安培环路定理

合集下载

安培环路定理

安培环路定理
安培环路定理
静电场
1
E dS
S
0
q内有源场Fra bibliotekLE dl 0
保守场
恒定磁场
SB dS 0
无源场
LB dl ?
一、 安培环路定理
以无限长直电流的磁场为例说明
1、圆形积分回路
选在垂直于长直载流导线的平面内,以导线与平面
交点o为圆心,半径为 r 的圆周路径 L,其指向与电流
成右旋关系。
练习:如图,流出纸面的电流为 2I ,流进纸面的电 流为 I ,则下述各式中那一个是正确的?
( A)
B• L1
dl
2
0I
(C )
B • dl
L3
0I
(B)
B• L2
dl
0I
( D)
B • dl
L4
0I
2I •
L1 I
L2
L3
L4
(D)
二、安培环路定理的应用
B • dl 0 Ii
...............
B
I
2)选取回路
作矩形安培环路,如图 规定:顺时针绕向为正
M
NB
++++++++++++
P
LO
N O p M
l B d l M B d l N B d l O B d l P B d l
B MN 利用安培环路定理求 B
B MN 0nMNI
B 0nI
方向可由右手螺旋法定。 无限长直螺线管内为均匀磁场
3、求螺线环内的磁感应强度
已知:I 、N、R1、R2
N——导线总匝数

安培环路定理

安培环路定理

1
2
I
B1
2
1 2
0i
0i
I
3 B2 0
B3 0i
1
2
I
B1 B3 0
3
I
B2 0i
作业:练习三
例6 已知无限长圆桶上均匀分布电荷,面密度σ,角初 速度ω0 , 角加速度β,求t时刻内部旳磁感应强度
解:相当于密绕螺线管
B 0nI
nI 为单位长度旳电流,
nI 2 R 1 (0 t) / 2 R(0 t)
围电流时,B矢量沿 该闭合曲线旳线积分 为零。
4、闭合曲线内包围多根载流导线电流
I2 I1
S
B dl L
L (B1 B2 ... Bn ) dl
IN
L
L
B1
dl
L B2 dl
... L Bn dl
0 I1 0 I2 ... 0 I N
N
B dl L
3、磁场分布
n, I
Bin 均匀分布
外部磁场 Bout 0 内部磁场: Bin 0nI 0 j
通电稀疏螺线管空间旳磁场 通电密绕螺线管空间旳磁场
例2 求密绕载流螺线绕环内旳磁场
解:1 对称性分析;环内B 线为同心圆,环外 B为零。
2 选环路。
Bdl L
2 π RB
0 NI
B 0 NI
(1) 分析磁场旳对称性,判断B旳方向;
(2) 选择合适旳闭合回路,含方向;
(3) 求出 B dl ? 和 0 I ?
L
L内
(4) 利用
B dl
L
0 I ,求出B旳值。
L内
环路L旳选择:
(1) L上旳B大小相等,方向相同或B与dl 平行或垂直。

安培环路定理

安培环路定理

安培环路定理
安培环路定理,又称为安培定理或安培第二定理,是电磁学中的一条重要定理,描述了由电流所产生的磁场的性质。

它是由法国物理学家安德烈-玛丽·安培在19世纪初提出的。

安培环路定理是基于麦克斯韦方程组中的一个方程,可以用来计算磁场的强度。

根据该定理,通过电流所形成的磁场的磁感应强度H,沿着任意封闭曲线所围成的面积S的总磁通量Φ,与该封闭曲线所围成的电流之间的关系为:
∮H·dl = ∫∫S B·dS = Φ
其中,H是磁场的强度,dl是沿着闭合曲线的微元路径元素,B是磁感应强度,dS是平面面元素,Φ是通过该曲线所围成的面积的磁通量。

