一次调频功能控制策略的分析及优化
火电机组一次调频逻辑优化

火电机组一次调频逻辑优化摘要:一次调频是确保电网频率稳定,电能质量可靠的重要保障措施,是发电机组准许并网的重要指标。
本文针对一次调频动作过程存在的动作幅度不足、合格率低等问题,分析原因并给出了相应的逻辑优化措施,优化试验后,机组一次调频能力明显提升。
关键词:一次调频、合格率、动作幅度、逻辑优化一、引言为确保电网频率稳定、提高电能质量控制水平,保证电网以及发电机组安全可靠运行,《西北电网发电机组一次调频技术管理规》要求并入电网运行的机组应具备一次调频功能,且调频功能满足各项指标要求[1]。
针对公司一次调频动作幅度低、以及合格率低于两个细则规定值70%情况。
生产技术人员在确保机组安全稳定运行情况下,积极研究控制逻辑、分析机组各项参数、查阅资料,深层次分析原因,制定安全可行的逻辑优化方案。
经两个月的论证,一次调频能力得到明显提升。
二、一次调频参数指标1.调频死区:为了在电网频率变化小情况,提高机组运行稳定性,规定机组参与一次调频死区应控制在±0.033Hz或±2r/min范围内。
2.转速不等率:机组从满负荷状态到空负荷过程中,转速的增加值与额定转速之比。
火电机组转速不等率一般在4%-6%。
3.最大调整负荷限幅:机组参与一次调频的调频负荷变化幅度应限制在额定负荷的(6%-10%)。
4.机组参与一次调频响应滞后时间<3s,即机组从电网频率越过该机组一次调频的死区开始,到该机组的负荷开始变化所需时间。
5.机组一次调频的负荷响应速度应满足:火电机组在15S 内一次调频负荷响应幅度达到理论计算的一次调频最大调整负荷的90%;在45S内,机组实际处理与响应目标偏差的平均值应在理论计算调整幅度的±5%内[2]。
三、一次调频逻辑回路1.DEH侧逻辑回路:DEH侧将实际转速信号与额定转速之差(折线函数)叠加在汽轮机调速阀流量指令处,直接作用于高压调节阀,补偿的调频功率不经过速率限制[3]。
330MW供热机组AGC和一次调频控制策略分析及优化

( h n h iE e ti o rCo S a g a lcr P we .,Lt. W uig Th r lP we a t h n h i2 0 4 , ia c d jn ema o rPln ,S a g a 0 2 1 Chn )
Ab t a t sr c :At r s n ,a t u h p o lm o o rp a t h th v x r c in s e m e t g u isi t e p b l e e t o g r b e f rp we ln s t a a e e t a t ta h a i n t s O k e a— p o n a c e we n s rcl e h e t g d ma d f c e c li d s ra a k,t e AGC n rma y f e u n y n e b t e tity me tt e h a i e n s o h mia n u t ilp r n h a d p i r rq e c
t n,atre p r n sa da jsme t , h o to tae yo i o fe x ei me t n du t n s t ec n r l r tg f s AGC n rmayfe u n ya ay e n p i a d p i r r q e c n lssa do t —
光伏电站一次调频测试的实验设计与优化策略

光伏电站一次调频测试的实验设计与优化策略光伏电站作为清洁能源发电的重要组成部分,在电力系统中发挥着越来越重要的作用。
