格子Boltzmann建模与仿真
偏微分方程求解的一种新颖方法——格子Boltzmann模型

7 6 邻 节 点
大 学 数 学
第2 7卷
) 撞 , 一 个 节 点 上 从 相 邻 节 点 运 动 来 的 粒 子 发 生 碰 撞 , 据 质 量 、 量 和 能 量 守 恒 规 则 改 碰 在 根 动
其 中 r 松弛 时间 尺度 , 制达 到平衡 的速 度 ( 是 控 可根据 需 要 进行 设 置 ) 由于稳 定 性 的原 因 , 过 实 际测 , 经 算 r必须 大于 1e /.
事 实 上 不 同 的 网 格 剖 分 有 着 不 同 的平 衡 分 布 函数 , B 建 立 模 型 的 核 心 问 题 就 是 根 据 不 同 的 网 格 L M
[ 键 词 ] 格 子 B l ma n方 法 ; 衡 态 分 布 函 数 ; Q 关 ot n z 平 D2 9模 型 ; a i — tk s 程 ; 流一 扩 散 方 程 N ve So e 方 r 对 [ 图 分 类 号 ] O2 1 8 中 4 .2 [ 献标识码]A 文 [ 章 编 号 ] 17 —4 4 2 1 ) 30 7 —8 文 6 21 5 (0 1 0 —0 50
在 低 Mah 马赫 ) 的假 设下 ( l c)其 中粒子平 衡态 分布 函数 为 c( 数 I , U《
~ P
[ + 一 ] +
且
C =c 4 /  ̄,
。 /, 一4 9
1 U 一 3 一(2 一 4 1 9, ∞ 一 6 7 8 1 3 , — / 5 一∞ 一∞ — / 6
第2 7卷 第 3期
关于多分布格子boltzmann模型的书

一、概述在统计物理学中,格子Boltzmann模型是一种用于研究粒子在晶格上动力学行为的模型。
在正常的Boltzmann统计力学中,粒子的分布是随机的,而多分布格子Boltzmann模型则引入了多个分布函数,用于描述粒子在不同的晶格上的分布情况。
本文将着重介绍多分布格子Boltzmann模型的相关理论和应用。
二、多分布格子Boltzmann模型的基本概念1. 格子Boltzmann模型的基本原理格子Boltzmann模型最早由硅谷大学的研究者提出,其基本原理是将晶格看作是一个离散的空间,粒子在晶格上的位置和动量也是离散的。
而多分布格子Boltzmann模型则是在每一个晶格上引入一个分布函数,用于描述该格子上粒子的分布情况。
2. 多分布格子Boltzmann模型的表达式多分布格子Boltzmann模型的表达式可以写成如下形式:\[ f_i(\mathbf{r},t) =\sum_{j=1}^{n}\alpha_{ijk}\phi_{ik}(\mathbf{r},t)\]其中,\( f_i(\mathbf{r},t) \)表示晶格i上粒子的分布函数,\( \alpha_{ijk}\)为一个系数,\( \phi_{ik}(\mathbf{r},t) \)为关于晶格i 上粒子的分布函数。
通过引入多个分布函数,我们可以更准确地描述粒子在不同晶格上的动力学行为。
3. 多分布格子Boltzmann模型的演化方程多分布格子Boltzmann模型的演化方程可以写成如下形式:\[ \frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla f_i = \frac{1}{\tau_i}(f_{i, eq} - f_i) \]其中,\( f_{i, eq} \)为平衡态分布函数,\( \tau_i \)为弛豫时间。
这个方程描述了不同晶格上粒子的分布函数随时间的演化情况,是多分布格子Boltzmann模型的关键之一。
体外诊断芯片扩散层中液体渗流的格子Boltzmann模拟

摘要体外诊断芯片扩散层中液体渗流的格子Boltzmann模拟摘要体外诊断芯片携带方便、操作简便,可实现即时检测(point-of-care testing,POCT),具有“快、捷、准”等优点,在“分级诊疗”等政策推动下市场迅速扩容,前景广阔。
体外诊断芯片的快速、高效检测离不开液体在扩散层和试剂层中的有效渗流和分散。
本文尝试采用格子Boltzmann方法模拟研究了液体在体外诊断芯片扩散层中的渗流和分散过程以及在扩散层/试剂层之间的流动过程,可为体外诊断芯片实际应用中扩散层的选型和设计提供基础数据,具有较好的实际应用价值和意义。
以建立的格子Boltzmann方法数学模型为基础,分析控制流动时间的影响因素,结果表明微球粒径、液体的性质和扩散层材料的表面性质是影响液体在体外诊断芯片中渗流的主要影响因素,粒径越大,渗流流动速度越大,适当增加材料润湿性和减小液体运动粘度也会促进渗流的进行。
以上影响因素中,微球粒径对体外诊断芯片中的渗流特性具有较大影响,而材料的表面性质对渗流的影响次之,液体的性质对渗流的影响较小。
通过对约12组格子Boltzmann模型计算结果拟合得到流速与微球粒径、液固接触角及运动粘度的二次线性模型经验式,芯片设计者可根据应用需求利用二次线性模型经验式中计算得到合适扩散层微球材料和粒径。