安培环路定理本质上是一个积分方程,可以通过对曲线的路径和曲面的选择来灵活地应用。

根据闭合曲线的选择不同,可以得到更方便的计算磁场的方法。

通常情况下,选择封闭曲线为简单的几何形状,例如圆形、矩形或直线,可以大大简化计算的过程。

安培环路定理的应用广泛,可以用于解决与电流所产生的磁场相关的问题。

例如,在电磁铁中,可以利用安培环路定理计算铁芯的磁场分布;在电感器中,可以通过该定理计算电感量。

此外,还可以利用安培环路定理推导出其他电磁学中的重要定理,如磁场的叠加定理和比奥-萨伐尔定律等。

综上所述,安培环路定理是电磁学中的一条基本定理,描述了电流所产生的磁场的性质。

通过应用安培环路定理,可以方便地计算出磁场的强度和分布,解决各种与电流和磁场相关的问题,为电磁学的研究和应用提供了重要的理论基础。

安培环路定理课件

安培环路定理课件

电磁感应的概念
电磁感应是指因磁通量变化而引起感应电动势的现象,它是 能量转换的一种形式。
电磁感应在安培环路定理中扮演着重要的角色,它可以解释 磁场和电流之间的相互作用和变化规律。
03
CATALOGUE
安培环路定理的证明
证明方法一:利用积分
总结词
通过在闭合曲线上的积分,我们可以证明安培环路定理。
实验二:电磁力测量
总结词
电磁力测量是研究安培环路定理的重要实验,通过测量通电导线在磁场中所受的力,可 以验证安培环路定理的推论。
详细描述
该实验采用电磁力测量仪和不同大小的电流源,通过测量通电导线在磁场中所受的力, 可以验证安培环路定理的推论。在实验过程中,需要注意保持电流的稳定和避免空气阻
力的影响。
安培环路定理的应用场景
要点一
总结词
安培环路定理的应用场景广泛,包括电力工程、电子设备 、磁力设备和科学研究等。
要点二
详细描述
在电力工程中,安培环路定理可以用于计算电流产生的磁 场,从而设计合适的磁路和电磁铁。在电子设备中,安培 环路定理可以用于分析电磁干扰和射频干扰等问题。在磁 力设备中,安培环路定理可以用于设计磁力控制器和磁力 泵等装置。此外,安培环路定理也是科学研究的重要工具 ,可以用于研究电磁场和电磁波等物理现象。
有节点电流的求和。
基尔霍夫定律的应用
03
基尔霍夫定律在电路理论、电子工程、电力工程等领域都有广
泛的应用。
06
CATALOGUE
安培环路定理实验及解析
实验一:磁场分布测量
总结词
磁场分布测量是研究安培环路定理的基础实 验,通过测量不同电流下磁场的分布情况, 可以验证安培环路定理的正确性。

安培环路定理

安培环路定理

(1)管内:取L矩形回路 abcda
边在轴上,两边与轴平行,另
aP b
两个边垂直于轴。
LB dl Bab ab Bcd cd Bab ab
e
Q
f
0I 0nI ab
d
c

B内 onI 其方向与电流满足右手螺旋.
(2)管外 :
取回路efbae同理可证,无限长直螺线管外任一点的磁场为
A(rQ )
0I 2
ln
r Q
r P
A(rP )
A(rQ
)
0I 2
ln
r Q
r
-I
r P
P
两式相加,得:
A(rP )
A(rQ )
0I 2
ln
rQ rP
rP rQ
0I 2
ln
rP rP
A(rP )
A(rQ )
0I 2
ln
r P
r P
若选Q点的矢势为零,则
A(rP )
0I 2
ln
r P
r P
例2.一无限长载流圆柱导体,半径为R, 电流I均匀分布
ldr
0I 2
l
ln
rQ r
A(rP ) A(rQ )
0I 2
ln
rQ rP
+I
Q
若选Q点的矢势为零,则
A(rp
)
0I 2
ln
rQ rP
r P
注意:若选Q点在无穷远处或导线
上,磁矢势将无意义.
讨论:两根平行的载流直导线,电流大 小相等方向相反,求磁矢势.
选Q点在两直线电流之间垂线的中点处.
A(rP )
B dS 0