为了确保光伏电站顺利接入电网并保持电网的稳定运行,一次调频测试是必不可少的环节。
本文将针对光伏电站一次调频测试的实验设计与优化策略进行探讨,以保证电力系统的稳定性和可靠性。
一、实验设计1. 实验背景光伏电站一次调频测试是为了验证光伏发电系统在电网并联运行时对于系统频率变化的响应能力。
通过该测试可以评估光伏电站的功率调节性能,为其正常运行提供参考依据。
2. 实验内容典型的光伏电站一次调频测试包括以下内容:设置频率偏差,观察光伏电站的功率响应;调整功率控制策略,优化光伏电站的频率调节特性;记录数据并进行分析,评估光伏电站的一次调频性能。
3. 实验流程具体实验流程可分为以下几个步骤:设置实验参数、进行频率扰动、观察光伏电站响应、调整控制策略、再次进行频率扰动、记录数据等。
通过这些步骤可以全面评估光伏电站的一次调频性能。
二、优化策略1. 控制策略优化光伏电站一次调频性能的关键在于控制策略的设计和优化。
合理的功率控制策略可以提高光伏电站的频率响应速度和稳定性,减小频率偏差。
2. 储能设备应用在光伏电站中引入储能设备可以有效提高光伏电站的调频性能。
储能设备可以提供灵活的电力支持,对电网频率的调节起到积极的作用。
3. 智能监控系统建立智能监控系统可以实时监测光伏电站的运行状态,及时发现问题并调整控制策略。
通过数据分析和算法优化,提高光伏电站的一次调频性能。
三、结论光伏电站一次调频测试的实验设计与优化策略是保障光伏电站接入电网顺利运行的关键环节。
合理设计实验流程和优化控制策略可以提高光伏电站的频率响应速度和稳定性,保证电网的安全稳定运行。
未来,随着光伏电站技术的不断发展和完善,相信光伏电站的一次调频性能会更加优化,为清洁能源发电做出更大的贡献。
火电机组一次调频和AGC原因与优化分析

火电机组一次调频和 AGC原因与优化分析摘要:随着人们对电力需求的不断提升,电网的正常运行具有重要作用。
而在电网的日常运行过程中,火电机组的一次调频相关功能必须要满足相关要求,但是在实际的控制系统中很难保证对不等率或者频差函数等进行正确设置,再加上AGC功能优势无法完全的发挥,进而严重制约了电网频率的稳定性,为此,加强对火电机组一次调频以及AGC原因分析具有现实意义。
关键词:火电机组一次调频 AGC 优化1一次调频以及AGC概述1.1一次调频概述一次调频顾名思义就是在汽轮机相关参数设定值不发生改变的情况下,将汽轮机转速或者功率输出进行改变进而实现对电网频率的控制,以满足实际的电网频率的稳定性。
当进行一次调频后,机组往往需要在保证设定值不变的情况下,保证输出功率由零提升至额定功率。
在进行调频过程中,汽轮机的转速变化量以及额定转速之间是不等率的,为此,对于不同的荷载机组的转速也会存有不同的转速不等率指标。
另外,如果电网的功率出现不平衡的情况或者电网频率偏离额定值时,也会影响到一次调频的效率,所以,在实际的一次调频过程中丙烯要结合实际情况合理的制定相关策略,进而保证电网的稳定性。
影响一次调频的主要因素包括以下几点:第一,设备因素。
作为影响火电机组一次调频最为重要的因素之一,最为常见的设备因素包括但不限于调速器、配气机构件间的摩擦或者间隙等导致调速系统的迟缓率增大,进而致使调速系统的不稳定性;因为测量或者其他干扰问题而导致机组和省调间交换的数据存在一定的偏差;因为DEH控制系统所传递信息时间较长,进而制约了调速汽门的反应速度以及所采用的小部分低压透平油纯电调的老机组其精度无法满足实际需求等等;第二,运行方式。
一般情况下,火电机组主要是采用的定压以及滑压运行方式,但由于滑压机组的效率较高且损失较小,所以对于新兴的机组主要以此方式为主,但是仍一部分采用的是定压方式,而由于此方式对于机组前压力的偏差要求较高,为此,在压力拉回逻辑的影响下会影响到一次调频的反拉作用,进而影响一次调频的稳定性;第三,控制逻辑的影响。
