热源塔热泵冷热源方案浅析
能源塔技术介绍解析

热源塔结构示意图
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 塔体框架 出风筒 维护板 进风栅 变速电动机控制装置 斜射旋流风机 高效肋片 换热管 进液口 出液口 斜流折射分离器 斜射旋流分离器 接水盘 凝结水控制装置 溶液控制阀 溶液池 喷淋泵控制装置 喷淋器
传统—风冷热泵
无
有,且VRV 形式泄露 较常见 无
节能— 地源热泵
垂直 埋管 地下 打井 湖水 换热
无
一般无;如在冷却换热 系统中添加极端抗冻物 质存在少许 存在水源污染隐患,视 工程施工完备性而定 存在水源污染隐患,视 工程施工完备性而定 无
无 无
无 无
节能—热源塔热泵
无
无
热源塔与常用中央空调对比
发冷却水温度低的节能特点;用于冬季供暖时,采用低温宽带技术和
负温度喷淋防霜溶液。 热源塔热泵在中国长江流域以南:
1.对比单冷机+燃油锅炉耗能低45%左右;
2.对比单冷机+燃气锅炉耗能低25%左右;
热源塔热泵系统的原理及其应用
热源塔热泵系统的背景 热源塔热泵系统的原理 热源塔热泵系统的特点
热源塔热泵系统的应用
热源塔热泵系统特点5
系统设计简单
与地源热泵比:不用考虑地源侧冬夏季冷热负荷均衡;
与风冷热泵比:不用考虑辅助电加热和冬季融霜的问题。
热源塔热泵系统特点6
适用性强
既可应用于新建建筑又适用于既有建筑的节能改造。
热源塔热泵系统特点7
浅析地源热泵系统中冷却塔的使用

浅析地源热泵系统中冷却塔的使用夏热冬冷地区夏季空调供冷负荷往往大于冬季供暖负荷,采用土壤源热泵系统由于全年向地下土壤排热量和取热量的不平衡而容易导致土壤“热堆积”问题。
目前解决土壤热堆积问题的主要方法是采用冷却塔辅助冷却的混合式土壤源热泵系统。
然而,冷却塔辅助冷却的混合式土壤源热泵系统,由于受南方夏热冬冷地区夏季高峰负荷时期(的7、8月份)高温高湿室外气象条件的影响,将使冷却塔出水温度过高,致使土壤源热泵机组运行效率低、组能效系数COP低于额定工况;为了缓解这一问题,通常选用更大容量的冷却塔,其结果是既不经济节能,同时采用土壤源热泵系统的意义也将受到质疑。
夏热冬冷地区冷热不平衡导致的系统运行结果如下图:1,冷却塔运联方式美国制冷空调工程师协会(ASHRAE)介绍了利用冷却塔辅助冷却的混合式地源热泵系统应用于大型商业办公建筑的方法,并给出了辅助冷却装置的设计方法,也对冷却塔与地埋管换热器之间采用串联和并联两种模式的混合式地源热泵进行了实验对比,得出了采用并联式的混合式土壤源热泵比采用串联式具有更好的运行效果;科研人员对采用了冷却塔辅助冷却方式的土壤源热泵系统的控制方式进行了模拟,模拟结果表明:当土壤源热泵机组的出水温度与室外空气湿球温度的差值超过2℃时,冷却塔开始运行的控制模式具有较大的优越性;目前国内院校对利用冷却塔辅助冷却的混合式土壤源热泵系统进行了三种控制策略的实验测试研究,研究结果表明:根据土壤源热泵机组出口流体温度与周围环境空气湿球温度之差控制冷却塔运行的策略,可以较好地平衡地下土壤冷热负荷、并使系统能耗最小。
并联、串联方式如下图示:除了以上两种方式,本研究提出了另一种方式,即串并联混合式设计方法,一种基于冷却塔过渡季节土壤补偿蓄冷的混合式土壤源热泵系统土壤热恢复新方法,以应对夏热冬冷地区采用地源热泵系统容易导致土壤“热堆积”问题,同时为夏热冬冷地区土壤源热泵系统的高效节能应用与优化设计提供方法参考。
热源塔热泵工作原理及系统

热源塔热泵工作原理及系统热源塔热泵工作原理及系统?热源塔利用低于冰点载体介质,能高效地提取冰点以下的湿球显热能,通过热源塔热泵机组输入少量高品位能源,实现冰点以下低温位能向高温位转移。
对建筑物开展供热和制冷以及提供热水的技术。
