109.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5210.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8111.已知正项数列{}n a *12(1)()2n n n a a a n N +=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.14.若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的取值范围为_______.15.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是____________16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 17.数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为_____. 18.在△ABC 中,2BC =,7AC =,3B π=,则AB =______;△ABC 的面积是______.19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.设0x >,0y >,4x y +=,则14x y+的最小值为______. 三、解答题21.在ABC V 中,3B π∠=,7b =,________________,求BC 边上的高.从①21sin A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.22.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?23.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .24.已知数列{}n a 的前n 项和为n S ,且1,n a ,n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n a b na =+,求数列{}n b 的前n 项和n T .25.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S . 26.等比数列{}n a 中,1752,4a a a ==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记n S 为{}n a 的前n 项和.若126m S =,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.B解析:B 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值. 【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.3.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。

2020-2021上海市南中学高三数学上期中试题及答案

2020-2021上海市南中学高三数学上期中试题及答案

2020-2021上海市南中学高三数学上期中试题及答案一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形2.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD. 3.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .34.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4 B .5 C .6 D .4或5 5.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .166.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B.()-+∞C .[)3,-+∞D.)⎡-+∞⎣7.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .28.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B相距,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km9.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .5210.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-11.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,3a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒ D .60B =︒二、填空题13.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________14.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)15.在△ABC 中,2a =,4c =,且3sin 2sin A B =,则cos C =____. 16.设数列{}n a 中,112,1n n a a a n +==++,则通项n a =___________.17.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 (写出所有正确命题的编号).①ab≤1; a b 2; ③a 2+b 2≥2;④a 3+b 3≥3;112a b+≥⑤. 18.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得1=,则14m n+的最小值为__________. 19.定义11222n n n a a a H n-+++=L 为数列{}n a 的均值,已知数列{}n b 的均值12n n H +=,记数列{}n b kn -的前n 项和是n S ,若5n S S ≤对于任意的正整数n 恒成立,则实数k 的取值范围是________.20.已知数列{}n a的通项n a =15项的和等于_______.三、解答题21.已知函数()cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围. 22.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.23.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .24.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC Va ,c . 25.在ABC ∆中,内角,,A B C 的对边分别是,,ab c,已知222,3A b c a π=+=. (1)求a 的值;(2)若1b =,求ABC ∆的面积.26.已知等差数列{}n a 的前n 项和为n S ,且1250,15a a S +==,数列{}n b 满足:12b a =,且131(2).n n n n n nb a b a b ++++=(1)求数列{}n a 和{}n b 的通项公式;(2)若211(5)log n n n c a b +=+⋅,求数列{}n c 的 前n 项和.n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a )143a a ⨯=33,即4a +13a ≤-433 故1212a x x x x ++的最大值为433-. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.3.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.4.B解析:B 【解析】由{}n a 为等差数列,所以95532495S S a a d -=-==-,即2d =-, 由19a =,所以211n a n =-+,令2110n a n =-+<,即112n >, 所以n S 取最大值时的n 为5, 故选B .5.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.6.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)22,⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).7.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.8.D【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o , 所以222108006013240CD BD BC =+=+⨯=km ,所以6033cos BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,2222232cos (603)902603904BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯⨯g 10800=,所以603BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有603km . 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.9.B【解析】 【分析】设f (x )1221x x=+-,根据形式将其化为f (x )()1152221x x x x-=++-.利用基本不等式求最值,可得当且仅当x 13=时()11221x x x x-+-的最小值为2,得到f (x )的最小值为f(13)92=,再由题中不等式恒成立可知m ≤(1221x x +-)min ,由此可得实数m 的最大值. 【详解】解:设f (x )11222211x x x x=+=+--(0<x <1) 而1221x x+=-[x +(1﹣x )](1221x x +-)()1152221x x x x -=++- ∵x ∈(0,1),得x >0且1﹣x >0∴()11221x x x x -+≥-=2, 当且仅当()112211x x x x -==-,即x 13=时()11221x x x x -+-的最小值为2 ∴f (x )1221x x =+-的最小值为f (13)92= 而不等式m 1221x x ≤+-当x ∈(0,1)时恒成立,即m ≤(1221x x+-)min 因此,可得实数m 的最大值为92故选:B . 【点睛】本题给出关于x 的不等式恒成立,求参数m 的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.10.C解析:C 【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q=++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒Q,a=4b =由正弦定理得:sin 1sin 2b A B a === a b >Q 60B ∴<︒ 30B ∴=︒故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.二、填空题13.【解析】【分析】对于当n=1代入得-4依次得发现规律利用求出【详解】由当n=1代入得-4依次得发现规律利用得b=-求出故答案为【点睛】本题考查的是在数列中给了递推公式不好求通项公式时可以列举几项再发 解析:20462047-【解析】 【分析】 对于()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得345a =10a =-22a =46...,,发现规律, 利用()()112121n n n n a b ++=--,求出10S .【详解】 由()()11132nn n n a a -+-+=⋅,当n=1,代入得2a =-4,依次得2345634567a =32-2a =-32+2a =32-2a =-32+2a =32-2...⨯⨯⨯⨯⨯,,,,发现规律, 利用()()112121n n nn a b ++=--,得b 1=-43,234510224694b =b =-b =b =-...3771515313163⨯⨯⨯⨯,,, ,求出1020462047S =-. 故答案为20462047- 【点睛】本题考查的是在数列中,给了递推公式不好求通项公式时,可以列举几项再发现规律,求出题中要求的前10项和,属于中档题.14.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题 解析:128【解析】 【分析】由1113()n nn N a a *+=+∈得1n a ⎧⎫⎪⎨⎬⎪⎭⎩为等差数列,求得1n a ⎧⎫⎪⎨⎬⎪⎭⎩通项公式,则10a 可求 【详解】1113()n nn N a a *+=+∈则1n a ⎧⎫⎪⎨⎬⎪⎭⎩为以首项为1,公差为3的等差数列,则 ()10111313228n n n a a =+-=-∴=故答案为:128【点睛】本题考查等差数列的定义及通项公式,意在考查计算能力,是基础题15.【解析】在△中且故故答案为:点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数属于简单题对余弦定理一定要熟记两种形式:(1);(2)同时还要熟练掌握运用两种形式的条件另外在解与三角解析:14-【解析】在△ABC 中,2a =,4c =,且3sin 2sin A B =,故222132,3,cos .24a b c a b b c ab +-=∴===-故答案为:14-. 点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60ooo等特殊角的三角函数值,以便在解题中直接应用.16.【解析】∵∴将以上各式相加得:故应填;【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法迭代法等; 解析:()112n n ++【解析】∵112,1n n a a a n +==++∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦L()()()()11111111222n n n n n n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112n n ++; 【考点】:此题重点考察由数列的递推公式求数列的通项公式;【突破】:重视递推公式的特征与解法的选择;抓住11n n a a n +=++中1,n n a a +系数相同是找到方法的突破口;此题可用累和法,迭代法等;17.①③⑤【解析】【分析】【详解】对于①:因为所以所以故①项正确;对于②:左边平方可得:所以故②项错误;而利用特殊值代入②中式子也可得出②错误的结论;对于③:因为由①知所以故③项正确;对于④:故④项错误解析:①③⑤ 【解析】 【分析】 【详解】 对于①:因为,,所以,所以,故①项正确; 对于②:左边平方可得:,所以,故②项错误; 而利用特殊值,代入②中式子,也可得出②错误的结论;对于③:因为,由①知,所以,故③项正确;对于④:()3322()a b a b a ab b +=+-+22()3a b ab ⎡⎤=⨯+-⎣⎦8686ab =-≥-2=,故④项错误; 对于⑤1a +1a =a b ab +=2ab≥2,故⑤项正确; 故本题正确答案为:①③⑤.18.【解析】【分析】由求得由可得结合为正整数讨论四种情况可得的最小值【详解】设等比数列的公比为由可得到由于所以解得或因为各项全为正所以由于存在两项使得所以可得当时;当时;当时;当时;综上可得的最小值为故 解析:116【解析】 【分析】由7652a a a =+求得2q =122m n a a a ⋅=可得5m n +=,结合,m n 为正整数,讨论四种情况可得14m n+的最小值. 【详解】设等比数列的公比为q ,由7652a a a =+, 可得到6662a a q a q=+, 由于0n a >,所以21q q=+,解得2q =或1q =-. 因为各项全为正,所以2q =.由于存在两项,m n a a 122m n a a a ⋅=,所以,218m n a a a ⋅=,112211188m n m n a q a q a q --+-⋅=∴=,28m n q +-∴=,可得5m n +=.当1,4m n ==时,142m n+=; 当2,3m n ==时,14116m n +=; 当3,2m n ==时,1473m n +=;当4,1m n ==时,14174m n +=; 综上可得 14m n +的最小值为116, 故答案为116. 【点睛】本题主要考查等比数列的通项公式和性质,考查了分类讨论思想的应用,属于中档题. 分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的; ⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.19.【解析】【分析】因为从而求出可得数列为等差数列记数列为从而将对任意的恒成立化为即可求得答案【详解】故则对也成立则数列为等差数列记数列为故对任意的恒成立可化为:;即解得故答案为:【点睛】本题考查了根据解析:712[,]35【解析】 【分析】因为1112222n n n b b b n -+++⋯+=⋅,2121()2212n nn b b b n --++⋯+=-⋅,从而求出2(1)n b n =+,可得数列{}n b kn -为等差数列,记数列{}n b kn -为{}n c ,从而将5n S S ≤对任意的*(N )n n ∈恒成立化为50c ≥,60c ≤,即可求得答案. 【详解】Q 1112222n n n n b b b H n-++++==L ,∴ 1112222n n n b b b n -++++=⋅L ,故2121()(22212)n nn b b n b n --⋅++=-≥+L ,∴112212()n n n n b n n -+=⋅--⋅1()2n n =+⋅,则2(1)n b n =+,对1b 也成立,∴2(1)n b n =+,则()22n b kn k n -=-+,∴数列{}n b kn -为等差数列,记数列{}n b kn -为{}n c .故5n S S ≤对任意的*N ()n n ∈恒成立,可化为:50c ≥,60c ≤;即5(2)206(2)20k k -+≥⎧⎨-+≤⎩,解得,71235k ≤≤,故答案为:712[,]35. 【点睛】本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前n 项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.20.【解析】【分析】将通过分母有理化化简得出再利用裂项相消法求出前15项的和【详解】利用分母有理化得设数列的前项的和为所以前15项的和为:即:故答案为:3【点睛】本题考查利用裂项相消法求数列的前项的和还 解析:3【解析】 【分析】将n a =15项的和. 【详解】利用分母有理化得na ===设数列{}n a 的前n项的和为n S ,所以前15项的和为:151215S a a a=+++L1=L1= 413=-= 即:153S =. 故答案为:3. 【点睛】本题考查利用裂项相消法求数列的前n 项的和,还运用分母有理化化简通项公式,属于基础题.三、解答题21.(1)[]1,2;(2)1,33⎡⎤⎢⎥⎣⎦.【解析】 【分析】(1)利用两角差的正弦公式得出()2sin 6f x x π⎛⎫=-⎪⎝⎭,由,2x ππ⎡⎤∈⎢⎥⎣⎦计算出6x π-的取值范围,再由正弦函数的基本性质可求出函数()y f x =在区间,2ππ⎡⎤⎢⎥⎣⎦上的值域; (2)根据题中条件得出4sin sin 3A B +=,可得出4sin sin 3A B =-,由0sin 1A <≤,0sin 1B <≤,可求出1sin 13B ≤≤,利用正弦定理以及不等式的性质可得出sin 41sin 3sin a A b B B ==-的取值范围. 【详解】(1)()1cos 2cos 2sin cos cos sin 2266f x x x x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭Q 2sin 6x π⎛⎫=- ⎪⎝⎭,,2x ππ⎡⎤∈⎢⎥⎣⎦Q ,5366x πππ∴≤-≤,则1sin 123x π⎛⎫≤-≤ ⎪⎝⎭,()12f x ∴≤≤,因此,函数()y f x =在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域为[]1,2; (2)78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭Q ,即()82sin 2sin 3A B π+=-,化简得4sin sin 3A B +=,4sin sin 3A B ∴=-, 由0sin 1A <≤,0sin 1B <≤,即40sin 130sin 1B B ⎧<-≤⎪⎨⎪<≤⎩,得1sin 13B ≤≤. 由正弦定理得4sin sin 4131,3sin sin 3sin 3Ba Ab B B B -⎡⎤===-∈⎢⎥⎣⎦.因此,a b 的取值范围是1,33⎡⎤⎢⎥⎣⎦. 【点睛】本题考查正弦型函数值域的求解,同时也考查了三角形中边长比值取值范围的计算,考查运算求解能力,属于中等题.22.(1)2n a n =;(2)21nn +. 【解析】 【分析】(1)直接根据累加法即可求得数列{}n a 的通项公式; (2)利用裂项相加即可得出数列{}n b 的前n 项和。

