反比例函数全章教案(集体备课)
初中数学《反比例函数》教案

6.1反比例函数集体备课课题 6.1反比例函数单元 6 学科数学年级九教材分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型.本节课经历对两个变量之间关系的观察、分析过程,使学生经历抽象反比例函数概念的过程,领会反比例函数的意义.教材以有趣的数学生活实例,让学生通过讨论合作的方式,理解反比例函数的概念,培养学生函数的数学思想,为学生能更好地“用数学”打下基础.核心素养分析从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,经历抽象反比例函数概念的过程,体会数学从实践中来又到实际中去的研究、应用过程。
培养学生的观察能力,及数学地发现问题,解决问题的能力。
学习目标1.从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.重点理解和领会反比例函数的概念。
难点领悟反比例函数的概念。
教学过程教学环节教师活动学生活动设计意图导入新课提出问题1.什么是函数?2.一次函数的表达式为其中k,b 为常数且。
3.正比例函数的表达式为其中。
观看图片学生思考,回答问题回顾学过的函数概念及表达式,为本节课的学习做铺垫。
灯光秀灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果就是通过改变电阻来控制电流的变化实现的.因为当电流I较小时,灯光较暗;反之,当电流I较大时,灯光较亮.讲授新课问题1:我们知道,导体中的电流I,与导体的电阻R、导体两端的电压之间满足关系式U=IR,当U=220V时,(1)请用含有R的代数式表示I.I=220 R(2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢?I 随着R的增大而变小,随着R 的减小而变大. (3)变量I 是R的函数吗?为什么?当给定一个R的值时,相应地确定了一个I值,因此I是R的函数.问题2.京沪高速公路全长约为1318km,列车沿京沪高速铁路从上海驶往北京,列车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关学生讨论、交流、发言。
反比例函数全章教案范文

反比例函数全章教案范文一、教学目标:1. 理解反比例函数的概念,掌握反比例函数的定义和性质。
2. 学会求反比例函数的导数,并能运用导数解决相关问题。
3. 能够运用反比例函数解决实际问题,提高解决问题的能力。
二、教学内容:1. 反比例函数的定义与性质2. 反比例函数的图像与方程3. 反比例函数的导数4. 反比例函数的应用5. 反比例函数的综合训练三、教学重点与难点:1. 反比例函数的定义与性质2. 反比例函数的图像与方程3. 反比例函数的导数及其应用四、教学方法:1. 采用问题驱动法,引导学生主动探究反比例函数的性质和应用。
2. 利用多媒体课件,展示反比例函数的图像和实例,增强直观感受。
3. 注重个体差异,分组讨论,提高学生的合作能力和表达能力。
4. 举一反三,引导学生将反比例函数与其他函数相结合,提高解决问题的能力。
五、教学安排:1. 课时:本章共计10课时。
2. 教学过程:第1-2课时:反比例函数的定义与性质第3-4课时:反比例函数的图像与方程第5-6课时:反比例函数的导数第7-8课时:反比例函数的应用第9-10课时:反比例函数的综合训练六、教学过程:第11-12课时:反比例函数与几何图形通过讲解反比例函数与几何图形之间的关系,使学生能够更好地理解反比例函数的性质。
结合具体实例,引导学生运用反比例函数解决几何问题。
七、教学过程:第13-14课时:反比例函数在不同领域的应用通过讲解反比例函数在物理学、经济学等领域的应用,让学生体会反比例函数在实际生活中的重要性,提高学生运用数学知识解决实际问题的能力。
八、教学过程:第15-16课时:反比例函数的拓展与深化引导学生从反比例函数的角度思考问题,探讨反比例函数与其他函数的关系,提高学生的逻辑思维能力和创新意识。
九、教学过程:第17-18课时:反比例函数的自测与反思十、教学过程:重点和难点解析一、反比例函数的定义与性质:重点关注环节:反比例函数的概念理解、性质的推导与证明。
九年级数学反比例函数教案全

九年级数学反比例函数教案全教案章节:一、反比例函数的概念与性质教学目标:1. 理解反比例函数的定义;2. 掌握反比例函数的性质;3. 能够运用反比例函数解决实际问题。