工作原理夏季,热源塔为冷源塔,是直接蒸发冷却设备。
冷源塔利用高焓值循环水在换热层表面形成水膜直接与低焓值空气充分接触,高焓值的水膜表面水蒸气分压力高于低焓值空气中的水蒸气分压力,形成压力差成为水蒸发的动力。
水的蒸发使得循环水温度降低,趋近于空气的湿球温度,为水循环制冷空调提供了温度较低的冷源。
冬季,热源塔是直接采集室外低品位能设备。
热源塔利用低焓值盐类循环溶液在换热层表面形成液膜直接与焓值较高的湿冷空气充分接触,把冷量传给空气。
接触传热的循环液体温度趋近于室外空气的湿球温度,为水循环热泵空调提供了稳定的热源来源。
1.热源塔2.热源泵3.换向站4.热泵机组5.换向站6.末端设备7.变频负荷泵8.溶液池9.膨胀水箱冷源来源——在夏季热源塔将高于空气湿球温度的循环水均匀喷淋在高于冷却塔N倍的凹凸形波板具有亲水性质填料填料层上,循环水在亲水填料面形成水膜,空气则经多层凹凸形波板填料空间的表面空隙逆向流通,形成水气之间的接触面,水膜与空气直接开展显热与潜热(蒸发)的逆流换热,水份蒸发时吸收了制冷机冷却循环水余热量,降低了循环冷却水温,使冷却水接近于空气湿球温度上限值1—2℃。
热源来源——是将低于湿球温度的防冻溶液均匀喷淋在凹凸形波板具有亲液性质填料填料层上,防冻溶液在亲液填料面形成液膜,空气则经多层凹凸形波板填料空间的表面空隙逆向流通,形成液气之间的接触面。
溶液在热源塔中热交换吸热主要是依靠表面液膜,在发生显热交换的同时又有潜热交换存在。
显热交换:是空气与防冻溶液之间存在温差时,由导热、对流和辐射作用而引起的换热结果。
潜热交换:是空气中的水蒸气凝结(或蒸发)而放出(或吸收)汽化潜热的结果。
冷热源方案分析报告

冷热源方案分析报告一、引言随着人们对节能降耗要求的不断提高,冷热源方案的选择和优化成为了建筑设计中的重要环节。
合理选择冷热源方案不仅可以提高建筑的能源利用率,减少能源消耗,还可以降低环境污染,提升室内舒适度。
本报告将对常用的冷热源方案进行分析和评估,并给出相应的优化建议。
二、常用的冷热源方案1. 空调系统空调系统是目前建筑中最常见的冷热源方案之一。
传统的空调系统通过空调机组和冷却塔实现冷热能的转换,然后通过风管系统将冷热能输送到各个室内区域。
空调系统具有安装方便、控制灵活等优点,但同时也存在能耗较高、噪音大等问题。
2. 地源热泵系统地源热泵系统是一种利用地表或者地下土壤中的温度差异,通过热泵设备将低温热量转换为高温热量,并向建筑供热或供冷的系统。
相对于空调系统,地源热泵系统具有能耗低、环境友好等优点,但同时也存在高成本、需占用地面等问题。
3. 太阳能供热系统太阳能供热系统是通过太阳能集热器将太阳能转化为热能,再通过换热器将其传递给水或其他介质,并供给建筑物进行供热的系统。
太阳能供热系统具有清洁、可再生等优势,但同时也面临受天气影响大、能量密度低等问题。
4. 余热回收系统余热回收系统是将建筑或工业过程中产生的余热进行回收利用的系统。
通过余热回收系统可以实现废热的再利用,减少能源消耗,提高能源利用效率。
余热回收系统具有节能、降低碳排放等优点,但也存在技术难度大、设备成本高等问题。
三、冷热源方案的评估指标1. 能效比能效比是评估冷热源方案效果的重要指标,它表示单位能耗下的输出效果。
能效比越高,表示能源利用效率越高。
2. 环境影响冷热源方案的选择和使用会对环境造成一定的影响,如CO2排放量、废水产生量等。
选择环保和清洁的冷热源方案可以减少环境污染。
3. 经济性经济性是评估冷热源方案的可行性和经济效益的重要指标。
包括投资成本、运营成本、回收周期等内容。
四、冷热源方案的优化建议在选择和优化冷热源方案时,需要综合考虑能效、环境影响和经济性等因素。
水源热泵制冷和采暖方案分析

