正态分布课件课件

合集下载

课件3:§7.5 正态分布

课件3:§7.5 正态分布

( B) A.95.45%
B.99.73%
C.4.55%
D.0.27%
【解析】由 X~N(-2,14),知 μ=-2,σ=21,
∴P(-3.5<X≤-0.5)=P(-2-3×0.5<X≤-2+3×0.5)
=0.997 3.
3.已知正态分布总体的数据落在区间(-3,-1)内的概率 和落在区间(3,5)内的概率相等,那么这个正态总体的均值 为________. 【解析】区间(-3,-1)和区间(3,5)关于直线 x=1 对称, 所以均值 μ 为 1. 【答案】1
课堂检测
1.下列函数可以作为正态分布密度函数的是 ( A )
A.f(x)=
( x1)2
1e 2 2π
B.f(x)=σ
1
( xu)2
e 2 2

C.f(x)=
1
e
(
x u )2 2 2
2πσ
D.f(x)=21π
e
(
xu 2π
)2
2.若 X~N(-2,41),则 X 落在(-3.5,-0.5]内的概率是
归纳领悟 1.在正态分布 X~N(μ,σ2)中,μ 就是随机变量 X 的均值,σ2 就是随机变量 X 的方差,它们分别反映 X 取值的平均大小和 稳定程度. 2.正态密度曲线的性质 (1)曲线位于 x 轴上方,与 x 轴不相交; (2)曲线是单峰的,它关于直线 x=μ 对称;
(3)曲线在
x=μ
处达到峰值 σ
课堂小结 1.知识清单: (1)正态曲线及其特点. (2)正态分布. (3)正态分布的应用,3σ原则. 2.方法归纳:转化化归、数形结合. 3.常见误区:概率区间转化不等价.
本节内容结束 更多精彩内容请登录:

正态分布ppt课件统计学

正态分布ppt课件统计学
详细描述
人类的身高和体重分布情况符合正态分布的特征。这是因为个体的生长发育受到多种因 素的影响,导致身高和体重的差异。根据正态分布规律,大部分人的身高和体重值会集 中在平均值附近,而偏离平均值越远的人数逐渐减少。这种分布形态有助于评估个体的
生长发育状况,并识别出异常身高和体重的个体。
股票价格波动
总结词
卡方检验
总结词
卡方检验是一种非参数检验方法,用于比较实际观测频数与 期望频数是否有显著性差异。
详细描述
卡方检验通过计算卡方值和对应的P值来判断实际观测频数与 期望频数是否有显著性差异。卡方值越大,P值越小,说明差 异越显著。
05
正态分布的实例分析
考试分数分布
总结词
考试分数分布通常呈现正态分布的特点,即大部分考生成绩集中在平均分附近,高分和低分均呈下降趋势。
03
正态分布的性质
钟形曲线
钟形曲线
正态分布的图形呈现钟形 ,中间高,两侧逐渐降低 ,对称轴为均值所在直线 。
概率密度函数
描述正态分布中取任意值 的概率大小,函数曲线下 的面积代表概率。
曲线下面积
正态分布曲线下的面积为1 ,表示随机变量取值在一 定范围内的概率。
平均数与标准差
平均数
正态分布的均值,表示数据的中 心位置,所有数据值加起来除以 数据个数得到。
概率密度函数
正态分布的概率密度函数公式为: $f(x) = frac{1}{sqrt{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}$
其中,$mu$表示平均值,$sigma$ 表示标准差,该公式描述了正态分布 曲线的形状和高度。
02
正态分布的应用
自然现象