教学内容:1. 反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x就叫做反比例函数;2. 反比例函数的性质:反比例函数的图象是一条通过原点的直线,且在每一象限内,随着x的增大,y的值减小;3. 反比例函数的实际应用。
教学步骤:1. 引入反比例函数的概念,引导学生思考两个变量之间的关系;2. 给出反比例函数的定义,让学生理解反比例函数的意义;3. 通过实例讲解反比例函数的性质,让学生观察图象,理解反比例函数的图像特征;4. 让学生进行反比例函数的练习,巩固所学知识;5. 结合实际问题,让学生运用反比例函数解决问题。
教学评价:1. 通过课堂讲解和练习,评价学生对反比例函数概念的理解程度;2. 通过反比例函数图象的绘制,评价学生对反比例函数性质的掌握程度;3. 通过实际问题的解决,评价学生对反比例函数应用的能力。
教案章节:二、反比例函数的图像与性质教学目标:1. 能够绘制反比例函数的图像;2. 理解反比例函数的单调性;3. 掌握反比例函数的渐近线。
教学内容:1. 反比例函数的图像:通过绘制反比例函数的图像,观察其特征;2. 反比例函数的单调性:分析反比例函数在各个象限内的单调性;3. 反比例函数的渐近线:了解反比例函数的渐近线及其性质。
教学步骤:1. 让学生回顾反比例函数的定义和性质,为绘制图像做准备;2. 引导学生绘制反比例函数的图像,观察其特征;3. 分析反比例函数在各个象限内的单调性,让学生通过图象理解单调性;4. 讲解反比例函数的渐近线及其性质,让学生了解反比例函数的渐近线;5. 让学生进行反比例函数图像与性质的练习,巩固所学知识。
教学评价:1. 通过图像的绘制,评价学生对反比例函数图像特征的掌握程度;2. 通过单调性的分析,评价学生对反比例函数单调性的理解程度;3. 通过渐近线的讲解和练习,评价学生对反比例函数渐近线的掌握程度。
反比例函数教案(优秀7篇)

反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
新课标北师大版九年级上册《反比例函数》集体备课材料

新课标北师大版九年级上册《反比例函数》集体备课材料教学内容分析(一)、本课时的内容、地位及作用本课内容是北师大版九年级(上)数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)、本课题的教学目标:教学目标是教学的出发点和归宿。
因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:1、知识目标(1)通过对实际问题的探究,理解反比例函数的实际意义。
(2)体会反比例函数的不同表示法。
(3)会判断反比例函数。
2、能力目标(1)通过两个实际问题,培养学生勤于思考和分析归纳能力。
(2)在思考、归纳过程中,发展学生的合情说理能力。
(3)让学生会求反比例函数关系式。
3、情感目标(1)通过创设情境让学生经历在实际问题中探索数量关系的过程,体验数学活动与人类的生活的密切联系,养成用数学思维方式解决实际问题的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键重点:反比例函数的概念难点:求反比例函数的解析式。
关键:如何由实际问题转化为数学模型。
一、教学方法:本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。
同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生在前面已学过“变量之间的关系”和“一次函数”的内容,对函数已经有了初步的认识。
因此,在教这节课时,要注意和一次函数,尤其是正比例函数一反比例的类比。
引导学生从函函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
反比例函数集体备课

九四初中 九 年级 数学 学科集体备课教
案及研讨
主备人教学内
容
26.1反比例函数课时1课时
参与成员
教学目标
理解并掌握反比例函数的意义,能从实际问题中抽象出反比例函数的关系式; 能够识别反比例函数,会根据已知条件用待定系数法求函数解析式; 培养学生的合作交流意识和探索精神,发展学生的抽象思维能力。
重难点
理解并掌握反比例函数的意义; 能从实际问题中抽象出反比例函数的关系式.
学法自主学习和引导探究
个性修
改
教学过程
1.复习旧知问题导引
1、举例说明什么是函数?
2、什么是一次函数?举例说明。
3、什么是正比例函数?举例说明。
4、下列函数中哪些是一次函数,哪些是正比例函数?
思考: ③⑥⑦⑧四个函数有何特点?它们是怎样的一类函
数?它们表示的变量关系是怎样的?有哪些性质?
2.自主学习合作探究
下列问题中,变量间具有函数关系吗?