数学丨山东省菏泽市2021届高三上学期期中考试数学试卷及答案

数学丨山东省菏泽市2021届高三上学期期中考试数学试卷及答案

保密★启用前2020-2021学年度第一学期期中考试高三数学试题(B)本试卷共4页,共150分,考试时间120分钟。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.全集U ={x|-1≤x<3},集合A ={x|-1≤x ≤2},则U A =A.{x|-1≤x<2}B.{x|2<x<3}C.{x|2≤x<3}D.{x|x<-1或x>2}2.己知复数z =1+i ,z 为z 的共轭复数,则1z z + A.32i + B.12i + C.132i - D.132i + 3.下列函数中,既是偶函数又在(0,+∞)上单调递减的是 A.y =x -2B.y =2-x C.y =|lnx| D.y =xsinx4.已知tan α=2,则sin(α-4π)sin(α+4π)= A.-310 B.-35 C.310 D.35 5.《九章算术》中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一。

其大意是弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢)。

弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到弧田弦的距离之差,现有一弧田,其弧田弦AB 等于6米,其弧田弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则sin ∠AOB =A.34B.725C.1225D.24256.在△ABC 中,AB AC 2AD +=,AE 2DE 0+=,若EB xAB yAC =+,则A.x +2y =0B.2x +y =0C.x -2y =0D.2x -y =07.函数f(x)=Asin(ωx +φ)(其中A>0,ω>0,|φ|<2π)的图象如图所示,为了得到f(x)的图象,只需将g(x)=Asin ωx 图象A.向左平移4π个单位长度 B.向右平移4π个单位长度 C.向左平移12π个单位长度 D.向右平移12π个单位长度 8.定义域为(-2π,2π)的函数f(x)满足f(x)+f(-x)=0,其导函数为f'(x),当0<x<2π时,有f'(x)cosx +f(x)sinx<0成立,则关于x 的不等式2f(4π)·cosx 的解集为 A.(-2π,-4π)∪(4π,2π)B.(4π,2π) C.(-4π,0)∪(0,4π) D.(-4π,0)∪(4π,2π) 二、多项选择题:本题共4小题,每小题5分,共20分。

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 任何三个不共线的向量可构成空间向量的一个基底B. 空间的基底有且仅有一个C. 两两垂直的三个非零向量可构成空间的一个基底D. 直线的方向向量有且仅有一个2.直线的倾斜角是( )A. B. C.D.3.已知,,,若P ,A ,B ,C 四点共面,则( )A. 9B.C. D. 34.已知实数x ,y 满足,那么的最小值为( )A. B.C. 2D. 45.直线的一个方向向量是( )A.B.C.D.6.正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( )A.B.C. D.7.棱长为1的正方体中,O 是面的中心,则O 到平面的距离是( )A.B.C. D.8.已知圆C 的方程为,过直线l :上任意一点作圆C 的切线,若切线长的最小值为,则直线l 的斜率为( )A. 4B.C.D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列叙述正确的有( )A. 平面直角坐标系中的任意一条直线都有斜率B. 平面直角坐标系中的任意一条直线都有倾斜角C. 若,则D. 任意两个空间向量共面10.古希腊数学家阿波罗尼奥斯著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆C:上有且仅有一个点P满足,则r的取值可以为( )A. 2B. 4C. 6D. 811.如图,棱长为1的正方体中,E,F分别为,的中点,则( )A. 直线与底面ABCD所成的角为B. 平面与底面ABCD夹角的余弦值为C.直线与直线AE的距离为D. 直线与平面的距离为12.设有一组圆:,下列说法正确的是( )A. 这组圆的半径均为1B.直线平分所有的圆C.直线被圆截得的弦长相等D. 存在一个圆与x轴和y轴均相切三、填空题:本题共4小题,每小题5分,共20分。

2020-2021高三数学上期中试卷带答案(5)

2020-2021高三数学上期中试卷带答案(5)