进一步采用格子Boltzmann方法模拟体外诊断芯片扩散层/试剂层之间液体流动过程,分析液体在试剂层毛细管口处堵塞或顺利流入毛细管的条件,考察扩散层厚度对试剂层中液体流动的影响,并拟合扩散层材料为聚苯乙烯和TiO2时扩散层厚度与管口液滴直径的关系曲线。
结果表明,扩散层厚度过大或过小都不利于液体顺利流入试剂层毛细管。
以液体能够流入毛细管为前提条件,增加扩散层厚度会使液体分散的时间延长,从而减小管口液滴直径和流入毛细管的速度。
模拟得到的拟合曲线经验式,可用于设计者快速的选择扩散层厚度数据。
关键词:体外诊断芯片,渗流,格子Boltzmann方法,数值模拟LATTICE BOLTZMANN SIMULATION ON LIQUID PERCOLATION IN DIFFUSION LAYER OF IN-VITRODIAGNOSTIC CHIPSABSTRACTIn-vitro diagnostic chips are easy to carry and operate,which have the advantages of"fast,convenient,accurate",etc.to realize point of care testing(POCT).Under the promotion of"hierarchical diagnosis and treatment"and other policies,the market is expanding rapidly,and the prospective is widening.The rapid and efficient detection of in-vitro diagnostic chips are inseparable from the effective percolation and dispersion of liquid in diffusion layer and reagent layer.In this paper,the Lattice Boltzmann Method was used to simulating the percolation and dispersion of liquid in diffusion layer of in-vitro diagnostic chips,and the flow process between diffusion layer and reagent layer.Basic data can be provided for the selection and design of diffusion layer in practical application,which has better practical application value and significance.Based on the mathematical model established by the Lattice Boltzmann Method,the influencing factors of controlling flow time were analyzed.The results showed that the microsphere diameter,the properties of liquid and the surface properties of diffusion layer material were the main factors affecting liquid percolation in in-vitro diagnostic chips.The larger the particle diameter is,the faster the liquid percolation is.The wettability of materials was increased,and the kinematic viscosity of liquid was reduced appropriately will also promote the percolation. Among the above factors,the microsphere diameter has a great influence on the percolation characteristics in in-vitro diagnostic chips,while the surface properties of materials have the second influence on the percolation,and the properties of liquid have a little influence on the percolation.By fitting