水源热泵采暖/制冷的方案[content]一、前言 (3)二、方案和投资 (4)三、采暖/制冷运行费用分析 (8)四、结论 (9)以往,办公用房及大型建筑多为双系统解决采暖和制冷,即冬季燃煤锅炉供暖或集中供热,夏季制冷由水冷式冷水中央空调机组或用风冷民用家用小型空调。
水源热泵是一种利用地下浅层地热资源,既可供热又可制冷的高效节能空调系统。
该系统通过输入少量高品位的电能,实现低温位热能向高温位转移。
地表水的热能是基本恒定的,在冬季作为热泵供暖的热源和夏季作为空调的冷源,即在冬季,把地能中的热量"取"出来提高温度后,供给室内采暖;夏季把室内的热量取出来,通过地表水(或介质)释放到地下。
通常水源热泵消耗lkW的能量,用户可以得到4kW以上的热量或冷量。
与电锅炉和燃料锅炉供热系统相比,只能将90%以上的电能或70~90%的燃料内能转化为热量,供用户使用。
因此,水源热泵要比电锅炉节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量。
由于水源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达4.4~5.4,与传统的空气源热泵相比,效率要高出40%左右,制冷时其运行费用为普通中央空调的50~60%,与风冷民用家用小型空调相比,制冷时节约运行费用60~70%。
水源热泵作为一种被国家计委、国家科委、建设部列入“十一五”规划的新技术,它有如下特点:A.属于可再生能源。
B.高效节能及低价位的运行费用。
C.环境效益显著。
D.一机多用,即可以采暖,又可以制冷,还可以全天提供生活用热水,省去了采暖设施及生活热水系统的投资。
在诸多的热泵机组品牌中意大利克莱门特机组,由于拥有独特的蒸发器专利技术,其效率比世界任何厂家生产的同类型最好的机组高出11%以上,降低了运行费用。
意大利克莱门特水源热泵,由于具有独特的系统控制技术及压缩机生产技术,是目前唯一拥有能够一次性将3℃以上可利用温度,由机组蒸发器全部提取,减少了机组对井水流量的需求,大幅度减少打井的一次性投资。
冷热源方案分析报告

冷热源方案分析报告冷热源系统是指供应制冷与供热的设备与管网,它是建筑物能耗的重要组成部分。
在选择冷热源系统方案时,需要综合考虑建筑物的能耗需求、环境条件、经济性和可持续发展等方面因素。
以下是对不同冷热源方案进行分析的报告。
首先,常见的冷热源方案包括空调机组、地源热泵和电锅炉等。
空调机组作为常见的冷热源设备,具有制冷制热功能,适用于小型建筑物。
但是,空调机组的能耗较高,对环境的影响也较大。
在大型建筑物中,地源热泵是一种较为常见的冷热源方案。
地源热泵利用地下温度较稳定的热能来供应建筑物的制冷与供热需求,具有能耗低、环境友好的特点。
此外,电锅炉是一种清洁、高效的冷热源方案,能够提供可靠的供热服务。
然而,电锅炉需要消耗大量的电能,因此运行成本较高。
其次,冷热源方案的选择还需要考虑建筑物的能耗需求。
不同建筑物的能耗需求差异较大,因此需要根据具体情况来选择合适的冷热源方案。
例如,高层建筑通常需要较大的冷热负荷,地源热泵是一种较为适合的方案;而大型商业建筑则通常采用空调机组来满足需求。
此外,如果建筑物具有较好的节能设计,那么相应的冷热源方案可以选择较为环保、高效的设备。
再次,考虑冷热源方案的经济性也是非常重要的。
不同的冷热源设备具有不同的投资成本和运营成本。
一般来说,地源热泵的投资成本较高,但是其运行成本较低;空调机组的投资成本相对较低,但是运行成本较高。
因此,在选择冷热源方案时需要综合考虑设备的投资与运营成本,找到一个经济合理的平衡点。
最后,在选择冷热源方案时,需要考虑可持续发展的因素。
随着全球环境问题的日益突出,如何减少对环境的不良影响成为了冷热源方案选择的重要因素。