2020-2021高三数学上期中试卷带答案(5)一、选择题1.数列{}n a 的前n 项和为21n S n n =++,()()1N*n n n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1002.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形3.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1224.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C .122D .625.在ABC V 中,4ABC π∠=,2AB =,3BC =,则sin BAC ∠=( )A .1010B .105C .31010D .556.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40377.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( )A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦8.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .71010.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 411.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( )A .32B .36C .38D .4012.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .()22,10C .()22,10D .()10,8二、填空题13.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,tan tan 2tan b B b A c B +=-,且8a =,73b c +=,则ABC V 的面积为______.14.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.15.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.16.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.17.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则122016111a a a +++=L _________. 18.已知数列的前项和,则_______.19.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 20.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .三、解答题21.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.22.已知数列{}n a 的前n 项和为n S ,且1,n a ,n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n a b na =+,求数列{}n b 的前n 项和n T . 23.设等差数列{}n a 满足35a =,109a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值 24.如图,Rt ABC V 中,,1,32B AB BC π===.点,M N 分别在边AB 和AC 上,将AMN V 沿MN 翻折,使AMN V 变为A MN '△,且顶点'A 落在边BC 上,设AMN θ∠=(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段CN 长度的最大值以及此时A MN '△的面积,25.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC于,1D AD BD ==,求sin BAC ∠的值.26.已知函数()f x a b =⋅v v,其中()()2cos 2,cos ,1,a x x b x x R ==∈v v. (1)求函数()y f x =的单调递增区间;(2)在ABC ∆中,角,,A B C 所对的边分别为(),,,2,a b c f A a ==2b c =,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.2.B解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.3.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.4.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.5.C解析:C 【解析】试题分析:由余弦定理得22923cos5,4b b π=+-⋅==.由正弦定理得3sin sin4BAC π=∠,解得sin 10BAC ∠=. 考点:解三角形.6.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.7.A解析:A 【解析】 【分析】利用分离常数法得出不等式2a x x >-在[]15x ∈,上成立,根据函数()2f x x x=-在[]15x ∈,上的单调性,求出a 的取值范围【详解】关于x 的不等式220x ax +->在区间[]1,5上有解22ax x ∴>-在[]15x ∈,上有解即2a x x>-在[]15x ∈,上成立,设函数数()2f x x x=-,[]15x ∈,()2210f x x ∴'=--<恒成立 ()f x ∴在[]15x ∈,上是单调减函数且()f x 的值域为2315⎡⎤-⎢⎥⎣⎦, 要2a x x >-在[]15x ∈,上有解,则235a >- 即a 的取值范围是23,5⎛⎫-+∞ ⎪⎝⎭故选A 【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.8.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B .【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.9.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 60103152AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.10.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0, ∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+, ∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2,∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.11.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.12.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩,由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<. 二、填空题13.【解析】【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值由余弦定理可求64=(b+c )2﹣bc 求bc 即可得三角形的面积【详解】∵在△ABC 中btanB+btanA=﹣2ctanB ∴由正弦【解析】 【分析】由正弦定理和三角函数公式化简已知式子可得cosA 的值,由余弦定理可求64=(b +c )2﹣bc ,求bc ,即可得三角形的面积. 【详解】∵在△ABC 中btanB +btanA=﹣2ctanB ,∴由正弦定理可得sinB (tanA +tanB )=﹣2sinCtanB ,∴sinB (tanA+tanB )=﹣2sinC•sinBcosB, ∴cosB (tanA+tanB )=﹣2sinC ,∴cosB (sinA cosA +sinBcosB)=﹣2sinC , ∴cosB•sinAcosB cosAsinBcosAcosB+=﹣2sinC ,∴cosB•()sin A B cosAcosB+=sinCcosA=﹣2sinC , 解得cosA=﹣12,A=23π;∵a=8,b c +=64=b 2+c 2+bc=(b+c )2﹣bc , ∴bc=9∴△ABC 的面积为S =12bcsinA=1922⨯⨯4,. 【点睛】本题考查正、余弦定理解三角形,涉及同角三角函数基本关系和三角形的面积公式,属于中档题.14.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线1 22zy x=-经过点A(0,3)时,直线的纵截距2z-最大,z最小.所以min023 6.z=-⨯=-故填-6.15.5【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】作出变量满足的可行域如图由知所以动直线的纵截距取解析:5【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】作出变量,x y满足2239x yx yx+≤⎧⎪-≤⎨⎪≥⎩的可行域如图,由2z x y=+知,2y x z=-+,所以动直线2y x z=-+的纵截距z取得最大值时,目标函数取得最大值,由2239x y x y +=⎧⎨-=⎩得()3,1A -, 结合可行域可知当动直线经过点()3,1A -时, 目标函数取得最大值2315z =⨯-=,故答案为5. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16.【解析】【分析】利用余弦定理得到进而得到结合正弦定理得到结果【详解】由正弦定理得【点睛】本题考查解三角形的有关知识涉及到余弦定理正弦定理及同角基本关系式考查恒等变形能力属于基础题【解析】 【分析】 利用余弦定理得到cos C ,进而得到sin C ,结合正弦定理得到结果. 【详解】925491cos ,sin 3022C C +-==-=,由正弦定理得2sin c R R C ===. 【点睛】本题考查解三角形的有关知识,涉及到余弦定理、正弦定理及同角基本关系式,考查恒等变形能力,属于 基础题.17.【解析】试题分析:所以所以考点:累加法;裂项求和法 解析:40322017【解析】试题分析:111,n n n n a a n a a n +--=+-=,所以()11221112n n n n n n n a a a a a a a a ---+=-+-++-+=L ,所以11121n a n n ⎛⎫=- ⎪+⎝⎭,122016111140322120172017a a a ⎛⎫+++=-= ⎪⎝⎭L . 考点:累加法;裂项求和法.18.2【解析】【分析】【详解】由Sn =n2+n (n ∈n*)当n =1a1=S1=1+1=2当n≥2时an =Sn ﹣Sn ﹣1=n2+n ﹣(n ﹣1)2-(n ﹣1)=2n 当n =1时a1=2×1=2成立∵an =2n解析:2 【解析】 【分析】 【详解】由S n =n 2+n (n ∈n *), 当n =1,a 1=S 1=1+1=2,当n ≥2时,a n =S n ﹣S n ﹣1=n 2+n ﹣(n ﹣1)2-(n ﹣1)=2n , 当n =1时,a 1=2×1=2,成立, ∵a n =2n (n ∈n *), ∴22,∴2,故答案为2.19.【解析】【详解】总费用为当且仅当即时等号成立故答案为30点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得 解析:30【解析】 【详解】总费用为600900464()42900240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.20.【解析】试题分析:由题意则当为偶数时由不等式得即是增函数当时取得最小值所以当为奇数时函数当时取得最小值为即所以综上的取值范围是考点:数列的通项公式数列与不等式恒成立的综合问题解析:77,153⎡⎤--⎢⎥⎣⎦【解析】试题分析:由题意,则, 当为偶数时由不等式()()11181nn n n a nλ++-+⋅-≤得821n n n λ-≤+,即(8)(21)n n nλ-+≤, (8)(21)8215n n y n n n-+==--是增函数,当2n =时取得最小值15-,所以15;λ≤-当为奇数时,(8)(21)8217n n n n n λ++-≤=++,函数8217y n n=++,当3n =时取得最小值为773,即77,3λ-≤所以773λ≥-,综上, 的取值范围是77,153⎡⎤--⎢⎥⎣⎦. 考点:数列的通项公式,数列与不等式恒成立的综合问题.三、解答题21.(1)详见解析;(2)52. 【解析】试题分析:本题第(1)问,可由绝对值不等式的几何意义得出min ()2f x =,从而得出结论;对第(2)问,由0a >去掉一个绝对值号,然后去掉另一个绝对值号,解出a 的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:min ()f x =12a a+≥,当且仅当1a =时,取等号,所以()2f x ≥.(2)因为(3)5f <,所以1335a a ++-<⇔1335a a ++-<⇔132a a-<-⇔ 11232a a a -<-<-,解得:1522a +<<. 【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.考点:本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.22.(1)12n n a -=;(2)21122n n n -++-【解析】 【分析】(1)利用数列的递推关系式推出数列{}n a 是以1为首项,2为公比的等比数列,然后求解通项公式.(2)化简数列的通项公式,利用分组求和法求和即可. 【详解】(1)由已知1,n a ,n S 成等差数列得21n n a S =+①, 当1n =时,1121a S =+,∴11a =, 当2n ≥时,203m/s B B BF m ga m μ-==②①─②得122n n n a a a --=即12n n a a -=,因110a =≠,所以0n a ≠,∴12nn a a -=, ∴数列{}n a 是以1为首项,2为公比的等比数列,∴11122n n n a --=⨯=.(2)由12n n n a b na =+得111222n n n b n n a -=+=+, 所以()12121111n n nT b b b n n a a a =+++=+++++L L ()()1111211211212n n n n n n -⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦=++=-++-. 【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 23.a n =11-2n,n=5时,S n 取得最大值 【解析】试题分析:解:(1)由a n =a 1+(n-1)d 及a 3=5,a 10=-9得,a 1+9d=-9,a 1+2d=5,解得d=-2,a 1=9,,数列{a n }的通项公式为a n =11-2n,(2)由(1)知S n =na 1+(1)2n n -d=10n-n 2.因为S n =-(n-5)2+25.所以n=5时,S n 取得最大值. 考点:等差数列点评:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性. 24.()1212sin 42AM ππθθ⎛⎫=≤≤ ⎪⎝⎭ ()2439;=S 【解析】 【分析】(1)在直角A BM '∆中,得出A M '与θ的关系,从而得出AM 与θ的不等式; (2)在AMN ∆中,利用正弦定理求出AN ,得出AN 的最小值,从而得出CN 的最大值. 【详解】(1)设MA MA x '==,则1MB x =-, 在直角A BM '∆中,1cos(1802)xxθ--=o, 解得2111cos 22sin x θθ==-,即212sin AM θ=,因为A '在边BC 上,所以42ππθ≤≤.(2)因为,1,2B AB BC π∠===2AC =,所以60BAC ∠=o ,在AMN ∆中,由AMN θ∠=,可得18060120ANM θθ∠=--=-o o o , 又由212sin MN θ=, 根据正弦定理,可得sin sin(120)AN AMθθ=-o , 所以sin 1sin(120)2sin sin(120)AM AN θθθθ⋅==--o o ,令212sin sin(120)2sin (sin )sin cos 2t θθθθθθθθ=-=⋅=+o1112cos 2sin(230)222θθθ=-=+-o , 因为4590θ<<o o ,所以60230150θ<-<o o o , 当且仅当23090θ-=o o 时,即60θ=o 时,t 有最大值32, 即当60θ=o 时,AN 有最小值23, 所以CN 的最大值为43,当60θ=o 时,AMN ∆为等边三角形,AMN ∆面积为22()3S ==【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力.25.(1)2π3B =;(2 【解析】【试题分析】(1)先正弦定理将已知222sin sin sin sin sin A C B A C +=-化为边的关系,然后运用余弦定理求解;(2)先借助正弦定理求出1sin 4BAD ∠=,然后运用余弦二倍角求出7cos 8BAC ∠=,进而运用平方关系求出sin BAC ∠. 解:(1) 222sin sin sin sin sin A C B A C +=-, 222a c b ac ∴+=-,2221cos 222a cb ac B ac ac +-∴==-=-,()0,πB ∈Q , 2π3B ∴=.(2) 在ABD V 中,由正弦定理:sin sin AD BD B BAD=∠,得31sin 12sin 423BD B BAD AD ⋅∠===, 217cos cos212sin 12168BAC BAD BAD ∴∠=∠=-∠=-⋅=, 22715sin 1cos 188BAC BAC ⎛⎫∴∠=-∠=-= ⎪⎝⎭. 26.(1)(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)736.【解析】 【分析】(1)利用向量数量积的坐标运算公式、降次公式和辅助角公式,化简()f x 为()sin A x B ωϕ++的形式,将x ωϕ+代入ππ2π,2π22k k ⎡⎤-+⎢⎥⎣⎦中,解出x 的范围,由此求得函数的单调区间.(2)利用()2f A =求得角A 的大小,利用余弦定理和2b c =列方程组,解方程组求得2c 的值,由此求得三角形的面积. 【详解】 (1)=,令πππ2π22π,262k x k -≤+≤+解得,k ∈Z , 函数y=f (x )的单调递增区间是(k ∈Z ).(2)∵f (A )=2,∴,即,又∵0<A <π,∴,∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2﹣3bc=7,①b=2c ,②, 由①②得, ∴.【点睛】本小题主要考查向量的数量积运算,考查三角函数降次公式、辅助角公式,考查利用余弦定理解三角形.属于中档题.。

高三理科数学上学期期中试卷

高三理科数学上学期期中试卷

高三理科数学上学期期中试卷把主要精力放在基础知识、基本技能、基本方法这三个方面上,今天小编就给大家分享一下高三数学,欢迎阅读学习高三数学上学期期中试卷理科第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 ,则集合且为( )A. B. C. D.2. 若复数满足 ,则的虚部为( )A. B. C. D.3.三角形内,a>b是cosAA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4. 若是的一个内角,且 ,则的值为( )A. B. C. D.5. 两个非零向量满足则向量与夹角为( )A. B. C. D.6. 如果位于第三象限,那么角所在的象限是( )A.第一象限B.第二象限C.第一或三象限D.第二或四象限7. 函数的图象可能是( )A. B.C. D.8. 已知数列满足: , ,设数列的前项和为 ,则 ( )A.1007B.1008C.1009.5D.10109. 在平面直角坐标系中,角与角均以为始边,它们的终边关于x轴对称,若 ,则 ( )A. 或B. 或C.D.10.已知函数的图象向左平移个单位后,得到函数的图象,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于点中心对称.C.图象关于轴对称D.图象关于轴对称11. 已知函数的图象关于点对称,若函数有四个零点则 ( )A.2B.4C.6D.812. 已知是定义在上的单调递减函数, 是其导函数,若 ,则下列不等关系成立的是( )A. B. C. D.第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上).13. 已知若 ,则实数 __________14. __________15. 在中, ,其面积为 ,则的取值范围是__________16. 关于函数 ,有下列命题:①由可得必是的整数倍;② 的表达式可改写为 ;③ 的图象关于点对称;④ 的图象关于直线对称.其中不正确的命题的序号是__________.三、解答题(本大题共6小题,满分共70分)17.(本小题满分10分) 在中,角、、的对边分别为、、 ,向量 , ,且 .(1)求锐角的大小;(2)若 ,求面积的最大值.19.(本小题满分12分)某经销商计划经营一种商品,经市场调查发现,该商品每日的销售量(单位:千克)与销售价格 (单位:元/千克, ),满足:当时, ( 为常数);当时, .已知当销售价格为元/千克时,每日可售出该特产千克;当销售价格为元/千克时,每日可售出千克.(1)求的值,并确定关于的函数解析式;(2)若该商品的销售成本为元/千克,试确定销售价格的值,使店铺每日销售该特产所获利润最大20.(本小题满分12分)设各项均为正数的数列的前项和为 ,满足 , 且构成等比数列.(1)求数列的通项公式;(2)若对一切正整数都有 ,求实数的最小值.21.(本小题满分12分)已知 .(1)讨论的单调性(2)若在上有且仅有一个零点,求的取值范围.22.(本小题满分12分)已知函数(1)若 ,求曲线在点处的切线方程(2)若在上恒成立,求实数的取值范围(3)若数列的前项和 , ,求证:数列的前项和数学试题答案(理科)1--12 B DCBC CCDCB BA13. -1 14. 15.(-1,0) 16. (1)(4)17.解:(1)∵ ,∴ , +1分∴ . +3分又∵ 为锐角,∴ ,∴ ,∴ . +5分4. ∵ , ,由余弦定理 ,得 . +7分又 ,代入上式,得 ,当且仅当时等号成立. +9分故 ,当且仅当时等号成立,即的最大值为 . +10分+4分+6分+8分+10分+12分19.解:(1)由题意: 时 ,∴ ,又∵ 时 ,∴ ,可得 , +2分∴ +4分(2)由题意: +5分当时,由得或由得所以在上是增函数,在上是减函数因为所以时, 的最大值为 +8分当时,当且仅当 ,即时取等号,∴ 时有最大值. ∵ , +11分∴当时有最大值 ,即当销售价格为元的值,使店铺所获利润最大. +12分20.解:(1) 即且∴ ,∴ ,∵ ,∴ ,∴当时, 是公差为的等差数列. +4分∵ ,构成等比数列,∴ ,解得 , +5分又由已知,当时, ,∴ ∵ ,∴ 是首项 ,公差的等差数列.∴数列的通项公式 . +6分(2)由(1)可得式+10分解得∴ 的最小值为 +12分21.解:(1)由已知的定义域为 ,又 , +1分当时, 恒成立; +2分当时,令得 ;令得 . +4分综上所述,当时, 在上为增函数;当时, 在上为增函数,在上为减函数. +5分(2)由题意 ,则 , +6分当时,∵ , +7分∴g在上为增函数,又 ,不符合题意.当时, , +8分令 ,则 .令的两根分别为且 ,则∵ ,∴ ,当时, ,∴ ,∴ 在上为增函数;当时, ,∴ ,∴ 在上为减函数;当时, ,∴ ,∴ 在上为增函数.∵g=0,∴ 在上只有一个零点 1,且 >0, <0.∴ ,∴g在上必有一个零点.∵ ,当时,g<0,∴ .∴ 在上必有一个零点.综上所述,a的取值范围为 +12分22.解:(1)因为 ,所以 , ,切点为 .由 ,所以 ,所以曲线在处的切线方程为 ,即 +2分(2)由 ,令 ,则 (当且仅当取等号).故在上为增函数.①当时, ,故在上为增函数,所以恒成立,故符合题意;②当时,由于 , ,根据零点存在定理,必存在 ,使得 ,由于在上为增函数,故当时, ,故在上为减函数, 所以当时, ,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为 +6分(3)证明:由由2知当时, ,故当时, , 故 ,故 .下面证明:因为而,所以, ,即: +12分关于高三上学期数学期中试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知则等于( )A. B. C. D.2.命题“”的否定是( )A. B.C. D.3.“ ”是“ ”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知函数y=f(x),其导函数y=f′(x)的图像如图所示,则y=f(x)( )A.在(-∞,0)上为减少的B.在x=0处取极小值C.在(4,+∞)上为减少的D.在x=2处取极大值5. ( )A.0B.C.D.16.下列求导运算正确的是( )A.(cos x)′=sin xB.(ln 2x)′=1xC.(3x)′=3xlog3eD.(x2ex)′=2xex7 .将函数y=sinx-π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A.y=sin 12xB.y=sin12x-π2C.y=sin12x-π6D.y=sin2x-π68.三次函数的图象在点处的切线与轴平行,则在区间上的最小值是( )A. B. C. D.9.函数错误!未找到引用源。