about12groups of the calculation results of Lattice Boltzmann model,the empirical formula of quadratic linear model of the velocity changing with microsphere diameter,liquid-solid contactangle and kinematic viscosity was obtained.The empirical formula of quadratic linear model can be used by chip designers to calculate the appropriate diffusion layer microsphere materials and particle diameters.Furthermore,the liquid flow process between diffusion/reagent layer of in-vitro diagnostic chips was simulated by the Lattice Boltzmann Method.The conditions of liquid blocking at capillary ports or flowing into capillaries in reagent layer were analyzed.The influence of the diffusion layer thicknesses on the liquid flow process in reagent layer was also investigated,and the curve of the relationship between the diffusion layer thicknesses and the droplet diameters at capillary ports was fitted when the diffusion layer materials were polystyrene and TiO2.The results showed that the diffusion layer thickness was not conducive to the smooth flow of liquid into capillaries of reagent layer when the thickness is too large or too small.On the premise that liquid can flows into the capillary,the increasing diffusion layer thicknesses will prolong the dispersion time of liquid and reduce the droplet diameters at capillary ports and the speed of flowing into capillaries.The empirical formula of fitting curve obtained by simulation can be used for designers to quickly select the data of the diffusion layer thicknesses.KEY WORDS:In-vitro diagnostic chips,Percolation,The Lattice Boltzmann Method,Numerical simulation目录第一章绪论 (1)1.1选题背景及意义 (1)1.1.1选题背景 (1)1.1.2研究意义 (2)1.2国内外研究现状 (2)1.2.1体外诊断芯片的结构特征 (2)1.2.2诊断芯片中液体的流动 (5)1.2.3渗流流动特征 (5)1.2.4数值模拟方法 (7)1.2.5格子Boltzmann方法简介 (13)1.3论文主要研究内容 (21)第二章模型的建立与验证 (23)2.1格子Boltzmann方法理论及模型 (23)2.1.1BGK模型 (23)2.1.2渗流模型 (24)2.1.3扩散模型 (26)2.2模拟边界条件的选用 (27)2.3模拟的网格划分方法及无量纲化 (28)2.4格子Boltzmann模型网格划分结果及无关性分析 (29)2.5格子Boltzmann模型的实验验证 (32)2.5.1实验设计 (32)2.5.2实验装置 (33)2.5.3格子Boltzmann模型模拟验证结果 (34)2.6本章小结 (37)第三章体外诊断芯片扩散层中液体渗流的模拟研究 (39)3.1液体在扩散层中的流动 (39)3.1.1水在TiO2扩散层中的流动 (39)3.1.2血清在TiO2扩散层中的流动 (43)3.1.3血清在聚苯乙烯扩散层中的流动 (48)3.2扩散层中液体流动影响因素分析 (53)3.3不同因素对扩散层中液体渗流的影响 (55)3.3.1不同微球粒径对渗流的影响 (55)3.3.2不同粘度的液体对渗流的影响 (61)3.3.3不同材料对渗流的影响 (67)3.4流速回归线方程的拟合及验证 (74)3.5本章小结 (75)第四章体外诊断芯片扩散层/试剂层之间液体流动的模拟研究 (77)4.1液体在扩散层/试剂层之间的流动 (77)4.2影响液体从扩散层流入试剂层的因素 (81)4.3扩散层厚度对试剂层中液体流动的影响 (82)4.4模拟模型的实验验证 (86)4.5本章小结 (88)第五章结论与展望 (89)5.1结论 (89)5.2展望 (90)参考文献 (91)致谢 (97)研究成果及发表的学术论文 (99)作者及导师简介 (101)Contents1Introduction (1)1.1Background and research values (1)1.1.1Background (1)1.1.2Research values (2)1.2Current researches (2)1.2.1Structural characteristics of in-vitro diagnostic chips (2)1.2.2Flow of liquid in diagnostic chips (5)1.2.3Percolation flow characteristics (5)1.2.4Simulation methods (7)1.2.5Brief introduction of the Lattice Boltzmann Method (13)1.3Main research content (21)2Establishment and verification of the model (23)2.1Theory and model of the Lattice Boltzmann Method (23)2.1.1BGK model (23)2.1.2Percolation model (24)2.1.3Diffusion model (26)2.2Selection of simulation boundary conditions (27)2.3Mesh generation methods and dimensionless (28)2.4Mesh generation results and independence analysis of Lattice Boltzmann model (29)2.5Experimental verification of Lattice Boltzmann model (32)2.5.1Experimental design (32)2.5.2Experimental apparatus (33)2.5.3Simulation verification results of Lattice Boltzmann model (34)2.6Summary of this chapter (37)3Simulation of liquid percolation in diffusion layer of chips (39)3.1Flow of liquid in diffusion layer (39)3.1.1Flow of water in TiO2diffusion layer (39)3.1.2Flow of serum in TiO2diffusion layer (43)3.1.3Flow of serum in polystyrene diffusion layer (48)3.2Analysis of factors influenced on the flow of liquid in diffusion layer (53)3.3Effect of different factors on liquid percolation (55)3.3.1Effect of different microsphere diameters on percolation (55)3.3.2Effect of different viscosities of liquid on percolation (61)3.3.3Effect of different materials on percolation (67)3.4Fitting and verification of regression line equation of velocity (74)3.5Summary of this chapter (75)4Simulation of liquid flowing between diffusion/reagent layer of chips (77)4.1Flow of liquid between diffusion/reagent layer (77)4.2Factors affecting liquid flowing into reagent layer (81)4.3Effect of the diffusion layer thickness on liquid flowing in reagent layer (82)4.4Experimental verification of the simulation model (86)4.5Summary of this chapter (88)5Conclusions and Outlook (89)5.1Conclusions (89)5.2Outlook (90)References (91)Acknowledgement (97)Publications (99)About the author and tutor (101)符号说明f k密度分布函数f k eq密度平衡分布函数g k浓度分布函数g k eq浓度平衡分布函数τ无量纲弛豫时间ωk无量纲碰撞频率c k离散速度c s格子声速x水平长度方向的格点位置z水平宽度方向的格点位置y垂直厚度方向的格点位置ψ相互作用势s标记函数Re雷诺数Pe帕克雷特数F k总外力,Nγ表面张力,N/mF达西阻力,Np流体压力,NF t液固相互作用力,NP w液体压力,NP m毛细管作用力,Nε空隙率K绝对渗透率,μm2G材料润湿性参数θ扩散层液固接触角,°θ’试剂层液固接触角,°r l液滴半径,cmν液体运动粘度,m2/sD液体自扩散系数,m2/s u0水平初速度,cm/sv0垂直初速度,cm/sU液体流动无量纲合速度ρ0,1血清初始密度,g/mlρ0,2水初始密度,g/mlC0,1血清初始摩尔含量,molC0,2水初始摩尔含量,molC液体无量纲摩尔含量R液体在芯片表面流动的半径,cm T整个流动过程完成的时间,ms d微球粒径,μmr微球半径,μmt流动时间,msΔt时间步长,msh扩散层厚度,μmh’试剂层厚度,μmr0毛细管管口半径,μmd0毛细管管径,μmDe管口液滴直径,μm第一章绪论1.1选题背景及意义1.1.1选题背景诊断芯片在药物合成筛选、环境检测与保护、临床检验、卫生检疫、司法鉴定、生物检测等领域应用广泛,具有操作简便、反应迅速、无后续处理、无环境污染等优点[1-3]。
格子boltzmann方法的原理与应用

格子Boltzmann方法的原理与应用1. 原理介绍格子Boltzmann方法(Lattice Boltzmann Method)是一种基于格子空间的流体模拟方法。
它是通过离散化输运方程,以微分方程的形式描述气体或流体的宏观运动行为,通过在格子点上的分布函数进行更新来模拟流体的动态行为。
格子Boltzmann方法的基本原理可以总结为以下几点:1.分布函数:格子Boltzmann方法中,将流场看作是由离散的分布函数表示的,分布函数描述了在各个速度方向上的分布情况。
通过更新分布函数,模拟流体的宏观行为。
2.离散化模型:为了将连续的流场问题转化为离散的问题,格子Boltzmann方法将流场划分为一个个的格子点,每个格子点上都有一个对应的分布函数。
通过对分布函数进行离散化,实现流场的模拟。
3.背离平衡态:格子Boltzmann方法假设流体运动迅速趋于平衡态,即分布函数以指定的速度在各个方向上收敛到平衡分布。
通过在更新分布函数时引入碰撞过程,模拟流体的运动过程。
4.离散速度模型:分布函数描述了流体在各个速度方向上的分布情况,而格子Boltzmann方法中使用的离散速度模型决定了分布函数的更新方式。
常见的离散速度模型有D2Q9、D3Q15等。
2. 应用领域格子Boltzmann方法作为一种计算流体力学方法,已经在各个领域得到了广泛的应用。
以下是一些常见的应用领域:2.1 流体力学模拟格子Boltzmann方法具有良好的可并行性和模拟精度,适用于复杂流体流动的模拟。
它可以用于模拟包括自由表面流动、多相流动、多物理场耦合等在内的各种复杂流体力学问题。
2.2 细胞生物力学研究格子Boltzmann方法在细胞力学研究中也有广泛应用。
通过模拟流体在细胞表面的流动,可以研究细胞运动、变形和介观流的形成机制。
格子Boltzmann方法在细胞生物力学领域的应用已成为一个重要的研究方向。
2.3 多相流模拟格子Boltzmann方法在多相流动模拟中的应用也非常广泛。
格子boltzmann方法

格子boltzmann方法格子玻尔兹曼方法是一种常用的数值计算方法,它主要用于模拟稀薄气体等流体力学问题。
下面我将从方法原理、模拟过程和应用领域三个方面详细介绍格子玻尔兹曼方法。
首先,格子玻尔兹曼方法基于玻尔兹曼方程和格子Boltzmann方程,通过将连续的物理系统离散化为网格系统进行模拟。
网格系统中的每个格子代表一个微观粒子的状态,而碰撞、传输和外部力的作用通过计算和更新这些格子的状态来实现。