《安培环路定理》课件

《安培环路定理》课件

安培环路定理的应用实例
应用实例
在复杂电路中,可以利用安培环路定理来计算磁场分布和电流之间的关系,从而确定电流的大小和方向,为电路设计和分析提供重要的理论支持。
总结词
安培环路定理在电路分析中具有重要应用,能够简化复杂电路的分析过程。
详细描述
在电路分析中,安培环路定理可以用来计算磁场分布和电流之间的关系,从而确定电流的大小和方向,为电路设计和分析提供重要的理论支持。
《安培环路定理》PPT课件
目录
CONTENTS
安培环路定理的概述安培环路定理的公式及推导安培环路定理的应用实例安培环路定理的深入思考习题与思考
安培环路定理的概述
安培环路定理是描述磁场与电流之间关系的物理定理。
安培环路定理表述为在磁感应线圈中,磁场与电流之间的关系满足闭合回路的定律,即磁场沿闭合回路的积分等于穿过该回路的电流代数和。
安培环路定理是麦克斯韦方程组中的一个组成部分,它描述了磁场与电流之间的关系。
随着科学技术的发展,安培环路定理的应用范围越来越广泛,特别是在新能源、新材料等领域中有着广泛的应用前景。
发展趋势
未来对于安培环路定理的研究将更加深入,需要进一步探索其在复杂电磁场问题中的应用,以及与其他物理场的相互作用机制。同时,也需要加强与其他学科的交叉研究,推动安培环路定理在各个领域中的应用和发展。
总结词
总结词

安培环路定理公式中的物理量包括磁感应强度B、电流I、半径r等。
详细描述
磁感应强度B是描述磁场强弱的物理量,其单位是特斯拉(T)。电流I是指穿过导体的电流大小,其单位是安培(A)。半径r是指环绕导线的圆心到导线之间的距离,其单位是米(m)。这些物理量在安培环路定理公式中具有特定的数学关系,反映了磁场与电流之间的相互作用。

安培环路定理的三个公式

安培环路定理的三个公式

安培环路定理的三个公式安培环路定理是电磁学中的一个重要定理,它描述了磁场的环流与电流之间的关系。

在这个定理中,有三个常用的公式,下面咱们就来好好唠唠这三个公式。

咱们先来说说第一个公式,这个公式表述为:在真空中,磁感应强度 B 沿任何闭合回路的线积分,等于穿过该回路所包围面积的电流的代数和乘以真空磁导率μ₀。

这听起来可能有点绕,咱举个例子啊。

就比如说,你想象有一个环形的电线,电流在里面流动。

咱们把这个环形电线想象成一个跑道,而磁场呢,就像是在跑道上奔跑的运动员。

这个运动员沿着跑道跑一圈,他跑的路程就是磁感应强度 B 的线积分。

而跑道里面的电流,就决定了这个运动员跑得有多快、跑的路程有多长。

再来讲讲第二个公式。

这个公式在有介质存在的情况下适用。

啥是介质呢?简单说,就是除了真空以外的其他物质。

这时候,磁感应强度 B 沿闭合回路的线积分,等于穿过回路所包围面积的传导电流和磁化电流的代数和乘以真空磁导率μ₀。

咱还是举个例子。

假设你有一块磁铁,周围有一些铁粉。

这些铁粉会被磁铁吸引,形成特定的分布。

这个分布就相当于一种介质。

在这种情况下,磁场的环流就不仅仅取决于传导电流,还和磁化电流有关。

最后说说第三个公式。

这个公式是在时变电磁场中的情况。

它可就更复杂一点啦,磁感应强度 B 沿闭合回路的线积分,等于穿过回路所包围面积的全电流的代数和乘以真空磁导率μ₀。

这里的全电流包括传导电流、位移电流。

那啥是位移电流呢?想象一下,有一个电容器正在充电,虽然没有电荷在电容器极板之间流动,但是电场在变化,就好像有电流在流动一样,这就是位移电流。

我记得之前给学生们讲这部分内容的时候,有个小家伙瞪着大眼睛一脸懵地问我:“老师,这也太抽象了,到底有啥用啊?”我笑着跟他说:“孩子,你想想咱们家里用的电器,比如电灯泡能亮、风扇能转,这里面可都离不开这些知识呢。