2021-2022学年上海市虹口区复兴高级中学高三(上)期中数学试卷

2021-2022学年上海市虹口区复兴高级中学高三(上)期中数学试卷试题数:21,总分:1501.(填空题,4分)已知集合A={x|0<x <2}, B ={x|x−3x−1≤0} ,则集合A∪B=___ . 2.(填空题,4分)在 (x2+1x )6的二项展开式中,x 2项的系数等于 ___ .3.(填空题,4分)已知向量 a ⃗ =(sinθ,1), b ⃗⃗=(1,cosθ) ,其中0<θ<2π,若 a ⃗ ⊥ b ⃗⃗ ,则θ=___ .4.(填空题,4分)若z 1=1+i ,z 2=a-2i ,其中i 为虚数单位,且 z 1•z 2∈R ,则实数a=___ .5.(填空题,4分)已知一个圆锥的侧面展开图恰好是一个半圆,任取圆锥的两条母线a ,b ,则a ,b 所成角的最大值为 ___ .6.(填空题,4分)无穷等比数列{a n }的前n 项和为S n ,若a 1=2,且S 2020+2S 2021=3S 2022,则无穷等比数列{a n }的各项和为 ___ .7.(填空题,5分)设函数 f (x )=sin (2x +π3) ,若对于任意的 x 1∈[−π4,π4] ,在区间[α,β]上总存在唯一确定的x 2,使得f (x 1)+f (x 2)=0,则|α-β|的最小值为___ .8.(填空题,5分)某动漫公司推出漫画角色盲盒周边售卖,每个盲盒中等可能的放入该公司的3款经典动漫角色玩偶中的一个.小明购买了4个盲盒,则他能集齐3个不同动漫角色的概率是___ .9.(填空题,5分)已知F 1、F 2是椭圆x 24+y 23=1 的左、右焦点,点P 是椭圆上任意一点,以PF 1为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则 QF 1⃗⃗⃗⃗⃗⃗⃗⃗ • QF 2⃗⃗⃗⃗⃗⃗⃗⃗ =___ .10.(填空题,5分)已知函数f (x )=x 2-a|x|+ 1x 2+1 +a 有且只有一个零点,若方程f (x )=k 无解,则实数k 的取值范围为 ___ .11.(填空题,5分)已知数列{a n }满足a 1=1,若数列{b n }满足b n =max{a k+1-a k |1≤k≤n}(n∈N*),且a n +b n =2n (n∈N*),则数列{a n }的通项公式a n =___ .12.(填空题,5分)设函数f (x )的定义域是(0,1),满足: (1)对任意的x∈(0,1),f (x )>0;(2)对任意的x 1,x 2∈(0,1),都有 f (x 1)f (x 2)+f (1−x 1)f (1−x 2)≤2 ;)=2.(3)f(12的最小值为 ___ .则函数g(x)=xf(x)+1x13.(单选题,5分)已知等比数列{a n}的公比为q(q≠0),S n是{a n}的前n项和.则“数列{a n}单调递减”是“a1>a3,S2>S4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(单选题,5分)下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个15.(单选题,5分)已知a⃗,b⃗⃗,c⃗和d⃗为空间中的4个单位向量,且a⃗+b⃗⃗+c⃗ = 0⃗⃗,则| a⃗−d⃗ |+| b⃗⃗−d⃗ |+| c⃗−d⃗ |不可能等于()A.3B.2 √3C.4D.3 √216.(单选题,5分)函数f(x)的定义域为D,若f(x)存在反函数,且f(x)的反函数就是它本身,则称f(x)为自反函数.有下列四个命题:是自反函数;① 函数f(x)=−xx+1② 若f(x)为自反函数,则对任意的x∈D,成立f(f(x))=x;③ 若函数f(x)=√1−x2(a≤x≤b)为自反函数,则b-a的最大值为1;④ 若f(x)是定义在R上的自反函数,则方程f(x)=x有解.其中正确命题的序号为()A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ② ③ ④17.(问答题,14分)在四棱锥P-ABCD中,底面为梯形,AB || CD,∠BAP=∠CDP=90°,PA=PD=AB=2,PA⊥PD,四棱锥P-ABCD的体积为4.(1)求证:AB⊥平面PAD ; (2)求PC 与平面ABCD 所成角.18.(问答题,14分)已知函数f (x )=x ,g (x )=x 2-mx+4,m∈R . (1)当m=4时,解不等式g (x )>|f (x )-2|.(2)若对任意的x 1∈[1,2],存在x 2∈[1,2],使得g (x 1)=f (x 2),求实数m 的取值范围.19.(问答题,14分)2021年10月13日第18号台风“圆规”在海南某地登陆,最大风力达到12级.路边一棵参天大树在树干某点B 处被台风折断且形成120°角,树尖C 着地处与树根A 相距10米,树根与树尖着地处恰好在路的两侧,设∠CAB=θ(A ,B ,C 三点所在平面与地面垂直,树干粗度忽略不计).(1)若θ=45°,求折断前树的高度(结果保留一位小数); (2)问一辆宽2米,高2.5米的救援车能否从此处通过?并说明理由.20.(问答题,16分)已知椭圆C : x 2a 2+y 2b 2=1 的左、右焦点分别为F 1、F 2,点 A(√6,0) 在椭圆上,且 AF 1⃗⃗⃗⃗⃗⃗⃗⃗•AF 2⃗⃗⃗⃗⃗⃗⃗⃗=3 ,点P ,Q 是椭圆上关于坐标原点O 对称的两点.(1)求椭圆C的标准方程;(2)若点P在第一象限,PN⊥x轴于点N,直线QN交椭圆于点M(不同于Q点),试求∠MPQ的值;是否为定值?若(3)已知点R在椭圆上,直线PR与圆x2+y2=2相切,连接QR,问:|PR||QR|为定值,求出该定值;若不为定值,请说明理由.(n∈N∗).21.(问答题,18分)已知数列{a n}满足a1=0,|a n+1-a n|=n,且a n≤ n−12(1)求a4的所有可能取值;(2)若数列{a2n}单调递增,求数列{a2n}的通项公式;(3)对于给定的正整数k,求S k=a1+a2+⋯+a k的最大值.2021-2022学年上海市虹口区复兴高级中学高三(上)期中数学试卷参考答案与试题解析试题数:21,总分:1501.(填空题,4分)已知集合A={x|0<x<2},B={x|x−3x−1≤0},则集合A∪B=___ .【正确答案】:[1]{x|0<x≤3}【解析】:先解分式不等式求出B,再利用并集运算求解.【解答】:解:∵ B={x|x−3x−1≤0} ={x|1<x≤3},A={x|0<x<2},∴A∪B={x|0<x≤3},故答案为:{x|0<x≤3}.【点评】:此题考查了并集及其运算,分式不等式的解法,属于基础题.2.(填空题,4分)在(x2+1x)6的二项展开式中,x2项的系数等于 ___ .【正确答案】:[1] 1516【解析】:先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式的x2项的系数.【解答】:解:二项式(x2+1x)6展开式的通项公式为T r+1= C6r(x2)6−r(1x)r= C6r(12)6−rx6-2r,令6-2r=2,解得r=2,故(x2+1x)6二项展开式中,含x2项的系数等于C62(12)4= 1516,故答案为:1516.【点评】:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.3.(填空题,4分)已知向量a⃗ =(sinθ,1),b⃗⃗=(1,cosθ),其中0<θ<2π,若a⃗⊥ b⃗⃗,则θ=___ .【正确答案】:[1] 3π4或7π4【解析】:根据题意,由数量积的计算公式可得a⃗• b⃗⃗=sinθ+cosθ=0,变形可得tanθ=-1,结合θ的取值范围,即可确定θ的值.【解答】:解:根据题意,向量a⃗ =(sinθ,1),b⃗⃗=(1,cosθ),若a⃗⊥ b⃗⃗,则有a⃗• b⃗⃗=sinθ+cosθ=0,变形可得tanθ=-1,又0<θ<2π,所以θ= 3π4或7π4;故答案为:3π4或7π4.【点评】:本题考查向量垂直的判断方法,涉及向量数量积的计算公式,属于基础题.4.(填空题,4分)若z1=1+i,z2=a-2i,其中i为虚数单位,且z1•z2∈R,则实数a=___ .【正确答案】:[1]-2【解析】:求出z1•z2 =(1+i)(a+2i)=a+ai+2i+2i2=(a-2)+(a+2)i,由z1•z2∈R,能求出实数a.【解答】:解:z1=1+i,z2=a-2i,其中i为虚数单位,且z1•z2∈R,z1•z2 =(1+i)(a+2i)=a+ai+2i+2i2=(a-2)+(a+2)i,∴a+2=0,解得实数a=-2.故答案为:-2.【点评】:本题考查实数值的求法,考查复数的运算法则等基础知识,考查运算求解能力,是基础题.5.(填空题,4分)已知一个圆锥的侧面展开图恰好是一个半圆,任取圆锥的两条母线a,b,则a,b所成角的最大值为 ___ .【正确答案】:[1]60°【解析】:设圆锥的底面半径为r,母线长为l,求出r与l的关系,确定两条母线a,b为轴截面的两条母线时,a,b所成角的最大,即可得到答案.【解答】:解:设圆锥的底面半径为r,母线长为l,因为一个圆锥的侧面展开图恰好是一个半圆,则2πr=πl,解得l=2r,当两条母线a,b为轴截面的两条母线时,a,b所成角的最大,最大值为60°.故答案为:60°.【点评】:本题考查了圆锥的侧面展开图的理解与应用,解题的关键是掌握圆锥侧面展开图的弧长等于底面周长,半径等于圆锥的母线长,考查了逻辑推理能力,属于基础题.6.(填空题,4分)无穷等比数列{a n }的前n 项和为S n ,若a 1=2,且S 2020+2S 2021=3S 2022,则无穷等比数列{a n }的各项和为 ___ . 【正确答案】:[1] 32【解析】:先求出等比数列{a n }的公比,然后利用无穷等比数列的和可计算出结果.【解答】:解:设等比数列{a n }的公比为q , 因为S 2020+2S 2021=3S 2022, 所以S 2022-S 2020=2(S 2021-S 2022), 即a 2021+a 2022=-2a 2022, 所以3a 2022=-a 2021, 所以q=- 13 ,所以无穷等比数列{a n }的各项和为S n = a 1(1−q n )1−q = 2×[1−(−13)n]1+13 = 32[1−(−13)n] ,当n→+∞时,S n → 32 ,故无穷等比数列{a n }的各项和为 32 , 故答案为: 32.【点评】:本题考查了等比数列求和公式,极限思想,属于中档题.7.(填空题,5分)设函数 f (x )=sin (2x +π3) ,若对于任意的 x 1∈[−π4,π4] ,在区间[α,β]上总存在唯一确定的x 2,使得f (x 1)+f (x 2)=0,则|α-β|的最小值为___ . 【正确答案】:[1] π3【解析】:根据题意,设集合A 为所有-f (x 1)构成的集合,集合B 是所以f (x 2)构成的集合,则A⊆B ,求出,|α-β|的最小值.【解答】:解:若对于任意的 x 1∈[−π4,π4] ,在区间[α,β]上总存在唯一确定的x 2,f (x 1)+f (x 2)=0,得-f (x 1)=f (x 2),设集合A 为所有-f (x 1)构成的集合,集合B 是所有f (x 2)构成的集合,则A⊆B ,对于任意的x∈[ −π4,π4 ],2x+ π3 ∈[−π6,5π6] ,-f (x )∈[-1, 12]=A , 因为-f (x )单调递减,根据题意,要使|α-β|=β-α最小,只需A=B 即可, 所以-1 ≤sin (2x +π3)≤12 ,得2x+ π3 ∈ [−π2+kπ,π6+kπ],(k ∈z ) , 故,|α-β|的最小值为 12 ( [π6−(−π2)] = π3 . 故答案为: π3.【点评】:考查三角函数图象和性质,三角函数恒成立和能成立问题,综合性高,难度较大. 8.(填空题,5分)某动漫公司推出漫画角色盲盒周边售卖,每个盲盒中等可能的放入该公司的3款经典动漫角色玩偶中的一个.