该方法主要包含两个步骤:碰撞和传输。
在碰撞过程中,格子中的粒子通过相互作用和碰撞来改变其速度和方向,从而模拟了分子之间的碰撞过程。
在传输过程中,碰撞后的粒子根据流体的速度场进行移动,从而模拟了背景流场对粒子运动的影响。
其次,在格子玻尔兹曼方法中,模拟的过程可以简化为两个部分:演化和碰撞。
在每个时间步长内,系统首先根据粒子速度和位置的信息计算出相应格点上的分布函数,然后通过碰撞步骤更新这些分布函数以模拟粒子之间的碰撞效应。
通过迭代演化和碰撞步骤,系统的宏观行为可以得到。
格子玻尔兹曼方法中最常用的碰撞操作是BGK碰撞算子,它根据粒子的速度和位置信息计算出新的分布函数,并用该新分布函数代替原来的分布函数。
而在传输过程中,粒子通过碰撞后得到的新速度和方向进行移动。
最后,格子玻尔兹曼方法在流体力学领域具有广泛的应用,特别是在稀薄气体流动、微纳尺度流动和多相流等问题中。
由于其适用于模拟分子尺度和介观尺度流动问题,因此在利用普通的Navier-Stokes方程难以模拟的问题中表现出了良好的效果。
此外,格子玻尔兹曼方法还可以用于模拟流动中的热传导问题、气体分子在多孔介质中的传输问题以及颗粒与流体相互作用等多种复杂流动现象。
近年来,随着计算机性能的不断提高,格子玻尔兹曼方法也得到了快速发展,在模拟大规模真实流体问题方面取得了不错的结果。
总结来说,格子玻尔兹曼方法通过将连续的物理系统离散化为网格系统,模拟粒子碰撞和传输过程,实现了对流体力学问题的数值模拟。
物质颗粒运动行为建模与仿真技术进展

物质颗粒运动行为建模与仿真技术进展物质颗粒运动行为建模与仿真技术是一个涉及颗粒物质运动规律、流动行为以及粒子间相互作用等的复杂研究领域。
随着计算机技术和数值模拟方法的快速发展,对于颗粒物质的运动行为建模与仿真技术也得到了极大的进展。
本文将回顾与分析物质颗粒运动行为建模与仿真技术的最新进展,并介绍其在颗粒流动、粉体工程、生物医学等领域的应用。
一、颗粒运动行为建模颗粒物质的运动行为建模是物质颗粒运动行为仿真的首要任务。
近年来,很多学者通过实验数据和理论分析,提出了各种颗粒运动行为的数学模型。
其中最常用的方法是使用离散元法和连续介质方法。
离散元法(DEM)是一种通过分析颗粒物质间相互作用力来描述颗粒运动的方法。
它将颗粒视为离散的实体,通过数值模拟每个颗粒的受力和运动状态,从而推导出整个颗粒系统的运动行为。
DEM方法在颗粒流动、颗粒装填等领域得到了广泛的应用。
连续介质方法则将颗粒物质视为连续的介质,并使用连续介质力学方程描述颗粒运动行为。
其中最常用的方法是欧拉-拉格朗日方法和拉格朗日方法。
欧拉-拉格朗日方法通过描述流体中颗粒的瞬时运动轨迹来模拟颗粒的运动行为。
拉格朗日方法则是通过求解连续介质理论方程组来模拟颗粒的宏观运动行为。
二、颗粒运动行为仿真技术颗粒运动行为仿真技术是指利用数值模拟方法模拟和重现颗粒物质的运动行为。
这些仿真技术可以通过建模方法,生成各种颗粒系统的运动轨迹和相互作用力,以揭示颗粒系统的运动规律和流动行为。
在颗粒运动行为仿真技术中,有三种常用的方法:蒙特卡洛方法、分子动力学方法和格子Boltzmann方法。
蒙特卡洛方法是一种基于概率的数值模拟方法。
它通过随机抽样和概率统计的方式,模拟颗粒系统的运动行为。
这种方法可以用于模拟多粒子系统的相互作用、粒子运动的轨迹等。
蒙特卡洛方法在粉体工程、物质科学等领域得到了广泛应用。
分子动力学方法是一种基于牛顿力学和分子间相互作用力的数值模拟方法。
它通过求解牛顿运动方程和相互作用势函数,模拟颗粒系统的运动行为。
布袋过滤除尘格子Boltzmann模拟

布袋过滤除尘格子Boltzmann模拟袋式除尘器对含尘气流的净化过程主要是依靠布袋纤维滤料层的过滤作用对颗粒的捕集和栏截。
过滤层对气溶胶粒子的过滤效应是多种作用同时影响和主导的结果,各种作用之间并非简单的叠加。
多个纤维捕集体得存在必然会对其相邻捕集体的颗粒捕集作用产生影响,因此研究在存在多个捕集体的条件下的气溶胶粒子的输运特性是十分有必要的。
本文主要利用格子Bohzmann方法对粒径小于1um的气溶胶粒子通过布袋纤维滤料捕集体的输运特性进行了数值模拟计算。
气相流场的数值计算采用格子Bohzmann方法中的标准D2Q9模型对气流通过纤维滤料的气流分布进行二维的数值模拟,颗粒相的模拟是在己有的气体流动分布状态下对颗粒的运动采用拉格朗日方法进行单向耦合计算。
1.数值模型的建立计算区域的网格划分使用正方形网格,流体粒子的演化是在各个网格节点上进行碰撞和迁移演化。
计算域内的滤料纤维介质简化为一系列的圆柱体错位排列在流场中间,该圆柱体表面的边界条件设置为反弹边界条件,其他边则采用精度较高的非平衡态外推格式网格模型的基本尺寸设置如图1所示。
气流与颗粒沿着x轴方向自左向右通过纤维捕集体,网格划分为400×200个正方形网格,流体和颗粒进入位置与纤维捕集体的距离为100个单位网格,布袋厚度设为50个单位网格,纤维圆柱体的排列分布及个数取决于模拟的孔隙率的大小。