地源热泵作为一种可再生能源利用方案,具有很好的环境表现。
与传统的燃煤锅炉相比,地源热泵能够减少二氧化碳排放,减少对大气环境的污染。
因此,从可持续发展的角度来看,地源热泵是一种较为理想的冷热源方案。
综上所述,冷热源方案的选择需要综合考虑多个因素,包括建筑物的能耗需求、经济性和可持续发展等。
冷热源方案分析报告

冷热源方案分析报告冷热源方案分析报告随着社会的发展,人们对于节能环保的要求越来越高。
而在建筑领域中,冷热源方案的选择和运用,直接影响着一个建筑的节能效果,因此,进行冷热源方案的分析是必要的。
一、冷热源方案的概念冷热源指的是为建筑提供冷热媒介的设备或系统。
冷源可以是制冷机、冰铺、吸收式制冷机等,是为建筑提供制冷的设备。
热源可以是锅炉、燃气锅炉、热泵、集中供暖等,是为建筑提供供热的设备。
二、冷热源方案的种类常见的冷热源方案有以下几种:1、传统冷热源传统冷热源即通过锅炉、制冷机等单一的设备进行建筑的供热和制冷。
这种方案适用于于建筑的面积小,能耗不大的情况下,而对于较大建筑,其能源损耗和维护成本大大增加,不利于环保及节能。
2、分布式冷热源分布式冷热源则是指多个小型的冷热源设备组合而成,包括空调主机、热泵机组等。
这种方案相较传统冷热源能量损耗更低,并且对于较大建筑分布式冷热源意味着更大的灵活性和效率。
3、太阳能冷热源太阳能冷热源是指通过利用太阳光能进行制热、制冷或太阳光直接供电。
利用太阳能,可以大大降低传统冷热源的能源消耗,具有良好的环保及节能效应。
但该方案需要和其他能源配合使用,不能独立满足建筑的需求。
三、冷热源方案的优缺点1、传统冷热源优缺点分析传统冷热源的主要优点是相对较为简单,废气废水排放费用较低,并且技术比较成熟;但其缺点是设备大、单一,造成能耗高,不利于环保与节能,易受季节影响。
2、分布式冷热源优缺点分析相较传统冷热源而言,分布式冷热源更具有灵活性和效率,有很好地节能、环保效应,并且经济上节约成本。
其缺点是需要投入更多的资金,更加复杂,需进行额外的技术支持和维护。
3、太阳能冷热源优缺点分析太阳能冷热源的优点就是环保且节能,减低了能源额消耗。
但其缺点是投资成本较高,技术要求高,而且受天气情况等因素的影响,某些时候可能不能满足建筑物的供热和制冷需求。
四、冷热源方案的选择3种方案各自有其优缺点,选择冷热源方案应根据实际需求进行。
冷热源方案分析报告

冷热源方案分析报告冷热源方案分析报告一、引言近年来,随着社会经济的不断发展和能源消耗的不断增加,冷热源的利用和管理成为了一个非常重要的课题。
冷热源指的是在生活和生产过程中,由于一些过程需要吸热或释热,导致了余热或者是废热的产生。
这些冷热源如果没有得到有效的利用将会造成能源的浪费和环境的污染。
因此,合理利用冷热源成为了节能降耗和环境保护的一个重要手段。
本报告将对现有的冷热源利用方案进行分析和评价,从而找出最具可行性的方案,提供给相关单位作为参考。
二、冷热源的分类和特点冷热源根据温度的不同可以分为低温热源、中温热源和高温热源。
低温热源一般指的是温度在20℃以下的余热,中温热源指的是温度在150℃以下的余热,高温热源指的是温度在150℃以上的余热。
冷热源的特点主要体现在以下几个方面:1. 多样性:冷热源的特点多样,包括温度、湿度、流量、压力等多个方面,因此需要根据具体情况来进行利用。
2. 易得性:冷热源在很多生产过程中是无法避免的产生的,因此易于获取,利用方便。
3. 能量含量丰富:冷热源通常含有较为丰富的能量,如果能够有效利用,将会带来较大的经济效益。
三、现有冷热源利用方案分析1. 余热回收利用余热回收利用是当前最常见的冷热源利用方式之一,主要用于工业生产过程中。
例如,锅炉余热回收、烟气余热回收等。
该方案通过回收利用废热,提高了能源利用效率,降低了对资源的消耗。