小明购买了4个盲盒,则他能集齐3个不同动漫角色的概率是___ . 【正确答案】:[1] 49【解析】:小明购买了4个盲盒,基本事件总数n=34=81,他能集齐3个不同动漫角色包含的基本事件个数m= C 42A 33=36,由此能求出他能集齐3个不同动漫角色的概率.【解答】:解:某动漫公司推出漫画角色盲盒周边售卖,每个盲盒中等可能的放入该公司的3款经典动漫角色玩偶中的一个. 小明购买了4个盲盒, 基本事件总数n=34=81,他能集齐3个不同动漫角色包含的基本事件个数m= C 42A 33=36,∴他能集齐3个不同动漫角色的概率P= m n = 3681 = 49. 故答案为: 49.【点评】:本题考查概率的运算,考查古典概型、排列组合等基础知识,考查运算求解能力等数学核心素养,是基础题. 9.(填空题,5分)已知F 1、F 2是椭圆x 24+y 23=1 的左、右焦点,点P 是椭圆上任意一点,以PF 1为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则 QF 1⃗⃗⃗⃗⃗⃗⃗⃗ • QF 2⃗⃗⃗⃗⃗⃗⃗⃗ =___ .【正确答案】:[1]3【解析】:根据中位线定理及椭圆的定义,表示出|OQ|,利用极化恒等式即可求得 QF 1⃗⃗⃗⃗⃗⃗⃗⃗ • QF 2⃗⃗⃗⃗⃗⃗⃗⃗ 的值.【解答】:解:连接PF 2,由题意可知|PF 2|=2|ON|,|NQ|= 12 |PF 1|, 所以|OQ|=|ON|+|NQ|= 12(|PF 2|+|PF 1|)= 12×4=2,由极化恒等式可知 QF 1⃗⃗⃗⃗⃗⃗⃗⃗ • QF 2⃗⃗⃗⃗⃗⃗⃗⃗ =|QO|²- 14|F 1F 2|²=4-1=3, 所以 QF 1⃗⃗⃗⃗⃗⃗⃗⃗ • QF 2⃗⃗⃗⃗⃗⃗⃗⃗ =3, (极化恒等式: a ⃗ •b ⃗⃗ = (a⃗⃗+b ⃗⃗)2−(a ⃗⃗−b ⃗⃗)24).故答案为:3.【点评】:本题考查椭圆的定义与性质,中位线定理及向量的数量积运算,考查向量的极化恒等式的应用,针对于极化恒等式,需要学生会推导及会使用,在做题中能起到事半功倍的效果,属于中档题.10.(填空题,5分)已知函数f (x )=x 2-a|x|+ 1x 2+1 +a 有且只有一个零点,若方程f (x )=k 无解,则实数k 的取值范围为 ___ . 【正确答案】:[1](-∞,0)【解析】:先判断出函数f (x )为偶函数,结合题意得到f (0)=0,得到a 的值,从而求出f (x ),再判断函数f (x )的单调性,确定f (x )的取值范围,即可得到k 的范围.【解答】:解:函数f (x )=x 2-a|x|+ 1x 2+1 +a 的定义域为R , 又f (-x )=x 2-a|x|+1x 2+1+a=f (x ), 所以f (x )为偶函数, 又函数f (x )=x 2-a|x|+ 1x 2+1+a 有且只有一个零点,所以f (0)=0, 解得a=-1,故f (x )=x 2+|x|+ 1x 2+1 -1, 所以f (x )=x 2+1+ 1x 2+1 +|x|-2,因为y=x 2+1+ 1x 2+1 在[0,+∞)上为单调递增函数,且y=|x|-2在[0,+∞)上为单调递增函数,所以函数f (x )在[0,+∞)上为单调递增函数, 又f (x )为偶函数,所以f(x)≥f(0)=0,因为方程f(x)=k无解,所以k<0,故实数k的取值范围为(-∞,0).故答案为:(-∞,0).【点评】:本题考查了函数与方程的综合应用,函数性质的综合应用,考查了函数单调性与奇偶性的判断与应用,函数零点定义的理解与应用,考查了逻辑推理能力,属于中档题.11.(填空题,5分)已知数列{a n}满足a1=1,若数列{b n}满足b n=max{a k+1-a k|1≤k≤n}(n∈N*),且a n+b n=2n(n∈N*),则数列{a n}的通项公式a n=___ .【正确答案】:[1]2n-1【解析】:根据已知条件分别求a1,a2,a3,…,由归纳即可得{a n}的通项公式.【解答】:解:因为a n+b n=2n(n∈N*),由a1=1,可得b1=a2-a1=21-1=1,所以a2=a1+1=1+1=2,因为a2+b2=22=4,可得b2=2=a3-a2,所以a3=4,因为b3=23-a3=8-4=4=a4-a3,可得a4=8,…,所以a n=b n=2n-1,故答案为:2n-1.【点评】:本题考查了数列递推关系,考查了推理能力与计算能力,属于中档题.12.(填空题,5分)设函数f(x)的定义域是(0,1),满足:(1)对任意的x∈(0,1),f(x)>0;(2)对任意的x1,x2∈(0,1),都有f(x1)f(x2)+f(1−x1)f(1−x2)≤2;(3)f(12)=2.则函数g(x)=xf(x)+1x的最小值为 ___ .【正确答案】:[1]2 √2【解析】:由条件(1)(2)进行推导可得f(x)关于直线x= 12对称,借由对称轴推出f(x)为常数函数,代入g(x)基本不等式求最值运算.【解答】:解:由题意,令x1=1-x2,则不等式f(x1)f(x2)+f(1−x1)f(1−x2)≤2等价于f(1−x2)f(x2)+f(x2)f(1−x2)≤2,由(1)对任意x∈(0,1),f(x)>0,则f(1−x2)f(x2)+f(x2)f(1−x2)≥2√f(1−x2)f(x2)⋅f(x2)f(1−x2)=2,所以f(1−x2)f(x2)+f(x2)f(1−x2)=2,当且仅当f(1−x2)f(x2)=f(x2)f(1−x2),即f(x2)=f(1-x2)时等号成立,所以f(x)关于直线x= 12对称,所以f(x1)=f(1-x1),f(x2)=f(1-x2),则不等式f(x1)f(x2)+f(1−x1)f(1−x2)≤2等价于f(x1)f(x2)+f(x1)f(x2)≤2,所以f(x1)f(x2)≤1,因为对任意x∈(0,1),f(x)>0,所以f(x1)≤f(x2),所以f(x1)=f(x2)恒成立,故f(x)为常数函数,因为f(12)=2,所以f(x)=2,所以g(x)=xf(x)+ 1x =2x+ 1x,因为x∈(0,1),所以2x+ 1x ≥2√2x•1x=2 √2(当且仅当x= √22时等号成立),所以g(x)的最小值为2 √2.故答案为:2 √2.【点评】:本题考查了抽象函数的性质,基本不等式求最值,属于难题.13.(单选题,5分)已知等比数列{a n}的公比为q(q≠0),S n是{a n}的前n项和.则“数列{a n}单调递减”是“a1>a3,S2>S4”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:B【解析】:由等比数列的通项公式和数列的单调性的定义,结合充分必要条件的定义可得结论.【解答】:解:由a1>a3,S2>S4,可得a1>a1q2,a1+a1q>a1+a1q+a1q2+a1q3,即为a1(1-q2)>0,a1(1+q)<0,若a1>0,则-1<q<1,且q≠0,又q<-1,可得q∈∅;若a1<0,则q>1或q<-1,又q>-1,可得q>1,综上可得,数列{a n}单调递减;但“数列{a n}单调递减“推不到“a1>a3,S2>S4”,所以“数列{a n}单调递减”是“a1>a3,S2>S4”的必要不充分条件,故选:B.【点评】:本题考查等比数列的通项公式的运用,以及数列的单调性的判断和充分必要条件的定义,考查转化思想和运算能力、推理能力,属于中档题.14.(单选题,5分)下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个【正确答案】:C【解析】:A,同垂直于一直线的两条直线的位置关系不定;B,底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形;C,两条异面直线的公垂线是唯一的,所以过空间任一点与两条异面直线都垂直的直线有且只有一条;D,过球面上任意两点的大圆有无数个;【解答】:解:对于A,同垂直于一直线的两条直线不一定互相平行,故错;对于B,底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故错;对于C,两条异面直线的公垂线是唯一的,所以过空间任一点与两条异面直线都垂直的直线有且只有一条,正确;对于D ,过球面上任意两点的大圆有无数个,故错; 故选:C .【点评】:本题考查了命题真假的判定,属于基础题.15.(单选题,5分)已知 a ⃗ , b ⃗⃗ , c ⃗ 和 d ⃗ 为空间中的4个单位向量,且 a ⃗ +b ⃗⃗ +c ⃗ = 0⃗⃗ ,则| a ⃗ −d ⃗ |+| b ⃗⃗ −d ⃗ |+| c ⃗ −d ⃗ |不可能等于( ) A.3 B.2 √3 C.4 D.3 √2【正确答案】:A【解析】:首先由三个向量和为0向量得到三向量共面且两两成120度,再分情况考虑 d ⃗ ,不难得解.【解答】:解:设向量 a ⃗,b ⃗⃗,c ⃗,d ⃗ 分别对应向量 OA ⃗⃗⃗⃗⃗⃗,OB ⃗⃗⃗⃗⃗⃗,OC ⃗⃗⃗⃗⃗⃗,OD ⃗⃗⃗⃗⃗⃗⃗ , 由 a ⃗+b ⃗⃗+c ⃗=0⃗⃗ 可知三个向量两两夹角为120°, 如图,当D 与A 重合时,所求值为2 √3 ; 当D 与M 重合时,所求值为4; 当OD⊥平面ABC 时,所求值为3 √2 . 故选:A .【点评】:此题考查了向量的几何意义,分类讨论,数形结合等,难度适中.16.(单选题,5分)函数f (x )的定义域为D ,若f (x )存在反函数,且f (x )的反函数就是它本身,则称f (x )为自反函数.有下列四个命题: ① 函数 f (x )=−xx+1 是自反函数;② 若f(x)为自反函数,则对任意的x∈D,成立f(f(x))=x;③ 若函数f(x)=√1−x2(a≤x≤b)为自反函数,则b-a的最大值为1;④ 若f(x)是定义在R上的自反函数,则方程f(x)=x有解.其中正确命题的序号为()A. ① ② ③B. ① ② ④C. ② ③ ④D. ① ② ③ ④【正确答案】:D【解析】:由反函数跟自反函数定义逐一进行判断.,【解答】:解:① ,因为f(x)=- xx+1定义域为{x|x≠-1},,设y=- xx+1所以y(x+1)=-x,,解得x=- yy+1(x≠-1),所以f(x)的反函数为y=- xx+1即f(x)反函数为它本身,满足自反函数定义,故① 正确,排除C;对于③ ,要使f(x)= √1−x2有意义,则1-x2≥0,即-1≤x≤1,因为f(x)为[a,b]上的自反函数,所以[a,b]⊆[-1,0]或[a,b]⊆[0,1],所以则b-a的最大值为1,③ 正确,排除B;对于④ ,因为互为反函数的两个函数图象关于直线y=x对称,而f(x)为定义在R上的自反函数,故f(x)图象关于y=x对称且与y=x有交点,所以方程f(x)=x有解,故④ 正确;故选:D.【点评】:本题考查了反函数的求法,属于基础题.17.(问答题,14分)在四棱锥P-ABCD中,底面为梯形,AB || CD,∠BAP=∠CDP=90°,PA=PD=AB=2,PA⊥PD,四棱锥P-ABCD的体积为4.(1)求证:AB⊥平面PAD;(2)求PC与平面ABCD所成角.【正确答案】:【解析】:(1)证明CD⊥DP.AB⊥DP,然后证明AB⊥平面PAD.(2)作AD的中点E,连结PE,CE,说明PE为四棱锥P-ABCD的高,∠PCE为PC与平面ABCD所成角.通过四棱锥P-ABCD的体积,求解得CD=4.在Rt△PEC中,求解PC与平面ABCD所成角.【解答】:(1)证明:∵∠BAP=∠CDP=90°,∴AB⊥AP,CD⊥DP.又AB || CD,∴AB⊥DP.∵AP∩DP=P,AP,DP⊂面PAD,∴AB⊥平面PAD.(2)解:作AD的中点E,连结PE,CE,∵PA=PD,PA⊥PD,∴PE⊥AD,AD=2√2,PE=12AD=√2.由(1)AB⊥平面PAD,故AB⊥PE,又AB∩AD=A,AB,AD⊂面ABCD,所以PE⊥平面ABCD,即PE为四棱锥P-ABCD的高,∠PCE为PC与平面ABCD所成角.四棱锥P-ABCD的体积为4=13S梯形ABCD•PE=13•AB+CD2•AD•PE=13•2+CD2•2√2•√2,得CD=4.