大学正态分布ppt课件

大学正态分布ppt课件
记号
X服从正态分布时,记作X ~ N(μ, σ^2)。
正态分布的特点
钟形曲线
正态分布是一条钟形曲线,形状由均值和标准差决定。
均值为μ,方差为σ^2
正态分布的均值和方差是两个参数,均值为μ,方差为σ^2。
曲线下的面积
正态分布曲线下的面积为1,表示概率的累积分布。
正态分布的应用
自然现象
01
许多自然现象,如人类的身高、体重、智商等,都近
可靠性工程
在可靠性工程中,正态分布被用于描述设备的故 障概率和寿命分布,以及设计和优化设备的可靠 性。
PART 06
正态分布与其他统计分布 的关系
REPORTING
与二项分布的关系
01 02 03 04
二项分布是离散型的概率分布,而正态分布是连续型的概率分布。
二项分布中,随机变量取值是离散的,而正态分布中,随机变量取值 是连续的。
二项分布和正态分布的形状都呈现出钟形曲线,但二项分布的曲线比 较陡峭,而正态分布的曲线比较平缓。
二项分布和正态分布在一定条件下可以相互转化。例如,当二项分布 的试验次数足够大时,二项分布的极限分布就是正态分布。
与泊松分布的关系
泊松分布也是离散型的概率分布,但与二项分 布不同的是,泊松分布适用于描述单位时间( 或单位面积)内随机事件发生的次数。
似服从正态分布。
社会科学
02 在社会科学中,很多现象也服从正态分布,如人的出
生率、死亡率等。
科学实验
03
在科学实验中,实验结果往往呈现正态分布,如化学
反应速率等。
PART 02
正态分布的性质
REPORTING
数学期望与方差
数学期望
正态分布的期望值,即概率分布的中 心,表示为μ。它描述了分布的中心 位置。

正态分布 课件

正态分布   课件
在气象中,某地每年七月份的平均气温、平均湿度 以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:

正态分布完整ppt课件

正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。

正态分布ppt课件

正态分布ppt课件

1.已知某地区中学生的身高 X 近似服从正态分布 N 164, 2 ,若 P X 170 0.3 ,
则 P158 X 1706
D.0.8
解析: P158 X 170 2P164 X 170 2 0.5 P X 170 0.4 .
2. 已 知 随 机 变 量 X 服 从 正 态 分 布 N 1, 2 , 若 P(X 0) P(X 3) 11 , 则 10 P(2 X 3) ( )
A.0.1
B.0.2
C.0.3
D.0.4
解析:因为随机变量 X 服从正态分布 N 1, 2 ,
所以随机变量 X 的均值 1 ,
所以随机变量 X 的密度曲线关于 x 1 对称, 所以 P(X 0) P(X 2) , 又 P(X 0) P(X 3) 11 ,
10
所以 P(X 2) P X 2 P(2 X 3) 11 ,
为“可用产品”,则在这批产品中任取 1 件,抽到“可用产品”的概率约为 _____________.
参考数据:若 X N , 2 ,则 P X 0.6827 ,
P 2 X 2 0.9545, P 3 X 3 0.9973
解析:由题意知,该产品服从 X N(25,0.16) ,则 25, 0.4 ,
10
因为 P(X 2) P X 2 1,所以 P(2 X 3) 0.1
3.已知随机变量 X ~ N , 2 ,Y ~ B6, p ,且 P X 3 1 , E X E Y ,则 2
p ( )
1
1
1
1
A. 6
B. 4
C. 3
D. 2
解析:由于 X 服从正态分布 N , 2 ,且 P X 3 1 ,故其均值 E X 3 . 2