优点:成熟的技术,应用广泛;能够很好地发挥大型工业企业的废热的利用效益。
缺点:只能利用中高温热源,对于低温热源的利用效果不佳;需要较高的技术要求和设备投入。
2. 城市冷热网利用城市冷热网利用是指通过建设和利用城市集中供热和供冷系统,将余热和冷热源进行集中利用。
通过这种方式,可以将废热和废冷直接输送给需要的用户,提高了能源的利用效率和供热供冷的可靠性。
优点:能够充分利用城市排放的废热和废冷,提高了能源利用效率;用户获取供热供冷更加方便。
缺点:需要大规模的投资和建设,对城市规划和管网建设提出了更高的要求;对于冷热能源的输送和分配需要一定的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热源塔热泵冷热源方案浅析桐庐好的大酒店有限公司方国明内容摘要冷(热)源来源经济与否直接关系建筑物空调的初投资与综合运行费用。
本文以实际设计方案为例,对不同制冷机冷源与热泵热源来源方案进行了综合性经济分析、比较,从而得出结论:用“热源塔热泵”系统可实现冷暖空调卫生热水三联供,的确是一个经济合理的方案。
热源塔热泵夏季为高效水蒸发冷却热回收制冷机,可以向酒店提供免费卫生热水和桑拿热水;过度季节提供卫生热水时产生的冷量可满足、餐厅、娱乐及多功能厅冷负荷;冬季热泵的低品位热源来自高效宽带无霜热源塔系统,可有效地保障热泵供暖及卫生热水所需要的低品位热源。
在无锅炉等辅助热源条件下,热源塔热泵经受住南方五十年一遇的冰冻期考验,室内供暖温度达到30℃。
系统运行可靠维修量小,比混合源地源热泵冷(热)源减少60%左右的初投资,年减少综合经济费用11.6%。
这种无需设计锅炉、水源和地埋管等辅助热源系统的热泵,初投资经济合理,室内外机械设备综合占地面积都比较小、节能效果明显,以及对周围环境影响符合国家环保标准的空调冷(热)源来源方式,值得和大家交流探讨。
关键词:热源塔、冷(热)源、热源塔热泵1. 工程概况桐庐大酒店位于城市发展的商业中心——杭州市桐庐县城区。
桐庐大酒店是按四星级酒店标准设计的集客房、餐饮、娱乐、休闲、会议、办公及商场为一体的多功能综合性项目。
地上建筑面积:34210 m²。
地下建筑面积:3160 m²。
夏季制冷负荷为2500KW,冬季供热负荷为2000KW。
单位面积冷指标为70.4W/ m²。
单位面积热指标为58.5W/ m²。
热水负荷为500KW。
2. 不同冷(热)源热泵方案初投资比较2.1混合源地源热泵冷(热)源与初投资系统性能南方地区制冷负荷大于供暖+热水负荷的20%左右,为维持地下土壤温度场的平衡,实现经济运行目的,设计采用混合源(地埋管+冷却塔)地源热泵。
地下土壤源温度场可维持在16~22℃之间变化,热泵热源温度平均保持12~6℃之间变化,。
热泵是以15℃热源作为供热量指标,在热源温度12~6℃条件下运行供热虽有衰减,但仍能满足2500KW供暖和热水负荷的需求量。
热泵供热性能系数COP值可达3.5以上,主要是依靠昂贵造价的地源埋管系统作陪衬,才能实现单项运行经济指标的高效。
系统初投资近期原萨斯特地源埋管钻井施工队在为浏阳市一座别墅做地源埋管,岩层钻孔单井深度35米,钻机日进尺深度只有10米,井深造价超过100元/米。
在大型建筑物中用地紧张,单井深度可达到80~100米,随着井深增加岩层硬度会更高,井深造价为120~200元/米之间( 四川地源热泵示范工程)。
采用混合源地源热泵机组及冷(热)源地源埋管系统的初投资为710.00万元左右(详见表1)。
2.2空气源热泵冷(热)源与初投资系统性能酷暑制冷,空气源热泵的制冷效率与室外气候有直接的关系,随室外温度的升高而降低,机组消耗功率随室外环境温度的升高而增加。
空气温度35℃,出水温度7℃,空气源热泵制冷能效比EER值在2.5左右。