基于同源控制策略的一次调频性能研究与优化

基于同源控制策略的一次调频性能研究与优化摘要:电网频率的变化对整个系统的安全稳定具有重要的影响。
对西北某350MW超临界空冷供热机组原有一次调频的分析及对“两个细则”要求的研究,提出了一次调频的优化方法,并对比性能优化前后的效果。
优化后能够很好地实现在一次调频动作时,DEH 侧快速动作,同时 CCS 保证动作的准确性。
通过高精度同源装置改造、控制策略优化等措施,有效提升了一次调频性能。
既保证了电网频率稳定和电网优质运行,又满足“两个细则”的要求。
[关键词]一次调频;信号源;控制策略;两个细则;0引言电网频率作为最重要的电能质量指标之一,是电网稳定的基础。
机组一次调频功能是保证系统频率质量的重要技术手段,根据电网频率变化的偏差限量限速率的调节增、减发电机组有功出力,按照一定调节速率实时调整机组出力,维持电网供电频率的稳定。
对于燃煤机组来说,机组一次调频性能首先需达到规定的动作合格率;其次在大频差工况下机组一次调频响应能力应达到标准要求。
根据机组现有运行状况,一次调频动作合格率不能满足调度考核要求。
1西北电网一次调频技术标准(1)转速不等率: 火电机组转速不等率不大于5%,该技术指标不计算调频死区影响部分。
(2)调频死区: 机组参与一次调频死区为|±0.033|Hz或|±2|r/min。
(3)机组参与一次调频的响应滞后时间应小于3s。
(4)机组参与一次调频的稳定时间应小于1min。
(5)机组一次调频的负荷响应速度应满足: 机组达到75%目标负荷的时间应不大于15s,达到90%目标负荷的时间应不大于25s。
(6)额定容量350MW的火电机组,一次调频的负荷调整限幅为机组额定容量的±8%。
(7)额定容量运行的火电机组,应参与一次调频,增负荷方向最大调频负荷幅度不小于机组额定容量的5%。
(8)并网运行机组一次调频月度平均合格率应满足火电、燃气机组一次调频平均合格率不小于70%。
火电机组一次调频控制策略优化

火电机组一次调频控制策略优化摘要:本文首先分析了一次调频的内涵和特点,然后分析江西某火电机组在一次调频工作中存在的问题,并且结合问题分析解决方式。
通过研究,帮助电厂工作人员寻找对火电机组更为科学的控制策略,优化火电机组的一次调频工作。
关键词:火电机组;一次调频;控制策略;优化引言:火电机组进行一次调频的过程中,由于电网容量、频率变化的影响,会造成一次调频不合格的情况。
为此,应该针对火电机组的运行特点,所在电网的而工作情况,制定出更为科学的调频策略,满足一次调频的考核要求。
1一次调频概述一次调频的原理是在汽轮机不改变设定值的情况下,改变转速或者功率控制输出,以及改变控制输出功率,有效改变电网的频率,适应电网的频率改变。
在一次调频发生之后,机组需要在控制系统定值不发生改变的时候,使输出功率从零逐渐提升到额定功率,在调节时,汽轮机的转速该变量和额定转速之间不等率的,对于承担荷载不同的情况,机组的转速不等率指标也会有所不同[1]。
并且,如果电网的功率出现供需不平衡时,以及电网频率偏离的时候,也会影响一次调频的效果,因此需要结合实际情况制定合理的一次调频策略。
2一次调频工作中存在的问题2.1机组的参数特点对江西某机组锅炉使用了上海锅炉厂的超临界参数、采用变压运行、四角切圆燃烧方式,以及利用螺旋管圈直流锅炉,汽轮机使用上海汽轮机有限公司生产的超临界压力,一次中间加热,单轴、三缸四排期、双倍压、凝汽式汽轮机。
在调试时,该机组调试的合格率只能达到40%,考核压力巨大,所以必须加强调试工作,提升一次调频的合格率。