在Rt△PDC中,PC=√PD2+DC2=√22+42=2√5.在Rt△PEC中,sin∠PCE=PEPC =√22√5=√1010,∠PCE=arcsin√1010.所以PC与平面ABCD所成角为arcsin√1010.【点评】:本题考查几何体的体积的求法,直线与平面所成角的求法,直线与平面垂直的判断定理的应用.考查空间想象能力以及计算能力.18.(问答题,14分)已知函数f(x)=x,g(x)=x2-mx+4,m∈R.(1)当m=4时,解不等式g(x)>|f(x)-2|.(2)若对任意的x1∈[1,2],存在x2∈[1,2],使得g(x1)=f(x2),求实数m的取值范围.【正确答案】:【解析】:(1)当m=4时,不等式g(x)>|f(x)-2|可化为|x-2|>1,解之即可;(2)可求得当x∈[1,2]时,f(x)∈[1,2],依题意,1≤x2-mx+4≤2恒成立⇔ (x+2x ) max≤m≤ (x+3x )min,利用对勾函数的性质分别求得(x+2x)max与(x+3x)min,即可求得实数m的取值范围.【解答】:解:(1)当m=4时,不等式g(x)>|f(x)-2|可化为:|x-2|2>|x-2|,即|x-2|>1,解得x>3或x<1,故不等式g(x)>|f(x)-2|的解集为{x|x>3或x<1}.(2)∵f(x)=x,∴当x∈[1,2]时,f(x)∈[1,2];又g(x)=x2-mx+4,x∈[1,2],对于任意的x1∈[1,2],总存在x2∈[1,2],使得g(x1)=f(x2)成立,∴g(x)的值域是f(x)的值域的子集,即当x∈[1,2]时,1≤x2-mx+4≤2恒成立⇔ (x+2x )max≤m≤ (x+3x)min,又当x∈[1,2]时,由对勾函数的性质可得y=x+ 2x ∈[2 √2,3],y=x+ 3x∈[2 √3,4],∴3≤m≤2 √3,即m的取值范围为[3,2 √3 ].【点评】:本题考查函数恒成立问题与绝对值不等式的解法,考查化归与转化、函数与方程等数学思想,考查逻辑推理能力与运算求解能力,属于中档题.19.(问答题,14分)2021年10月13日第18号台风“圆规”在海南某地登陆,最大风力达到12级.路边一棵参天大树在树干某点B处被台风折断且形成120°角,树尖C着地处与树根A 相距10米,树根与树尖着地处恰好在路的两侧,设∠CAB=θ(A,B,C三点所在平面与地面垂直,树干粗度忽略不计).(1)若θ=45°,求折断前树的高度(结果保留一位小数);(2)问一辆宽2米,高2.5米的救援车能否从此处通过?并说明理由.【正确答案】:【解析】:(1)由题意结合正弦定理可得ABsin15°=CBsin45°=10sin120°,代入计算即可;(2)设△4BC的内接矩形DEFG的边DE在AC上且DE=2,设DG=EF=h,由∠CAB=θ,构建函数h= 8sinθsin(60°−θ)sin60°,再结合θ范围求得h范围,然后与救援车高比较即可得到答案.【解答】:解:(1)在△ABC中,∠CBA=120°,∠CAB=45°,所以∠BCA-15°,由正弦定理,得ABsin15°=CBsin45°=10sin120°,所以AB+BC= 10sin120°(sin15°+sin45°)= 15√2+5√63≈11.2,答:折断前树的高度11.2米;(2)如图,设△4BC 的内接矩形DEFG 的边DE 在AC 上且DE=2,设DG=EF=h , 因为∠CAB=θ,∠CBA=120°,所以∠BCA=60°-θ, 所以AD+CE+DE= ℎtanθ + ℎtan (60°−θ) +2=10, 所以h[ cosθsinθ + cos (60°−θ)sin (60°−θ)]=8, h=8sinθsin (60°−θ)sin60° = √3√34 sin2θ- 1−cos2θ4 )= 8√33sin (2θ+π6)−4√33, 因为θ∈(0, π3 ),所以 2θ+π6∈(π6,5π6) , 所以sin (2θ+ π6 )∈( 12 ,1],所以h∈(0, 4√33], 由于4√33<2.5, 所以高2.5米的救援车不能从此处通过.【点评】:本题考查了解三角形的应用,正弦定理,三角函数值域的求法,属于中档题. 20.(问答题,16分)已知椭圆C : x 2a 2+y 2b 2=1 的左、右焦点分别为F 1、F 2,点 A(√6,0) 在椭圆上,且 AF 1⃗⃗⃗⃗⃗⃗⃗⃗•AF 2⃗⃗⃗⃗⃗⃗⃗⃗=3 ,点P ,Q 是椭圆上关于坐标原点O 对称的两点. (1)求椭圆C 的标准方程;(2)若点P 在第一象限,PN⊥x 轴于点N ,直线QN 交椭圆于点M (不同于Q 点),试求∠MPQ 的值;(3)已知点R 在椭圆上,直线PR 与圆x 2+y 2=2相切,连接QR ,问: |PR||QR| 是否为定值?若为定值,求出该定值;若不为定值,请说明理由.【正确答案】:【解析】:第一问要弄清楚A 点就是椭圆的右顶点,第二问要设而不解,计算较繁琐,通过计算找出两直线PM 和PQ 是垂直关系,第三问要分直线PR 的斜率是否存在两种情况进行讨论.【解答】:解:(1).∵点 A(√6,0) 在椭圆上. ∴a= √6 .又∵ AF 1⃗⃗⃗⃗⃗⃗⃗⃗=(−c −√6,0) , AF 2⃗⃗⃗⃗⃗⃗⃗⃗=(c −√6,0) .∴ AF 1⃗⃗⃗⃗⃗⃗⃗⃗•AF 2⃗⃗⃗⃗⃗⃗⃗⃗ =6-c 2=3.∴c 2=3,b 2=3. ∴椭圆C的标准方程:x 26+y 23=1 .(2).设P (x 0,y 0)(x 0>0,y 0>0),M (x 1,y 1)则Q (-x 0,-y 0),N (x 0,0). 因为M 、N 、Q 三点共线,所以 y 1x1−x 0=y02x 0,所以 y 1=y 0(x 1−x 0)2x 0① . 联立 {x 026+y 023=1x 126+y 123=1,两式相减得 y 1−y 0x 1−x 0=−x 1+x2(y 1+y 0). ② 将 ① 代入 ② 中的右边的分母中,化简可得: y 1−y 0x 1−x 0=−x 0y 0,所以K PM = −x0y 0,又因为K PQ = y 0x 0, 所以K PM •K PQ =-1,所以PM⊥PQ , 所以∠MPQ= π2 .(3). ① 当直线PR 的斜率不存在时,依题意可得直线PR 的方程为x= √2 或x=- √2 . 若直线PR :x= √2 ,则直线PQ :y=x ,可得P ( √2 , −√2 ),Q (- √2 ,- √2 ),R ( √2 ,- √2 ).则|PR|= 2√2 ,|QR|= 2√2 ,所以 |PR||RQ|=1 . 其他情况由对称性同理可得 |PR||RQ|=1 .② 当直线PR 的斜率存在时,设直线PR 的方程为y=kx+m , 因为直线与圆O 相切,所以圆心O 到直线PR √k 2+1=√2 ,即|m|= √2(1+k 2) .设P (x 1,y 1),R (x 2,y 2),则Q (-x 1,-y 1).联立 {y =kx +m x 26+y 23=1 ,消去y ,得(1+2k 2)x 2+4kmx+2m 2-6=0,Δ>0.则x 1+x 2= −4km 1+2k 2 ,x 1x 2= 2m 2−61+2k 2.所以|PR|= √1+k 2•√(x 1+x 2)2−4x 1x 2 =2√2√1+k 2•√6k 2−m 2+31+2k 2 = 2√2√1+k 2•√1+4k 21+2k 2. 因为|QR|= √(x 1+x 2)2+(y 1+y 2)2 .又因为y 1+y 2=k (x 1+x 2)+2m= k (−4km1+2k 2)+2m =2m1+2k 2 . 所以|QR|= √(−4km 1+2k 2)2+(2m1+2k 2)2= 2|m|√1+4k 21+2k 2 = 2√2√1+k 2•√1+4k 21+2k 2=|PR | .即 |PR||QR|=1 . 综上所述, |PR||QR|=1 .【点评】:本题考查了椭圆的定义标准方程、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.21.(问答题,18分)已知数列{a n }满足a 1=0,|a n+1-a n |=n ,且a n ≤ n−12(n ∈N ∗) .(1)求a 4的所有可能取值;(2)若数列{a 2n }单调递增,求数列{a 2n }的通项公式; (3)对于给定的正整数k ,求S k =a 1+a 2+⋯+a k 的最大值.【正确答案】:【解析】:(1)根据数列的递推公式,即可求出a 4的所有可能取值;(2)根据数列{a 2n }单调递增,且a 2=-1,a 4=0,判断数列{a n }中相邻两项不可能同时为非负数,结合题意判断数列{a 2n }是等差数列,从而求出数列{a 2n }的通项公式;(3)根据(2)知a n ,a n+1不能都为非负数,讨论n 为奇数和n 为偶数时,a n+1+a n 的取值情况,从而求出k 为奇数时和k 为偶数时,S k 的最大值.【解答】:解:(1)数列{a n }满足a 1=0,|a n+1-a n |=n ,且a n ≤ n−12(n∈N *), 所以|a 2-0|=1,a 2=1(不合题意,舍去),或a 2=-1; 当a 2=-1时,|a 3+1|=2,解得a 3=1,或a 3=-3;当a 3=1时,|a 4-1|=3,解得a 4=4(不合题意,舍去),或a 4=-2, 当a 3=-3时,|a 4+3|=3,解得a 4=0,或a=-6, 所以a 4的所有可能取值是-2,0,-6;(2)因为数列{a2n}单调递增,且a2=-1,a4=0,所以a2n≥0对n≥2成立;下面证明数列{a n}中相邻两项不可能同时为非负数;假设数列{a n}中存在a i,a i+1同时为非负数,因为|a i+1-a i|=i,若a i+1-a i=i,则a i+1=a i+i≥i>(i+1)−12,与已知条件矛盾;若a i+1-a i=-i,则a i+1=a i+i≥i>i−12,与已知条件矛盾;所以假设错误,即数列{a n}中相邻两项不可能同时为非负数,即a2n≥0对n≥2成立;所以当n≥2时,a2n-1≤0,a2n+1≤0,即a2n-1≤a2n,a2n+1≤a2n,所以a2n-a2n-1=2n-1,a2n-1-a2n-2=-(2n-2),(a2n-a2n-1)+(a2n-1-a2n-2)=(2n-1)-(2n-2)=1,即a2n-a2n-2=1,其中n≥2,即数列{a2n}是首项为-1,公差为1的等差数列,所以数列{a2n}的通项公式为a2n=-1+(n-1)×1=n-2;(3)对于给定的正整数k,S k=a1+a2+⋯+a k,由(2)的证明知,a n,a n+1不能都为非负数,当a n≥0时,a n+1<0,根据|a n+1-a n|=n,得到a n+1=a n-n,所以a n+a n+1=2a n-n≤2× n−12-n≤-1,当a n+1≥0时,a n<0,根据|a n+1-a n|=n,得到a n=a n+1-n,所以a n+a n+1=2a n+1-n≤2× n+1−12-n≤0,所以总有a n+a n+1≤0成立,当n为奇数时,|a n+1-a n|=n,所以a n+1,a n的奇偶性不同,则a n+a n+1≤-1,当n为偶数时,a n+1+a n≤0,所以k为奇数时,S k=a1+(a2+a3)+...+(a k-1+a k)≤0,考虑数列:0,-1,1,-2,2,...,- k−12,k−12,...,可以验证所给的数列满足条件,且S k=0,所以S k的最大值为0.得到a n+1=a n-n,所以a n+a n+1=2a n-n≤2× n−12-n≤-1,当k为偶数时,S k=(a1+a2)+...+(a k-1+a k)≤- k2,考虑数列:0,-1,1,-2,2,...,- k−12,k−12,- k2,...,可以验证所给的数列满足条件,且S k=- k2,所以S k的最大值为- k2.综上知,k为奇数时,S k的最大值为0,k为偶数时,S k的最大值为- k2.【点评】:本题考查了递推数列的应用问题,也考查了推理与运算能力,以及分类讨论思想,是难题.。