隆冬供热,南方地区受特定地质与气候条件因素影响,成为冷暖气流对峙区“低温高湿”,空气中低品位“潜热”含量高,空气源热泵因构造缺陷,不能有效地利用低品位热源,持续期累计约50天左右(-5~2℃温度有近10天左右,2~5℃温度有近40天左右)。
当空气源热泵迎面风速为2M/S时,室外空气干球温度在0~5℃,相对湿度>80%时结霜最为严重,此时平均每小时化一次霜,按现代技术不停机旁通换向化霜程序,一次化霜的时间不少于8分钟左右(包括室内反向取热)。
空气源热泵在0~5℃条件下处于无霜至结满霜与半结霜状态下运行,供热性能下降35~40%;化霜减少的供热量达15~20%左右。
因此,在最恶劣工况条件下空气源热泵机组的实际供热输出量,只有标准工况供热量的50%左右,供热性能系数COP平均只有1.5左右。
系统初投资冬季酒店供热需求量为2500KW,选择空气源热泵方案,容量应按实际供热能力确定为:Q = Q0•δ + R Q0 为设定的标准供热量、δ为实际供热系数、R为辅助热源;Q0 = 3800KW δ= 0.53 R = 500KW Q = Q0• δ+ R = 3800 * 0.53 + 500 = 2514KW 设计采用标准制冷量为3800KW空气源热泵机组加500KW辅助电加热装置,能够满足制热最不利工况下供热。
根据涡旋压缩机构造不适应空气源热泵结霜后,长期处在高压差下运行,容易损坏等因素,应采用螺杆压缩机组,空气源热泵主机方案初投资为716.00万元左右(详见表1)。
2.3 热源塔热泵冷(热)源与初投资系统性能热源塔热泵夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空气源热泵。
由冷热源吸收设备——闭式热源塔和低位热源提升设备——低热源热泵组成。
采用宽带小温差传热设计,比传统空气源热泵结霜温度下降了5~6℃,环境空气温度高于1.5℃以上时属于无霜运行期,减少了85%的结霜机率。
当环境空气温度低于1.5℃以下时累计时间约10天左右,为防止零下温度湿空气遇蒸发器结霜,系统设计了负温度防霜系统,自动喷淋环保防冻溶液降低换热器表面冰点,待低温期过后采用浓缩装置分离水份,保障了热源塔热泵在最恶劣工况下0~5℃供热性能系数COP值不低于3.2。
系统初投资冬季酒店供热需求量为2500KW,选择热源塔热泵方案,容量应按实际供热能力确定为:Q = Q0•δ + R Q0 为设定的标准制冷量、δ为实际供热系数、R为辅助热源;Q0 = 3450KW δ = 0.75 R = 0KW Q = Q0•δ + R = 3450 * 0.75 + 0 = 2587KW 设计采用标准供热量为3450KW热泵热水机组,能够满足制热最不利工况下供热。
系统应采用满液式螺杆压缩机组,热源塔热泵及冷(热)源初投资方案为445.00万元左右(详见表1)。
2.4不同冷(热)源及机组配置初投资分析表小结:混合源地源热泵冷(热)源与初投资710.00万元左右;空气源热泵方案初投资为716.00万元左右;热源塔热泵及冷(热)源初投资方案为445.00万元左右,是三个空调方案中最低的。
3. 不同冷(热)源热泵方案能耗比较在对方案进行综合经济性比较时,首先应注意比较基准的基本一致。
应用相同设备档次、能源价格等基准条件进行比较,才能保证比较结果的科学性和合理性。
对比方案全部采用满液式螺杆机组。
小结: 酒店平均电价为0.815元/kwh,酒店为度假旅游服务,冬季为服务淡季。
具体能耗如下:① 混合源热泵方案系统耗电为2249330 kwh,能耗为2249330×0.815=1833203元(183.32万元);② 空气源热泵方案系统耗电为3195532 kwh,能耗为3195532×0.815=2604358元(260.44万元);③ 热源塔热泵方案系统耗电为2321101 kwh,能耗为2321101×0.815=1891697元(189.17万元)。