实际应用中,该机组一次调频控制策略依然采用了传统的一次调频方式,频率转速差根据差频函数调节,一次调频会作为前馈直接在汽轮机的调频指令中产生作用,然后会叠加到限幅限速机组负荷指令中,然后作为重量发挥发电机组的闭环逻辑控制作用。
2.2一次调频过程中的问题分析江西电网的一次调频合格率会根据实际贡献量决定,其考核工作就是以一次调频作为电厂考核的结果,为了考核的要求,必须使议题调频能贡献更高的积分电量。
火力发电厂一次调频问题分析

火力发电厂一次调频问题分析摘要:随着电力市场的不断发展,火力发电厂作为主要的供电方式之一在调频方面扮演着越来越重要的角色。
然而,由于电网负荷变化等原因,火力发电厂一次调频产生的问题也越来越突出。
本文通过对现有研究进行综述,探讨了火力发电厂一次调频存在的主要问题,并提出了相应的解决方法。
关键词:火力发电厂;一次调频;问题分析一、引言随着经济社会的不断发展,电力需求呈现出快速增长的趋势。
火力发电厂作为主要的电力供应方式之一,其调频功能十分重要。
一次调频是指当电力系统负荷发生变化时,需要对火力发电机组进行输出功率的调整,以保证电力系统的稳定运行。
然而,在实际应用中,火力发电厂一次调频所存在的问题也日益突出。
其中,最主要的问题包括响应速度慢、调节精度低、调节范围窄等。
本文将探讨这些问题的原因,并针对性地提出相应的解决方法,以期为火力发电厂一次调频的优化提供参考。
二、火力发电机组一次调频原理(一)火力发电机组一次调频原理火力发电机组一次调频是指在电网负荷发生变化时,需要对火力发电机组进行输出功率的调整,以保证电力系统的稳定运行。
其原理如下:当电网负荷增加时,电网电压降低,此时火力发电机组控制系统会接收到信号,要求提高输出功率。
控制系统通过调整机组的燃料供给量、蒸汽流量等参数来提升输出功率;反之,当电网负荷减少时,火力发电机组控制系统会减小输出功率。
这个调节过程需要快速响应并达到精确的控制,以维持电网的稳定性[1]。
通常情况下,火力发电机组的调节方式可以分为自动和手动两种。
在自动调节模式下,控制系统会根据电网频率、功率因数等参数实时调整输出功率;而在手动调节模式下,操作员根据实际情况手动调整机组输出功率。
总之,火力发电机组一次调频的原理是通过控制燃料供给量、蒸汽流量等参数来实现对机组输出功率的调整,以满足电网负荷变化的需求,并维持电网的稳定性。
(二)一次调频函数介绍一次调频函数(Primary Control Function)是指火力发电机组控制系统中用于实现一次调频功能的算法或模型。
火电厂一次调频及AGC性能优化分析

火电厂一次调频及AGC性能优化分析摘要:一次调频机组系统并网后的速度控制,一次调频系统如果出现偏差,则无法及时修复电网故障,从而直接影响电网和机组安全,甚至可能导致多个故障。
因此,电网对机组一次调频对要求更严格。
为了保证电网稳定性,必须通过彻底提高能量质量和频率来完全消除频率波动。
这需要一次调频系统,它必须快速适应不断变化的环境,并提供更高的稳定性。
对现有控制AGC机组方案进行了分析一次调频,从而提高了组的性能指标,实现了同类设备控制逻辑的逻辑优化,从而改进和优化了控制。
关键词:火电厂;协调控制系统;AGC;一次调频电网频率反映了发电侧的功率和用电侧的负载量之间的平衡,当产生的发电功率与使用的负载相符时,是稳定的电网频率。
当发电功率超过所需负荷时,电网频率会增加。
当功率低于所需负载时,会降低电网频率。
频率是评估能源质量的重要质量指标,对电力系统的安全至关重要。
因此,频率的稳定是电网频率的一项重要任务,根据调谐范围和调谐功能将频率分为一次和二次调频。
一、AGC存在问题1.汽机主控中存在的问题及中间解决办法。