正态分布及其应用--ppt课件

正态分布及其应用--ppt课件
➢ 有两个参数:位置参数 和变异度参数 。 一定, 越大,数据越分散,曲线越平坦; 一
定, 增大,曲线沿 X 轴向右平移。因此,不
同的 ,不同的 ,对应不同的正态分布。
PPT课件
5
不同均值正态分布示意图
PPT课件
6
1.5 1
不同标准差的正态分布示意图
PPT课件
7
➢ 正态曲线下面积的分布规律
➢估计频数分布。
➢制定医学参考值范围。
➢正态分布是许多统计方法的理论基础。
今后要讨论到的 分布t 、 分布F 与
分布 2等都是在正态分布的基础上推导 出来的。
ቤተ መጻሕፍቲ ባይዱPPT课件
9
第二节 标准正态分布及其应用
只要变量 X ~ N(, 2 ) ,就可经下式 转换为 0、 1的标准正态分布,记 作 u ~ N(0,1) 。此变换也称为标准化变换,
通过对密度函数积分我们可以知道正态曲线下, 横轴上所夹的面积为1。理论上:
范围内曲线下的面积占总面积的68.27%; 1.645 范围内曲线下的面积占总面积的90%; 1.96 范围内曲线下的面积占总面积的95%;
2.58 范围内曲线下的面积占总面积的99%。
PPT课件
8
➢四、正态分布的应用
正态分布及其应用
(normal distribution)
PPT课件
1
第一节 正态分布的概念和特征
➢一.概念 正态分布又称高斯(Gauss)分布,
是最常见、最重要的一种连续型分布, 医学资料中有许多指标的频数分布都呈 正态分布,如身高、体重、脉搏、血红 蛋白、血清总胆固醇等。
PPT课件
2
➢二.图形 正态分布密度函数
PPT课件

正态分布分布ppt课件

正态分布分布ppt课件

通过样本数据可以估计总体的均值、方差等 参数,进而对总体进行推断和分析。
假设检验
质量控制
在假设检验中,通常需要比较样本数据与某 个理论分布的差异,中心极限定理提供了理 论依据。
在工业生产等领域中,可以利用中心极限定 理对产品质量进行监控和预测。
03
正态分布在各领域应用举例
自然科学领域应用
1 2
描述自然现象的概率分布 正态分布可以描述许多自然现象的概率分布情况, 如身高、体重、智商等的分布情况。
根据显著性水平和自由度 确定t分布的临界值,进 而确定拒绝域。
将计算得到的t统计量与 拒绝域进行比较,若t统 计量落在拒绝域内,则拒 绝原假设,否则接受原假 设。
配对样本t检验原理及步骤
01
02
03
04
05
原理:配对样本t检验是 提出假设:设立原假设 用于比较同一组受试者 (H0)和备择假设 在两个不同条件下的测 (H1),原假设通常为 量值是否存在显著差异 两个测量值的均值相等。 的统计方法。它基于正 态分布假设和配对设计, 通过计算t统计量来推断 两个测量值的差异是否 显著。
设立原假设(H0)和备择假 设(H1),原假设通常为样 本均值等于总体均值。
计算t统计量,公式为t=(样 本均值-总体均值)/标准误, 其中标准误=样本标准差/根 号n。
根据显著性水平和自由度确 定t分布的临界值,进而确 定拒绝域。
将计算得到的t统计量与拒 绝域进行比较,若t统计量 落在拒绝域内,则拒绝原假 设,否则接受原假设。
06
非参数检验在处理非正态数据 时应用
非参数检验方法简介
非参数检验的概念
非参数检验是一种基于数据秩次的统计推断方法,它不依赖于总 体分布的具体形式,因此适用于处理非正态数据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态分布是应用最广泛 的一种连续型分布. 棣莫佛最 早发现了二项概率的一个近 似公式,这一公式被认为是正 态分布的首次露面. 正态分布在十九世纪前 叶由高斯加以推广 , 所以通常 称为高斯分布.
2.正态曲线的性质
m s ( x )
y
μ= -1 σ=0.5
1 2s
e