(1)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上
海驶往北京,汽车行驶的平均速度v(单位:km∕h)随汽车
的全程运行时间t(h)的变化而变化;
(2)学校要建一个面积为100平方米的矩形花坛,花坛的
1
y =
2x
3
y =
3
2x
y = 2x2 y = 3x-1 y = 3x y =
x
1
y =
1
3x。
反比例函数集体备课1

作业设计:补充习题、同步练习、校本作业
参与研讨人员的发言记录:
许穆:确定反比例函数的解析式,要让学生主动计算,和学生互动。
花颖:让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法很重要。
刘冬艳:根据反比例函数图象初步感知反比例函数的性质很重要,在讲授时要讲透、精讲、多练以便让学生更好的掌握。
数学学科(第八册第11单元)集体研讨设计
单元课题
第十一章反比例函数
主备人
许穆
课时划分
3
研讨时间
2016.5.13
参加人员
许穆、周娟、花颖、刘冬艳
具体内容(包括每课时教学目标、教学重点与难点、教学手段与方法、作业设计等)
第1课时:
教学目标:
1.回顾以往所学的xy=k(k为常数且k≠0),认识两个量之间的反比例关系.
2.阅读课本中反比例函数的概念,初步认识反比例函数的基本形式和构成.
教学重点、难点:
1.理解反比例函数的概念;2.确练结合
作业设计:补充习题、同步练习、校本作业
第2课时:
教学目标:
1. 能用列表、描点的方法探究反比例函数的图象,并会画出反比例函数的图象.
2. 进一步理解函数的3种表示方法,即列表法、解析式法和图象法及各自的特点.
周娟:能用列表、描点的方法探究反比例函数的图象,并会画出反比例函数的图象对后面的解题很重要。
最终形成的集体备课简案(红字)
3.经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法.
教学重点:画反比例函数的图象.
教学难点:根据反比例函数图象初步感知反比例函数的性质.
教学手段与方法:讲练结合
作业设计:补充习题、同步练习、校本作业
反比例函数集备教案

城厢区砺成中学集体备课教案(九年级数学组)【针对训练】已知y与x + 1成反比例,并且当x = 3时,y = 4.(1) 写出y关于x的函数解析式;(2) 当x = 7时,求y的值.探究点3:建立简单的反比例函数模型例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为50 km/h 时,视野为80 度,如果视野 f (度) 是车速v (km/h) 的反比例函数,求f 关于v的函数解析式,并计算当车速为100 km/h 时,视野的度数.例4 如图,已知菱形ABCD的面积为180平方厘米,设它的两条对角线AC,BD的长分别为x cm,y cm. 写出变量y与x之间的函数关系式,并指出它是什么函数.探究点1:反比例函数的图象和性质例1 画出反比例函数x y 6=与xy 12=的图象. 【提示】画函数的图象步骤一般分为:列表→描点→连线. 需要注意的是在反比例函数中自变量 x 不能为 0. 解:列表:x … -6-4-2-11246… x y 6= ……xy 12=……描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.连线:用光滑的曲线顺次连接各点,即可得x y 6=与xy 12=的图象.思考 观察这两个函数图象,回答问题: (1)每个函数图象分别位于哪些象限?(2)在每一个象限内, 随着x 的增大,y 如何变化?你能由它们的解析式说明理由吗? (3)对于反比例函数xky =(k >0),考虑问题(1)(2),你能得出同样的结论吗?【要点归纳】反比例函数xky =(k >0) 的图象和性质: (1)由两条曲线组成,且分别位于第一、三象限,它们与 x 轴、y 轴都不相交;(2)在每个象限内,y 随 x 的增大而减小. 【针对训练】 反比例函数xy 3=的图象大致是 ( )A. B.C. D.例2 反比例函数xy 8=的图象上有两点 A (x 1,y 1),B (x 2,y 2),且A ,B 均在该函数图象的第一象限部分,若 x 1>x 2,则 y 1与y 2的大小关系为 ( )A. y 1 > y 2B. y 1 = y 2C. y 1 < y 2D. 无法确定【提示】因为8>0,且 A ,B 两点均在该函数图象的第一象限部分,根据 x 1>x 2,可知y 1,y 2的大小关系观察 当 k =-2,-4,-6时,反比例函数xky =的图象,有哪些共同特征?思考 回顾上面我们利用函数图象,从特殊到一般研究反比例函数x k y =(k >0) 的性质的过程,你能用类似的方法研究反比例函数xk y =(k <0)的图象和性质吗?【要点归纳】反比例函数xky =(k <0) 的图象和性质: (1) 当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内,y 随 x 的增大而减小;(2) 当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内,(1)求这个函数的解析式;(2)判断点 B (-1,6),C (3,2) 是否在这个函数的图象上,并说明理由;(3) 当 -3< x <-1 时,求 y 的取值范围.