原始逻辑设计会在负载变更时机组导致双重前馈,这可能会产生重大影响,当机组负载发生变化时,过大的前馈可能会导致群组的实际负载迅速超出并迅速形成波动拉回,荷载变化影响了初期稳定性动作。
表明逻辑试验,基准负荷量与调门开度和相匹配开度前馈,这是在变负荷开始时快速超调并回调主要原因。
汽机的逻辑修改主控前馈,确定变负荷新逻辑,变负载相位的固定分量(±2.5 MW)的触发,以及作为快速负载响应的叠加汽机主控PID控制器输入的应用,逻辑修改解决了这个问题。
2.锅炉主控存在的问题及解决方案。
锅炉主控项目中的前馈条件过多,冗余存在和锅炉PID参数强。
另外,改造后低氮机制,锅炉本身较大滞后性,往往导致负荷变化时燃料控制过度,不仅不经济,而且锅炉的氧量和电压波动较大,从而减少了参数调整后PID参数动态运行中的过调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次调频功能控制策略的分析及优化随着大容量机组在电网中的比例不断增加,电网用电结构变化引起的负荷峰谷差逐步加大,而用户对电能质量的要求却在不断提高,电网频率稳定性的问题越来越被重视。
大容量火电机组需要根据中调的AGC指令和电网的频率偏差参与电网的调峰、调频。
为提高电网运行的稳定性,降低电网频率的波动,增强电网抗事故能力。
目前发达国家电网频率变动允许范围是0.1Hz,我国电网频率变动允许范围是0.2Hz,因此许多重要产品的质量比不上经济发达国家。
电能质量越高,电网也越安全。
特别是电力走向市场的大环境下,各电网均开展了以省为实体的电网地区负荷偏差控制,即 ACE控制。
各省电力公司为快速满足ACE 偏差最小化的要求,大力发展自动发电控制(AGC)机组。
“AGC”机组是指参与电力调度通信中心的频率和有功功率自动控制的机组。
1 基本概念1.1 一次调频对于电网中快速的负荷变动所引起的周波变动,汽轮机调节系统、机组协调控制系统根据电网频率的变化情况利用锅炉的蓄能,自动改变调门的开度,即改变发电机的功率,使之适应电网负荷的随机变动,来满足电网负荷变化的过程这就是一次调频。
现代广义的电网一次调频功能,需考虑汽轮机、锅炉、发电机及电网间的相互配合与制约关系,应以整台机组作为控制对象。
从功能上既要有传统电网一次调频的快速性,又要有现代控制的整体协调性。
汽轮机快速响应外界负荷、频率的变化,锅炉跟随汽轮机的快速响应,满足汽轮机的要求。
稳定运行的电力系统,其电源和负荷功率必须是动态平衡的。
当电源功率或负荷发生变化造成变化时(以功率不足为例),系统的频率就会随之降低,系统中的负荷设备会因为频率下降而影响其有功的吸收。
与此同时,系统中运行的同步发电机组,也会按照其调速系统的静态特性增加调门开度,弥补系统中功率的不足。
1.2 速度变动率速度变动率是指汽轮机由满负荷到空负荷的转速变化与额定转速之比,其计算公式为:δ=(n1 - n2)/n×100%,式中n1:汽轮机空负荷时的转速, n2: 汽轮机满负荷时的转速, n:汽轮机额定转速。
对速度变动率的解释如下:汽轮机在正常运行时,当电网发生故障或汽轮发电机出口开关跳闸使汽轮机负荷甩到零,这时汽轮机的转速先升到一个最高值然后下降到一个稳定值,这种现象称为“动态飞升”。
理论上,转速上升的最高值由速度变动率决定,一般应为4~5 %。
若汽轮机的额定转速为3000转/分,则动态飞升在120~150转/分之间。
三河发电有限责任公司速度变动率取5 %。
1.3 响应滞后时间和稳定时间图1 响应滞后时间和稳定时间示意图如图1所示,响应滞后时间:当电网频率变化达到一次调频动作值到机组负荷开始变化所需的时间,图中Δt为响应滞后时间。