( x m )2 2s 2
a
b
1.正态分布定义
如果对于任何实数 a<b,随机变量X满足:
y
则称X 的分布为正态分布. 正态分布由参数m、s 唯一确定, m、s分别表示总体的平均数与标准差. 正态分布记作N( m,s2).其图象称为正态曲线. 如果随机变量X服从正态分布,则记作: X~N(m,s2) 。(EX= m DX= s )
当 a 3s 时正态总体的 X 取值几乎总取值于区 由于这些概率值很小(一般不超过 5 % ), 间 之内 , 其他区间取值几乎不可能 . 在 ( m 3 s , m 3 s ) 通常称这些情况发生为小概率事件。 实际运用中就只考虑这个区间 ,称为 3s 原则.
正态曲线的性质简记 1.(1)非负性:曲线 m ,s ( x) 在轴的上方,与x 轴不相交(即x轴是曲线的渐近线). m ,s ( x) 与x轴围成的面积为1. (2)定值性:曲线
x=m
(5)方差相等、均数不等的正态分布图示
μ=0 μ= -1 μ= 1
σ=0.5
若s 固定, 随m值 的变化而 沿x轴平 移, 故 m 称为位置 参数;
m3
m1
m2
(6)均数相等、方差不等的正态分布图示
μ=0
s=0.5
s=1
若 固定, s 大 时, 曲线“矮而 胖”; s 小时, 曲线 “瘦而高”s ,故 称 为形状参数。 s=2
S(x1,x2)=S(-x2,-x1)
-x1 -x2
X=m
x2 x1
3.特殊区间的概率:
若X~N
(m,s 2 ),则对于任何实数a>0,概率
m a m a
P(m a x ≤ m a)
x=μ
m ,s ( x )dx
m-a
m+a
特别地有(熟记)
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
m 3s m 2s
m s
m
m s m 2s
m 3s
小试牛刀:
1、若X~N(μ,σ2),问X位于区域(μ ,μ +σ ) 内的概率是多少? 解:由正态曲线的对称性可得,
1 P( m x m s ) P( m s x m s ) 0.3413 2
m
m
σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
正态曲线下的面积规律(重要)


概率
X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。S(-,-X)来自S(X,)=S(-,-X)
X=m
正态曲线下的面积规律(重要)
对称区域面积相等。
概率
S(-x1, -x2)
不知你们是否注意到街头的一种赌博 活动? 用一个钉板作赌具。
高尔顿板模型与试验
高尔顿板模型
创设情境2
这 个 试 验 是 英国 科学 家 高尔顿设计的 ,具体如下:在一 块木板上,订上n+1层钉子,第1 层2个钉子,第2层3个钉子,……, 第 n+1 层 n+2 个钉子 , 这些钉子 所构成的图形跟杨辉三角形 差不多 .自上端放入一小球 ,任 其自由下落 , 在下落过程中小 球碰到钉子时 , 从左边落下的 概率是P,从右边落下的概率是 1-P, 碰到下一排也是如此 . 最 后落入底板中的某个格 . 下面 我们来试验一下:
P(a X b) m ,s ( x)dx
a
b
0
a
b
x
生活中的正态分布现象
人的身高高低不等,但中等身材的占大 多数,特高和特矮的只是少数,而且较 高和较矮的人数大致相近,这从一个方 面反映了服从正态分布的随机变量的特 点。
除了我们在前面遇到过的年降雨量和 身高外,在正常条件下各种产品的质量指标, 如零件的尺寸;纤维的强度和张力;农作 物的产量,小麦的穗长、株高;测量误差, 射击目标的水平或垂直偏差;信号噪声等 等,都服从或近似服从正态分布.
P( m s X m s ) 0.6826, P( m 2s X m 2s ) 0.9544, P( m 3s X m 3s ) 0.9974.
我们从上图看到,正态总体在 m 2s , m 2s 以外取值的概率只有4.6%,在m 3s , m 3s 以外 取值的概率只有0.3 %。
, x ( , )
y
μ=1
y
μ=0
σ=1
σ=2
-3 -2 -1 0
1 2
x
-3 -2 -1 0
1 2
3
x
-3 -2 -1 0
1
2 3
4x
具有两头低、中间高、左右对称的基本特征
2.正态曲线的性质
m s ( x )
y μ= -1 σ=0.5
1
2s y
e