2020-2021学年北京市海淀区高三(上)期中数学试卷

2020-2021学年北京市海淀区高三(上)期中数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(4分)已知集合A={x|x﹣3≤0},B={0,2,4}()A.{0,2}B.{0,2,4}C.{x|x≤3}D.{x|0≤x≤3} 2.(4分)已知向量=(m,2),=(2,﹣1).若∥,则m的值为()A.4B.1C.﹣4D.﹣13.(4分)命题“∃x>0,使得2x≥1”的否定为()A.∃x>0,使得2x<1B.∃x≤0,使得2x≥1C.∀x>0,都有2x<1D.∀x≤0,都有2x<14.(4分)设a,b∈R,且a<b<0,则()A.<B.>C.>D.+>2 5.(4分)下列函数中,是偶函数且在区间(0,+∞)上为增函数的是()A.y=2lnx B.y=|x3|C.y=x﹣D.y=cos x6.(4分)已知函数f(x)=lnx+x﹣4,在下列区间中(x)零点的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)7.(4分)已知数列{a n}的前n项和为S n,且S n=a n(n=1,2,3,…),则a2020=()A.0B.1C.2020D.20218.(4分)已知函数y=A sin(ωx+φ)的部分图象如图所示,将该函数的图象向左平移t(t >0),得到函数y=f(x)的图象.若函数y=f(x),则t的最小值是()A.B.C.D.9.(4分)设x,y是实数,则“0<x<12x+log2y<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.(4分)对于函数f(x),若集合{x|x>0,f(x)=f(﹣x),则称函数f(x)是“k阶准偶函数”.若函数f(x)=,则a的取值范围是()A.(﹣∞,0)B.[0,2)C.[0,4)D.[2,4)二、填空题共5小题,每小题5分,共25分。

11.(5分)若复数z=(1+i)i,则|z|=.12.(5分)已知tan(θ﹣)=2,则tanθ=.13.(5分)已知等差数列{a n}的前n项和为S n.若a1=9,公差d=﹣2,则S n的最大值为.14.(5分)在边长为2的正三角形ABC中,M是BC的中点,D是线段AM的中点.①若=x+y;②=.15.(5分)唐代李皋发明了“桨轮船”,这种船是原始形态的轮船,是近代明轮航行模式之先导.如图,它以1rad/s的角速度逆时针旋转.轮子外边沿有一点P,点P到船底的距离是H(单位:m)(单位:s).当t=0时,点P在轮子的最高点处.①当点P第一次入水时,t=;②当t=t0时,函数H(t)的瞬时变化率取得最大值0的最小值是.三、解答题共6小题,共85分。

2020-2021学年辽宁省大连市育明高中高三(上)期中数学试卷

2020-2021学年辽宁省大连市育明高中高三(上)期中数学试卷一.选择题:本题共8小题,每小题5分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的1.(5分)已知全集U=R,集合A={x|x2>4},B={x|≤0}U A)∩B等于()A.{x|﹣2≤x<1}B.{x|﹣3≤x<2}C.{x|﹣2≤x<2}D.{x|﹣3≤x≤2} 2.(5分)已知i为虚数单位,复数z=(a∈R)是纯虚数()A.2B.2i C.﹣2D.﹣2i3.(5分)已知m,n表示两条不同直线,α表示平面()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α4.(5分)已知tanθ+=4,则cos2(θ+)=()A.B.+C.D.﹣5.(5分)已知奇函数f(x)在R上是增函数,若a=﹣f(log2),b=f(log2),c=f(20.8),则a、b、c的大小关系为()A.b<c<a B.b<a<c C.c<b<a D.c<a<b6.(5分)已知向量=(1,cos2x),=(sin2x,),将函数f(x)=•的图象沿x轴向左平移φ(φ>0),得到的图象关于原点对称,则φ的最小值为()A.B.C.D.7.(5分)如图,在圆锥SO中,AB,AB∩CD=O,且AB⊥CD,SE=,异面直线SC 与OE所成角的正切值为()A.B.C.D.8.(5分)已知圆O的半径是2,点P是圆O内部一点(不包括边界),点A是圆O圆周上一点,且,则|+|的最小值为()A.B.4C.D.二.选择题:本题共4小题,每小题5分,共20分。