4. 不同冷(热)源热泵方案选择与确定4.1 混合源地源热泵方案最初的设计方案是采用地下水源热泵机组,由于项目建筑红线建筑范围内,场地基础地质岩体广布,地质构造复杂,经水文地质勘测找不到足够的地下水源来作为热泵系统的冷(热)源,而地源土壤源打孔费用和机组造价高达710.00万元左右,对比其它节能空调系统增加初投资265.35 万元,年支付贷款利息为27.76万元,全年节能回报只有5.85万元左右。
且本项目又处在市中心,没有足够可利用的空地打孔。
因此,地下水源、地下土壤源冷(热)源方案虽然节能,没有成熟可靠的条件使用。
更何况节能费用尚不能抵消增加的初投资贷款利息。
4.2 空气源热泵方案在地源热泵方案被否定后,考虑采用空气源来作为来作为热泵系统的冷(热)源方案。
夏季,空气源热泵的冷源来自空气冷却,空气源动力风机的噪声也会对周边环境及酒店自身产生影响,冷却效果受“高温酷暑”环境温度影响,最恶劣工况时能效比只有EER=2.5左右,比水蒸发冷却增加了近一倍的能耗。
冬季,空气中低位“潜热”含量高,空气源热泵因构造缺陷不能有效地利用低位热源,结霜降低机组换热效率,而除霜既要耗能又影响连续供暖能力;当室外温度过低,会使机组保护停机不能正常工作,即使可以工作,其效率也很低,影响酒店的正常经营。
而其空气源热泵螺杆机组造价高达716.00万元左右,对比其它节能空调系统增加初投资271.65万元,年支付贷款利息为28.4万元,全年能耗对比其它节能空调系统增加71.27万元左右。
4.3 热源塔热泵方案经慎重考虑科学论证后,最后提出一种介于水冷却制冷机节能与无霜空气源热泵之间的组合制冷与热泵系统。
经多方面研究与网上市场调查了解到,热源塔热泵可有效地解决了地下水源热泵无水源,地源土壤源热泵造价高,传统风冷热泵夏季制冷能耗高、冬季供热翅片换热器易结霜降低换热效率、化霜耗能等问题,造成供热能耗高。
热源塔热泵夏季为高效水蒸发冷却制冷机,冬季为高效宽带无霜空气源热泵,经受住南方五十年一遇的冰冻期考验,客房供暖温度达到30℃。
热源塔热泵冷、暖空调和热水三联供一机三用,无需辅助热源,节能环保、高效,且初投资合理,热源塔热泵冷(热)源系统造价为445.00万元左右,与其它热泵方案对比如下:① 对比混合源地源热泵方案减少初投资265.35 万元,减少年还贷利息27.76 万元,能耗增加5.85万元,实际比混合源地源热泵方案年减少21.91万元的费用。
② 对比空气源热泵方案减少初投资271.65 万元。
减少年还贷利息28.41 万元,年节能耗减少71.27万元左右,实际比空气源热泵方案年减少99.68万元的费用。
5. 结论通过不同对热泵及冷(热)源系统方案进行的综合经济分析不难看出,热源塔热泵冷(热)源系统作为大中型建筑物(特别是酒店服务业)中央空调系统的冷(热)源具有明显的初投资低、节能和性能稳定优势。
不受区域地质及自然环境的限制,在气候适宜的长江流域以南地区可在冬、夏过度季节共用,省去了锅炉设备、水源和地埋管等辅助冷(热)源系统,符合我国南方地理情况。
一机三用,设备利用率高。
热源塔夏季制冷具有比冷却塔更好的冷却效果,较低的风速令人满意的噪音;冬季热源塔由于采用了宽带小温差传热设计,吸取低品位热源能力比窄带空气源热泵换热器结霜温度下降了5~6℃,减少了85%的结霜机率。
在环境负温度运行期间,设计有喷淋防霜系统以及旋流汽液分离消噪系统,有效地控制了对环境的污染。
热源塔热泵系统全年可比空气源热泵年节约综合运行费用61% 左右,减少初投资271.65万元;比混合源地源热泵系统年节约综合运行费用11.6% 左右,减少初投资265.35万元。