为保证机组一次调频的快速性,根据《华北电网发电机组一次调频运行管理规定》要求Δt应小于3秒。
稳定时间:机组参与一次调频过程中,在电网频率稳定后,机组负荷达到稳定所需的时间,图中t1为稳定时间。
为保证机组一次调频的稳定性,根据《华北电网发电机组一次调频运行管理规定》要求t1应小于1分钟。
1.4 负荷变化幅度机组参与一次调频的负荷变化幅度,是考虑当频率变化过大时,机组负荷不再随频率变化,以保证机组稳定运行。
但是,变化幅度限制的越小,一次调频能力越弱,根据《华北电网发电机组一次调频运行管理规定》要求限制幅度大于机组额定负荷的±8%。
AGC机组在CCS内设置的一次调频调节量计算式为:式中n0=3000r/min;No为额定功率;δ=5%.所以,350MW级AGC机组在(50±0.1)Hz频率范围内参与一次调频时,机组一次调频负荷调整的最大允许范围为±14MW/0.1Hz机组参与一次调频频率调节死区为(3000±2)r/min,即调节的频差死区为±0.033Hz。
电网固定机组一次调频范围为(50±0.1)Hz,即(49.9~50.1)Hz, 当频率低于49.967 Hz时,ΔN=140×〔50-(Hz+0.033)〕(MW), 当频率高于50.033 Hz时,ΔN=140×〔50-(Hz-0.033)〕(MW)。
在此范围内CCS系统参与电网一次调频能力最大为±9.38MW,超过该区间运行人员手动快速调节负荷满足电网频率需要。
2 目前三河发电有限责任公司的情况2.1 整体情况三河发电有限责任公司机组在DCS系统和DEH系统中都存在一次调频功能,机组运行投入,不能人为退出。
机组工作在AGC方式时,由DEH、DCS共同完成一次调频功能,当机组不在AGC方式时由DEH完成一次调频的任务。
一次调频功能由DEH实现。
即将频差信号叠加在汽轮机调速汽门指令的设计方法,以保证一次调频的响应速度。
同时在DCS中投入频率校正回路,即当机组工作在机组协调或AGC方式时,由DEH、DCS共同完成一次调频功能。
既保证一次调频的响应速度,又保证机组参与一次调频的持续性,此系统的一次调频功能不能随意切除,保证了一次调频功能始终在投入状态。
一次调频控制原理如图2所示。
图2 一次调频控制原理示意图2.2 《华北电网发电机组一次调频运行管理办法》规定三河发电有限责任公司机组的一次调频技术指标为:速度变动率:4%-5% 系统迟缓率:< 0.06% 死区:< ±2转/分钟稳定时间:< 1分钟变化幅度:≥±8%MCR 响应滞后时间:< 3秒2.3 1、2号机组的一次调频实现1、2号机组一次调频技术指标符合《华北电网发电机组一次调频运行管理办法》的要求,频差函数曲线如图3所示。
图3 频差函数曲线目前1、2号机组的技术指标:速度变动率: 5% 系统迟缓率:0 死区:±2转/分钟稳定时间:< 1分钟变化幅度:≥±8%MCR 响应滞后时间:< 3秒DEH一次调频的逻辑图如图4所示。
图4 DEH一次调频的逻辑图说明:在汽机实际转速偏差低于±2rpm时,通过10s的一阶延迟缓慢作用。
在汽机实际转速偏差大于±2rpm时,偏差经2/3比例后直接加到汽机调门指令上。
频率偏差与负荷修正的关系确认一次调频的组态实现逻辑为:如果Hz>50+0.033,则Bias=(50+0.033-Hz)×Gain;如果Hz<50-0.033,则Bias=(50-0.033-Hz)×Gain;如果Bias>r_hi,则Bias=r_hi;如果Bias<r_lo,则Bias=r_ lo;其中Gain=135;0.033为机组参与一次调频的死区。
由以上运算公式和逻辑关系可以看出,当频差(Bias)<0时,可以判断电网频率高,要求机组降负荷→关调门→机前压力升高,为了保证不出现负荷回调的现象,要求机前压力设定值也要提高。