探究点2:反比例函数图象和性质的综合 例2 如图,是反比例函数xm y 5-=图象的一支. 根据图象,回答下列问题:(1) 图象的另一支位于哪个象限?常数 m 的取值范围是什么? (2) 在这个函数图象的某一支上任取点 A (x 1,y 1) 和点B (x 2,y 2). 如果x 1>x 2,那么 y 1 和 y 2 有怎样的大小关系?【针对训练】如图,是反比例函数xky -=1的图象,则 k 的值可以是 ( )A .-1B .3C .1D .0探究点3:反比例函数解析式中 k 的几何意义 操作 1. 在反比例函数xy 4=的图象上分别取点P ,Q 向x 轴、y 轴作垂线,围成面积分别为S 1,S 2的矩形,填写下列表格:S 1的值 S 2的值 S 1与S 2的关系猜想 S 1,S 2 与 k 的关系P (2,2) Q (4,1)2. 若在反比例函数xy 4-=中也用同样的方法分别取 P ,Q 两点,填写表格:S 1的值 S 2的值 S 1与S 2的关系猜想 S 1,S 2 与 k 的关系P (-1,4) Q (-2,2)猜想 由前面的探究过程,可以猜想: 若点P 是反比例函数xky =图象上的任意一点,过点 P 作 P A ⊥ x 轴,作 PB ⊥ y 轴,矩形 AOBP 的面积与k 的关系是S 矩形 AOBP =|k |. 证明 我们就 k < 0 的情况给出证明:【要点归纳】对于反比例函数xky =,点 Q 是其图象上的任意一点,作 QA ⊥ y 轴,作QB ⊥x 轴,矩形AOBQ 的面积与 k 的关系是S矩形AOBQ = |k |.推理:△QAO 与△QBO 的面积和 k 的关系是S △QAO =S △QBO =2k.【针对训练】如图,在函数xy 1=(x >0)的图象上有三点A ,B ,C ,过这三点分别向 x 轴、y 轴作垂线,过每一点所作的两条垂线与x 轴、 y 轴围成的矩形的面积分别为S A ,S B ,S C ,则( ) A . S A >S B >S C B . S A <S B <S C C . S A =S B =S C D . S A <S C <S B【典例精析】例3 如图,点A 在反比例函数xky =的图象上,AC ⊥x 轴于点 C ,且△AOC 的面积为 2,求该反比例函数的解析式.【针对训练】1. 如图,过反比例函数xky =图象上的一点 P ,作P A ⊥x 轴于点A . 若△POA 的面积为 6,则 k = .2. 若点 P 是反比例函数图象上的一点,过点 P 分别向x 轴、y 轴作垂线,垂足分别为点 M ,N ,若四边形PMON 的面积为 3,则这个反比例函数的关系式是 . 例4 如图,P ,C 是函数xy 4=(x >0) 图象上的任意两点,P A ,CD 垂直于 x 轴. 设△POA 的面积为 S 1,则 S 1 = ;梯形CEAD 的面积为 S 2,则 S 1 与 S 2 的大小关系是 S 1 S 2;△POE 的面积 S 3 和 S 2 的大小关系是S 2 S 3. (填“>”,“<”或者“=”)【针对训练】如图,直线与双曲线交于 A ,B 两点,P 是AB 上的点,△AOC 的面积 S 1、△BOD 的面积 S 2、 △POE 的面积 S 3 的大小关系为 .例5 如图,点 A 是反比例函数x y 2=(x >0)的图象上任意一点,AB //x 轴交反比例函数xy 3-=(x <0) 的图象于点 B ,以 AB 为边作平行四边形 ABCD ,其中点 C ,D 在 x 轴上,则 S ABCD =___.【方法总结】解决反比例函数有关的面积问题,可以把原图形通过切割、平移等变换,转化为较容易求面积的图形.【针对训练】如图,函数 y =-x 与函数xy 4-=的图象相交于 A ,B 两点,过点 A ,B 分别作 y 轴的垂线,垂足分别为C ,D ,则四边形ACBD 的面积为 ( )A. 2B. 4C. 6D. 8探究点4:反比例函数与一次函数的综合思考 在同一坐标系中,函数xk y 1=和 y = k 2 x +b 的图象大致如下,则 k 1 、k 2、b 各应满足什么条件?例6 函数 y =kx -k 与xk y =(k ≠0)的图象大致是( )【提示】由于两个函数解析式都含有相同的系数 k ,可对 k 的正负性进行分类讨论,得出符合题意的答案.【针对训练】在同一直角坐标系中,函数xa y -=与 y = ax +1 (a ≠0) 的图象可能是( )例7 如图是一次函数 y 1=kx +b 和反比例函数xm y =2的图象,观察图象,当 y 1﹥y 2 时,x 的取值范围为 .【针对训练】如图,一次函数 y 1= k 1x + b (k 1≠0) 的图象与反比例函数xk y 22=的图象交于 A ,B 两点,观察图象,当y 1>y 2时,x 的取值范围是 .例8 已知一个正比例函数与一个反比例函数的图象交于点 P (-3,4).试求出它们的解析式,并画出图象.想一想:这两个图象有何共同特点?你能求出另外一个交点的坐标吗?说说你发现了什么?【针对训练】反比例函数xy 12的图象与正比例函数 y = 3x 的图象的交点坐标为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章反比例函数一教材分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出的重要数学概念,是研究现实世界变化的重要内容和数学模型,学生曾经学过一次函数等内容,对函数有了初步认识,在此基础上讨论反比例函数及其图像和性质可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为了后继学习打下基础。