”那孩子似懂非懂地点点头。

其实啊,安培环路定理的这三个公式虽然看起来复杂,但在实际的电磁学应用中可是非常重要的。

磁场的安培环路定理公式

磁场的安培环路定理公式

磁场的安培环路定理公式安培环路定理(Ampere's Circuital Law)是电磁学中的一个重要定理,描述了电流所产生的磁场的性质。

该定理是由法国科学家安德烈·玛丽·安培于1826年提出的。

安培环路定理公式可以用来计算闭合曲线上的磁场和电流之间的关系。

安培环路定理可以表述如下:在真空中,闭合曲线上的磁场的环流等于通过该闭合曲线所围成的面内的电流的代数和的N倍,即B·l=μ0·N·I。

其中,B表示磁场强度,单位为特斯拉(T);l表示闭合曲线的长度,单位为米(m);μ0表示真空中的磁导率(磁场的常量),约等于4π×10^-7N/A^2;N表示闭合曲线所围成的面内的匝数;I表示通过该闭合曲线所围成的面内的电流,单位为安培(A)。

这个公式表明了闭合曲线上的磁场强度与该闭合曲线所围成的面内电流的代数和成正比。

当电流的方向与闭合曲线所围成的面的法线方向相同时,为正;而当电流的方向与闭合曲线所围成的面的法线方向相反时,为负。

安培环路定理的应用非常广泛。

通过安培环路定理,我们可以计算出闭合曲线上的磁场强度,从而了解电流所产生的磁场的强度和分布情况。

此外,我们还可以通过安培环路定理来计算导线上的磁场,从而提前预测电流的影响范围和磁场的强度。

安培环路定理的一个重要应用是计算长直导线产生的磁场。

对于一根长度为l的直导线,安培环路定理公式可以简化为B=μ0·I/2πr,其中r为距离导线的垂直距离。

另一个应用是计算无限长薄直导线产生的磁场。

在这种情况下,合理的选择闭合曲线为无限大的圆形曲线,通过计算可以得到B=μ0·I/2r,其中r为距离导线的垂直距离。

安培环路定理还可以应用于计算线圈产生的磁场。

对于一个具有N匝的螺线管,安培环路定理的公式可以表示为B·2πr=μ0·N·I,其中B 为螺线管中心处的磁场强度,r为距离螺线管中心的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
这里S是以L为周界的任意界面。以上便是麦克斯韦 的位移电流假说。
在电介质中 D 0 E P
E P 位移电流为 d D D dS (2) dS dS 0 t t t dt
在上式中,第二项是极化强度矢量的时间变化率。 如果单位体积的介质中有n个偶极子,每一个偶极 子为 p ql ,那么当场强变化时,偶极子间的距 离也将随之改变,所以
( L )
(S )

这便是麦克斯韦方程组(Maxwell equations)的积分形式, 在实际应用中,更重要的是麦克斯韦方程组的微分形式。
首先推导高斯定理的微分形式。假定自由电荷是体分 布的,电荷的体密度为 e 0 ,则高斯定理可写成
(S )
D dS
(V )
e0
(S )

dq0 j0 dS dt

q0
(S )
D dS
因此可得出
(S )
j
0
dS
(S )
D dS t
因为是对同一闭合曲面求积分,移项后得
D j0 dS 0 t (S )
由上式可知,在非稳恒情况下传导电流不连续。但是 D 这个量永远是连续的,只要边界L相同, j0 t 它在不同曲面 S1 , S2 上的面积分相等。
( S1 )

j0 dS I 0
但是对于曲面 S2 ,它穿过电 容器两极板之间,故有
( S2 )

j0 dS 0
这就是说,对同一个闭合回路L, H dl 的值不定, 这表示非稳恒情况下,我们在前面写出来的安培环路 定理不再适用。
如果再与稳恒情况相比,我们很容易看出,通过以L 为周界的任一曲面上的电流强度是相等的,因为根据 电流的稳恒条件,对于由 S1 , S2 构成的闭合曲面
dV
式中V是高斯面S所包围的体积 利用矢量分析中的高斯定理可把上式中左端的面积 分化为体积分: DdV dV