相关数值的确定:(1)0.033:根据华北电网调〔2006〕28号文《华北电网发电机组一次调频运行管理规定》要求:火电机组一次调频死区不大于±2 r/min,即±2/3000×50=±0.033Hz。
(2)Gain=135:频率与功率的比例系数,根据华北电网调〔2006〕28号文《华北电网发电机组一次调频运行管理规定》要求:机组调速系统的速度变动率,火电机组速度变动率一般为4%~5%,对于本公司350MW机组,速度变动率取5%的情况下,350/(5%×3000)=2.3MW/rpm,即0.017Hz对应2.3MW,得出频差1Hz对应135MW,因此频率与功率的比例系数为135。
2.4 存在的问题2006年8月6日电网频率波动检查三河发电有限责任公司的一次调频功能的曲线如图5所示。
图5 存在回调现象的一次调频功能的曲线图中曲线为:1BAA01CE301:#1机机组实际负荷1BAA01CE320:电网频率1CBA00C0001_:#1机中调AGC指令1SGEN_BIAS:#1机频率偏差修正值1PTSP:机前压力设定值1PT:机前压力1CBA10co501: #1机转速分析:2006年8月6日3时06分28秒,系统频率在2秒内由50.04Hz下降至49.94Hz,频率偏差产生的修正信号,机组负荷0秒响应,3秒后负荷开始稳定上升,15秒后保持稳定。
三河发电有限责任公司两台机组从投产以后基本一直投入机跟炉的协调控制方式,DEB 协调控制方式由于制粉系统的限制投入效果不佳,因此很少采用。
一次调频动作时,DEH立即动作,使阀门有开向或关向的阶跃变化,此变化引起机前压力减小或增大,而压力控制回路对综合阀位有反向的调节,所以导致一次调频响应缓慢。
3 改进方案3.1 初步试验通过与华北电科院专家进行探讨制定下一步的整改方案,可以采取随网频变化适时修改压力定值的方法,来消除由内回路引起的反调。
具体方法:在CCS系统内将频差信号作为前馈信号引入压力控制器,因此压力定值则由两部分组成,一部分是原计算回路的压力定值,另一部分则是频差经过变换的压力定值的修正部分。
通过对压力定值的前馈修正,使得在调频作用时,机前压力定值能随网频变化相适用。
克服因机前压力随网频变化,而机前压力定值不变,导致产生的调节偏差而将机前压力快速调回的反调现象。
优化控制方案原理如图6所示。
图6 优化控制方案原理图用频差函数修正时,注意网频变化同机前压力定值增量的方向的一致性问题,同时对修正压力增量进行适当限幅。
一般取函数的限幅为[-0.3MPa,+0.3MPa],如图7所示。
图7 限幅函数频率偏差与机前压力设定值修正的关系确认组态实现逻辑为:如果Hz>50+0.033,则Bias=(50+0.033-Hz)×Gain;如果Hz<50-0.033,则Bias=(50-0.033-Hz)×Gain;如果Bias>r_hi,则Bias=r_hi;如果Bias<r_lo,则Bias=r_ lo;其中Gain=-5;0.033为机组参与一次调频的死区由以上运算公式和逻辑关系可以看出,当频差(Bias)<0时,可以判断电网频率高,要求机组降负荷→关调门→机前压力升高,为了保证不出现负荷回调的现象,要求机前压力设定值也要提高。
数值的确定:Gain=-5,频率与转速的关系0.1Hz→6rpm,去掉死区2rpm,0.1Hz→4rpm,4rpm→4.6MW根据机组运行数据,当负荷变化4.6MW时,机前压力的变化为0.5Mpa,因此频率与压力设定值的比例系数为-5。
3.2 试验出现的问题原压力定值计算回路是有速率限制的,主要是根据锅炉升压能力来确定,作用是使压力指令的变化同锅炉实际升压能力相适应。