本单元通过对具体情境的分析,概括出发比例函数的解析式,明确反比例函数的概念,通过例子和学生列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义,结合实例经历列表、描点作图等活动,理解函数的三种表示方法,逐步明确研究函数的一般要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维的空间,通过对反比例函数的图象全面观察和比较,发现函数自身的规律,进行语言表述,在相互交流中发展从函数中获取信息的能力,同时可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。
本单元最后讨论了反比例函数的某些应用,包括在实际中的应用和在数学内部的应用,在这些数学活动中,注意用函数观点来处理问题和对问题的解决用函数作出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。
二:三维目标1﹒知识与技能会画出反比例函数的图象,,根据图象和解析式探索并理解反比例函数的主要性质,能依据已知条件确定反比例函数,领悟用函数观点解决某些实际问题的基本思路。
2.过程和方法经历在具体问题中探索数量关系和变化规律的过程,抽象出反比例函数的概念,并结合具体情境领会反比例函数作为一种数学模型的意义。
3.情感、态度、价值观逐步提高观察和归纳分析能力,体验数形结合思想,感悟其应用价值。
三;重难点和关键1.重点;掌握反比例函数的图象及其性质,依据已知条件确定反比例函数。
2难点;理解反比例函数性质。
3关键;充分利用观察比较发现反比例函数的自身规律,结合数形来突破难点。
四课时划分17 1 反比例函数 3课时17 2 实际问题和反比例函数 2课时复习与交流 1课时八年级数学下册教案备课人:授课时间:_____年_____月____日八年级数学下册教案 备课人: 17.1.2反比例函数的图象和性质(1)教学目标会用描点法画反比例函数的图象 结合图象分析并掌握反比例函数的性质体会函数的三种表示方法,领会数形结合的思想方法 重点难点 理解并掌握反比例函数的图象和性质 理解并掌握反比例函数的图象和性质 教学准备教师准备 是否需要课件学生准备教学过程设计 课堂引入 提出问题: 1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 3.反比例函数的图象是什么样呢? 例习题分析例2.见教材P48,用描点法画图,注意强调: (1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线 (4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(--=m x m y 的图象在第二、四象限,求m值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件略解:∵32)1(--=m xm y 是反比例函数 ∴m 2-3=-1,且m -1≠0又∵图象在第二、四象限 ∴m -1<0 解得2±=m 且m <1 则2-=m例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、留白: (供教师个性化设计)D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 七、课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是3. 已知反比例函数y a xa =--()226,当x >0时,y 随x 的增大而增大,求函数关系式 答案:3.xy a 25,5--=-=授课时间:_____年_____月____日八年级数学下册教案备课人:课题:17.2 实际问题与反比例函数教学内容:17.2 实际问题与反比例函数第1课时教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点用反比例函数解决实际问题.构建反比例函数的数学模型.教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100x.留白:(供教师个性化设计)(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.(四)总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.授课时间:_____年_____月____日八年级数学下册教案备课人:课题:17.2 实际问题与反比例函数教学内容:第2课时教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N 和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R(Ω)之间的函数关系如留白:(供教师个性化设计)图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.附:板书设计教后反思:授课时间:_____年_____月____日。