(V )

(V )
e0
上式对任何体积都成立,被积函数本身应处处相等,故有
D e0
这就是高斯定理的微分形式。同样可得磁场中的高斯定理 的微分形式
D H dl dS t ( L) (S )
它表示不仅传导电流可能激发磁场,变化的电场也能 激发涡旋磁场。
8.2
麦克斯韦方程组
麦克斯韦在引入涡旋电场和位移电流两个重要概念 之后得到了在普遍情况下电磁场必须满足的方程组 时有 D dS q0 间关 (S ) 的各 一 B 函量 般 E dl dS 数是 情 t (S ) ( L ) 空况 B dS 0 间下 (S ) 坐, 标式 D H dl I dS 0 和中 t
8.1
位移电流
由库仑定律和场的叠加原理可得出关于静电场的两条 重要定理: (1)电场的高斯定理
(S )
D dS q
E dl
0
0
(2)静电场的环路定理
(L)
由毕奥—萨伐尔定律可得出稳恒磁场的两条重要定理:
(3)磁场的高斯定理
(S )
B dS 0
(4)安培环路定理
B E dl dS t (L) (S )
静电场的环路定理不过是其特例而已。
对于电场的高斯定理和磁场的高斯定理,当推广到普 遍情况时,则没有发现不合理之处,麦克斯韦假定它们对于 变化的电场仍然适用。但是,将安培环路定理推广到一般情 况时,麦克斯韦遇到了困难。典型的例子是电容器充放电的 情况。我们取一环路L,而 S1 和 S2 都是以L为周界的曲 面。对于曲面 S1 它与导线相交,因此
(S )

j0 dS j0 dS j0 dS
( S1 )

( S2 )

0
综合以上分析可以看出稳恒情况下安培环路定理 成立是因为此时电流是连续的;而在电容的例子中安 培环路定理之所以引出矛盾的结果,其根源在于传导 电流在电容器极板间的中断,即在非稳恒的情况下传 导电流具有不连续性。 对于非稳恒情况,电流的稳恒条件虽不成立,但 是根据电荷守恒定律:
P 式中v是束缚电荷规则运动引起的,由此可知 t
P l nq nqv t t
正是极化电流密度。
E (2)式右端第一项是与电场的时间变化率 相联系 t P 的,在真空中 P 0, 0 ,在位移电流中就只剩 t 这一项了。因此,这一项是位移电流的基本组成部分, 但是,它与“电荷的流动”无关,它仅仅是变化着的 电场,即位移电流是由变化的电场产生的。 如果把(1)式应用于没有传导电流的情形中,则得
令 D D dS
(S )
代表通过某一曲面的电位移通量
则有 d D D dS
dt
(S )
t
麦克斯韦把 d D 这个量叫做位移电流(displacement dt
D current), 是位移电流密度。 t
传导电流
I 0 j0 dS
与位移电流合在一起
称为全电流。 全电流在任何情况下都是连续的。
dD 麦克斯韦还假定在产生磁效应上,位移电流 dt
与传导电流 I 0 等效。在非稳恒情况下,磁场环路
定理右面 I 0 应由
I0
d D H dl I 0 dt ( L)
或者写成
dD dt
代替,即:
D H dl j0 dS t ( L) (S )
( L)
H dl
I0
(5)法拉第全面系统地考察了 这些规律,并试图把这些规律推广到非稳恒的情况。正 如第五章所提到的那样,麦克斯韦首先把电场的环路定 理加以推广。他认为感生电动势现象实际上预示着变化 的磁场周围产生涡旋电场,因此电场的环路定理在普遍 情况下应是:
相关文档
最新文档