在每小题所给出的选项中,有多项是符合题目要求的.全部选对的得5分,有选错的得0分,部分选对的得3分。

9.(5分)已知函数f(x)对任意x∈R都有f(x+4)﹣f(x)(2),若y=f(x﹣1)的图象关于直线x=1对称1,x2∈(0,2),且x1≠x2,都有>0,则下列结论正确的是()A.f(x)是偶函数B.f(x)的周期T=4C.f(2022)=0D.f(x)在(﹣4,﹣2)单调递减10.(5分)对于实数a,b,m,下列真命题的为()A.若a>b,则am2>bm2B.若b>a>0,m>0,则>C.若a>b,则a|a|>b|b|D.若a>b>0且|lna|=|lnb|,则2a+b的最小值为211.(5分)将n2个数排成n行n列的一个数阵,如图:该数阵第一列的n个数从上到下构成以m为公差的等差数列,每一行的n个数从左到右构成以m为公比的等比数列(其中m>0)11=2,a13=a61+1,记这n2个数的和为S.下列结论正确的有()A.m=3B.C.D.12.(5分)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,例如:[﹣3.5]=﹣4,[2.1]=2.已知函数f(x),其中[x]表示不超过实数x的最大整数,关于f(x),其中正确的结论是()A.f(x)的一个周期是2πB.f(x)是非奇非偶函数C.f(x)在(0,π)单调递减D.f(x)的最大值大于三.填空题:本题共4小题,每小题5分,共20分13.(5分)定义在(0,+∞)上的函数f(x)满足,且f(2)=4(x)﹣>0的解集为.14.(5分)在三棱锥P﹣ABC中,P A=PB=PC=2,且底面ABC为正三角形,若PC⊥BD,棱锥P﹣ABC的四个顶点在球O的表面上.15.(5分)已知递增数列{a n}的前n项和为S n,且满足S n+S n+1=2n2+n(n∈N*),则首项a1的取值范围为.16.(5分)函数f(x)=有两个零点,则实数k的取值范围为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列的前n项和T n.18.(12分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x =,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB;(2)若与平面APD所成角为45°,求二面角A﹣PC﹣B的大小.20.(12分)已知△ABC的内角A、B、C的对应边分别为a、b、c,在①cos C(a cos B+b cos A);②a sin=c sin A;③(sin B﹣sin A)2=sin2C﹣sin B sin&nbsp;A.这三个条件中任选一个,补充在下面问题中,当_____时,求△ABC的面积S的最大值.21.(12分)已知数列{a n}满足,a n+1a n﹣2a n+1+1=0.(Ⅰ)求证:数列为等差数列,并求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足b1=1,b n+1b n=(n+3)a n.①求证:.②求证:.22.(12分)设函数f(x)=alnx+,(a∈R,a≠0).(1)若a=1,求函数f(x)在点P(1,f(1);(2)若x∈[1,2]时,函数f(x),求实数a的取值范围;(3)试判断函数g(x)=f(x)﹣a﹣2的零点个数2020-2021学年辽宁省大连市育明高中高三(上)期中数学试卷参考答案与试题解析一.选择题:本题共8小题,每小题5分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的1.(5分)已知全集U=R,集合A={x|x2>4},B={x|≤0}U A)∩B等于()A.{x|﹣2≤x<1}B.{x|﹣3≤x<2}C.{x|﹣2≤x<2}D.{x|﹣3≤x≤2}【分析】先分别求出集合A,B,从而求出∁U A,由此能求出(∁U A)∩B.【解答】解:∵全集U=R,集合A={x|x2>4}={x|x>2或x<﹣2},B={x|≤0}={x|﹣3≤x<2},∴∁U A={x|﹣2≤x≤2},∴(∁U A)∩B={x|﹣2≤x<1}.故选:A.【点评】本题考查补集、交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.2.(5分)已知i为虚数单位,复数z=(a∈R)是纯虚数()A.2B.2i C.﹣2D.﹣2i【分析】利用复数代数形式的乘除运算化简z,由实部为0且虚部不为0求得a值,则答案可求.【解答】解:∵z==是纯虚数,∴,即a=﹣2.∴6+ai的虚部为﹣2.故选:C.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5分)已知m,n表示两条不同直线,α表示平面()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,则m,故A错;B.若m⊥α,则m⊥n;C.若m⊥α,则n∥α或n⊂α;D.若m∥α,则n∥α或n⊂α或n⊥α.故选:B.【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.4.(5分)已知tanθ+=4,则cos2(θ+)=()A.B.+C.D.﹣【分析】利用同角三角函数基本关系式化简已知等式可得sinθcosθ=,利用二倍角公式化简所求即可求值得解.【解答】解:因为tanθ+=4,所以+===7,则cos8(θ+)=sin2θ+=﹣+=.故选:A.【点评】本题主要考查了同角三角函数基本关系式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)已知奇函数f(x)在R上是增函数,若a=﹣f(log2),b=f(log2),c=f(20.8),则a、b、c的大小关系为()A.b<c<a B.b<a<c C.c<b<a D.c<a<b【分析】由已知结合对数的性质及函数的单调性及奇偶性即可比较大小.【解答】解:因为函数f(x)为奇函数,所以a=﹣f(log2)=f(﹣log2)=f(log25),因为7<log2<1,2<log55<3,4<20.3<2,所以log2<25.8<log22,又函数f(x)在R上是增函数,所以f(log2)<f(20.5)<f(log25),即b<c<a.故选:A.【点评】本题主要考查函数值大小的比较,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用,属于基础题.6.(5分)已知向量=(1,cos2x),=(sin2x,),将函数f(x)=•的图象沿x轴向左平移φ(φ>0),得到的图象关于原点对称,则φ的最小值为()A.B.C.D.【分析】根据平面向量数量积的运算和辅助角公式可得f(x)=2sin(2x+),向左平移φ个单位,得到y=2sin(2x+2φ+),从而有2φ+=kπ,k∈Z,再结合φ>0,即可得解.【解答】解:f(x)=•=sin2x+),将函数f(x)的图象向左平移φ个单位,得到y=2sin[2(x+φ)+),因为该函数关于原点对称,所以2φ+,k∈Z+,k∈Z,又因为φ>6,所以φ的最小值为.故选:D.【点评】本题考查平面向量与三角函数的综合,需要学生熟练掌握平面向量数量积的运算法则、辅助角公式和三角函数的图象与性质等基本考点,考查学生的逻辑推理能力和运算能力,属于基础题.7.(5分)如图,在圆锥SO中,AB,AB∩CD=O,且AB⊥CD,SE=,异面直线SC 与OE所成角的正切值为()A.B.C.D.【分析】可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.【解答】解:如图,过点S作SF∥OE,连接CF,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=8,∴,SO=7,∴;OC⊥OF,OF=1,∴,∴等腰△SCF中,.故选:D.【点评】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,正切函数的定义,平行线分线段成比例的定理,考查了计算能力,属于基础题.8.(5分)已知圆O的半径是2,点P是圆O内部一点(不包括边界),点A是圆O圆周上一点,且,则|+|的最小值为()A.B.4C.D.【分析】可画出图形,根据=2即可得出||=,并得出0<cos∠O≤1,从而得出|+|的最小值.【解答】解:如图示:∵OA=2,∴•=6|,∴||=,∴(+)2=2+3•+2=8+5+≥,当cos∠O=1时取等号,∴(+)3的最小值为则|+,故选:A.【点评】本题考查了向量数量积的运算及计算公式,考查了计算能力,属于基础题.二.选择题:本题共4小题,每小题5分,共20分。

2021届北京市朝阳区高三上学期期中考试质量检测数学试题

A.充分而不必要条件B.必要而不充分条件北京市朝阳区2020〜2021学年度第一学期期中质量检测高三数学试卷2020.11(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要 求的一项.1.已知集合4 =卜52-工一2<0}, B = {-1,0,123},则AA8 =【答案】B3sin( -- x)=」,贝ij sin2A-(2 5【答案】C4.如图,在aABC 中,。

是BC 的中点,若= = (【答案】c51加>11西'是“3°>3g 的() B. {TO 』,2}C. {0,1,2}D. {0,123}12A.— 25n24 B.— 25c 24 D. 一一25【答案】B3.己知〃 =2-,b = log?!,c ~ a ,贝 Ij(J£ DA. a>b>cB. a>ohC. c>a>bD. c>b> aA- 3a-2bB. a-2bD.C.充分必要条件【答案】A6.已知函数/(x)=弓sin — (刃> 0)的图象与直线尸1的相邻两个交点间的距离等于冗,贝力/U) 的图象的一条对称轴是() 乃九冗A. x =---- B. x =—C. x =---12123【答案】D7.在aABC 中,AB=4, AC=3,且I 而+/1=19一正I,则CX =( A. -12B. -9C. 9【答案】B1 38.己知,ZU)是定义在R 上的偶函数,且当X £(-8, 0]时,/(工)=2'+ —,则/(1(^2二)=()3 2 1711 A. —B. 1C. -D.—27 11【答案】B9.己知函数/*•) =「+ 7'若存在实数叽使得/(〃?)= 2/一4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021高三数学上期中试题(带答案)(5)一、选择题1.已知{}n a 为等差数列,若20191<-a a ,且数列{}n a 的前n 项和n S 有最大值,则n S 的最小正值为( ) A .1SB .19SC .20SD .37S2.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1223.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20474.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 5.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为( )A .0B .1C .2D .36.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.7.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .18.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .169.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .510.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .611.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________. 14.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________15.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c,cos2C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .16.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______.17.设a>0,b>0.若关于x,y的方程组1,{1ax yx by+=+=无解,则+a b的取值范围是.18.设a∈R,若x>0时均有[(a-1)x-1]( x 2-ax-1)≥0,则a=__________.19.如图所示,在平面四边形ABCD中,2AB=,3BC=,AB AD⊥,AC CD⊥,3AD AC=,则AC=__________.20.设{}n a是等差数列,且13a=,2536a a+=,则{}n a的通项公式为__________.三、解答题21.已知等差数列{}n a的前n项和为n S,公差0d≠,且3550S S+=,1a,4a,13a成等比数列.(1)求数列{}n a的通项公式;(2)设nnba⎧⎫⎨⎬⎩⎭是首项为1公比为2的等比数列,求数列{}n b前n项和n T.22.数列{}n a中,11a=,121n na a n+=++.(1)求{}n a的通项公式;(2)设141nnba=-,求出数列{}nb的前n项和.23.已知等比数列{}n a的公比1q>,且满足:23428a a a++=,且32a+是24,a a的等差中项.(1)求数列{}n a的通项公式;(2)若1122log,n n n n nb a a S b b b==+++L,求使1·262nnS n++>成立的正整数n的最小值.24.已知数列{}n a满足:121n na a n+=-+,13a=.(1)设数列{}n b满足:n nb a n=-,求证:数列{}nb是等比数列;(2)求出数列{}n a的通项公式和前n项和n S.25.设各项均为正数的数列{a n}的前n项和为S n,满足:对任意的n∈N*,都有a n+1+S n+1=1,又a112=.(1)求数列{a n}的通项公式;(2)令b n=log2a n,求12231111n nb b b b b bL++++(n∈N*)26.在ABC ∆中,内角,,A B C 的对边分别是,,a b c,已知222,3A b c a π=+=. (1)求a 的值;(2)若1b =,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由已知条件判断出公差0d <,对20191<-a a 进行化简,运用等差数列的性质进行判断,求出结果. 【详解】已知{}n a 为等差数列,若20191<-a a ,则2019190a a a +<, 由数列{}n a 的前n 项和n S 有最大值,可得0d <,19193712029000,,0,370a a a a a S <=∴+<>>, 31208190a a a a ∴+=+<,380S <,则n S 的最小正值为37S 故选D 【点睛】本题考查了等差数列的性质运用,需要掌握等差数列的各公式并能熟练运用等差数列的性质进行解题,本题属于中档题,需要掌握解题方法.2.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=,∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.3.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-L L ,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.4.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值; 选项B错误,化简可得2y ⎫=,=,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e -=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).5.D解析:D 【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .点睛:本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.6.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.7.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >,333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.8.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.9.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。

相关文档
最新文档