( x m )2 2s 2
频率 组距
以球槽的编号为横坐 标,以小球落入各个 球槽内的频率值为纵 坐标,可以画出“频 率分布直方图”。
随着重复次数的增加, 直方图的形状会越来 越像一条“钟形”曲线。
11
正态分布密度曲线(简称 正态曲线)
Y
“钟形”曲线 函数解析式为:
X
1 m ,s ( x) e 2s
0
( x m )2 2s 2
, x ( , )
y μ=1
μ=0 σ=1
σ=2 -3 -2 -1 0 1 2 3 4x
-3 -2 -1 0
x=m
1 2
x
-3 -2 -1 0
x=m
1 2 3 x
(1)曲线在x轴的上方,与x轴不相交. (2)曲线是单峰的,它关于直线x=μ对称. 1 (3)曲线在x=μ处达到峰值(最高点) σ 2π (4)曲线与x轴之间的面积为1。
列出频率分布表
分组 25.235~25.265 25.265~25.295 25.295~25.325 25. 325~25.355 25.355~25.385 25.385~25.415 25.415~25.445 25.445~25.475 25.475~25.505 25.505~25.535 频数 1 2 5 频率 0.01 0.02 0.05 累积频率 0.01 0.03 0.08 频率/组距 0.0009 0.0018 0.0045
X P 0 1 … … k
k Cn p k q n k
… …
n
n n 0 Cn p q
1 1 n-1 0 0 n pq Cn p q Cn
4.由函数 y f ( x) 及直线 x a, x b, y 0y
围成的曲边梯形的面积S=_________ a f ( x)dx ;
O
b
a
在实际遇到的许多随机现象都服从或近似服从 正态分布:
在生产中,在正常生产条件下各种产品的质量指标;
在测量中,测量结果; 在生物学中,同一群体的某一特征;……; 在气象中,某地每年七月份的平均气温、平均湿度
以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生 产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
小试牛刀:
2、已知X~N (0,1),则X在区间 (, 2)内取值的概率 A、0.9544 B、0.0456 C、0.9772 D、0.0228 D ,
3、设离散型随机变量X~N(0,1),则 P( X 0)= 0.5
P(2 X 2) =
0.9544
.
4、若已知正态总体落在区间 (0.3, ) 的概率为0.5,则 0.3 相应的正态曲线在x= 时达到最高点。 5、已知正态总体的数据落在(-3,-1)里的概率和落 在(3,5)里的概率相等,那么这个正态总体的数学 1 期望是 。
0.02 1.00
1.00
0.0018
频率分布直方图
频率 组距
100件产品尺寸的频率分布直方图
8 6 4 2
o
产品内径尺寸/mm
频数 组距
200件产品尺寸的频率分布直方图
y
0
x
样本容量增大时频率分布直方图
频率 组距
8
6
4 2
o
产品内径尺寸/mm
可以看出 , 当样本容量无限大 , 分组的组距 无限缩小时,这个频率直方图上面的折线就会无 限接近于一条光滑曲线
(3)对称性:正态曲线关于直线 x=μ对称, 曲线成“钟形”. (4)单调性:在直线 x=μ的左边, 曲线是上升的; 在直线 x=μ的右边, 曲线是下降的.
1 (5)最值性:当 x=μ时,m ,s ( x)取得最大值 s 2 1 σ越大, s 2 就越小,于是曲线越“矮胖”,
表示总体的分布越分散;反之σ越小,曲线越 “瘦高”,表示总体的分布越集中. (6) 几 何 性 : 参 数 μ 和 σ 的统计意义:E(x)=μ,曲 线的位置由μ决定 ;D(x)=σ2, 曲 线 的 形 状 由σ决定.
《新教材北师大版选修选修2-3》第二章第六节
安远一中
回顾
1两点分布: 2超几何分布:
X 0
0 n CM CN M n CN
X P …
0 1-p
1 p …
相关文档
最新文档