为了得到气体通过纤维捕集的流动规律以及颗粒在流场中的传输和沉积规律,需要改变相关的模拟参数的取值进行多组的数值模拟计算,从而比较参数变化所引起的模拟结果的变化规律。
单相流的模拟主要考虑的是不同孔隙率下入口速度的变化与气体通过纤维捕集体的压降的变化的关系,模拟的相关参数如表3.1所示;气固两相流的模擬主要分析的是不同孔隙率下纤维捕集体对不同颗粒粒径的粒子的捕集效率旳变化规律,模拟的相关参数如表3.2所示。
2.计算结果分析2.1压力损失分析气流通过布袋纤维的多孔介质时,将产生压力损失,通过格子Boltzmann方法对其进行数值计算,分别考虑不同的速度和孔隙率的情形下压降的变化规律,得出压降的变化规律如图2所示,随着过滤速度的增大气流通过孔隙介质的捕集体所产生的压降值呈线性增加的趋势;不同孔隙率情况下的压降速度关系曲线变化趋势不同,孔隙率越高,压力损失越小。
基于格子Boltzmann方法的建筑流场仿真研究综述

- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.1初始条件
§7.2几种常用的边界处理方法
§7.3反弹边界处理方法
§7.4非平衡外推方法
第八章热流体动力学的格子Boltzmann模型
§8.1多速度模型
§8.2多分布模型
§8.3自然对流与双扩散对流模拟
第九章格子Boltzmann模型的实现与程序优化
适用层次:硕士■博士■
开课学期:春季
总学时/讲授学时:64/64
学分:4
先修课程要求:高等数值分析
课程组教师姓名
职称
专业
年龄
学术专长
施保昌
教授
计算数学
53
学
48
数值计算与应用软件
柴振华
讲师
计算数学
29
格子Boltzmann方法
路志宏
副教授
计算数学
43
信号处理与应用软件
课程教学目标:
教学大纲:
第一章导论
§1.1流体计算、非线性偏微分方程与高性能计算
§1.2格子Boltzmann方法:与计算机紧密耦合的新型、高效计算方法
§1.3格子Boltzmann方法的发展及应用领域
第二章流体运动的数学模型和数值模拟方法
§2.1研究流体运动的三种途径:微观、介观与宏观方法
§2.2分子动力学模型及数值方法
§5.3定常对流扩散方程的格子Boltzmann模型
§5.4源项处理
第六章高阶非线性偏微分方程的格子Boltzmann模型
§6.1高阶非线性偏微分方程的格子Boltzmann模型框架
§6.2矩条件与平衡态分布函数
§6.3一维高阶非线性偏微分方程的格子Boltzmann模型
§6.4二维三阶非线性偏微分方程的格子Boltzmann模型
§2.3介观动理学模型及数值方法
§2.4宏观连续模型及数值方法
第三章格子Boltzmann方法的基本原理
§3.1从格子气自动机到格子Boltzmann方法
§3.2从连续Boltzmann方程到格子Boltzmann方程
§3.3格子Boltzmann模型的平衡态分布函数与矩条件
第四章流体动力学的格子Boltzmann基本模型
2.何雅玲,王勇,李庆,格子Boltzmann方法的理论及应用,北京:科学出版社,2009
注:每门课程都须填写此表。本表不够可加页
科学计算或高性能计算是与科学理论和科学试验相并列的三大科学研究手段之一。流体计算是具有挑战性的研究领域,并且需要高性能计算的支撑。本课程面向复杂流动和非线性对流-扩散系统,阐述与计算机紧密耦合的新型、高效的介观数值计算方法:格子Boltzmann方法(LBM)的基本原理和基本模型。
格子Boltzmann方法是近年来兴起的、模拟复杂流动和非线性对流-扩散方程的一类有效的数值算法,其显现的新思想值得思考和借鉴。与传统的基于宏观方程的数值方法不同,格子Boltzmann方法源于动理学理论,是一种自底向上的介观建模方法,因而具有物理意义清晰、计算简单、本质并行,以及易于处理复杂边界和相互作用等优点,如多孔介质内的流动、传质与传热。
§9.1程序实现
§9.2程序优化
§9.3并行程序设计
§9.4 GPU程序设计
第十章格子Boltzmann方法的进一步讨论
§10.1非均匀格子Boltzmann模型
§10.2广义迁移格子Boltzmann模型
§10.3柱坐标(轴对称)格子Boltzmann模型
§10.4基于大涡模拟LES方法的格子Boltzmann模型
§10.5多孔介质流的格子Boltzmann模型
§10.6多相流格子Boltzmann模型
§10.7非牛顿流体的格子Boltzmann模型
§10.8微尺度流动的格子Boltzmann模型
教材:郭照立,郑楚光,格子Boltzmann方法的原理及应用,北京:科学出版社,2009
主要参考书:
1. Sauro Succi, The lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford, Oxford Press, 2001
表
课程名称:格子Boltzmann建模与仿真
英文名称:Modeling and simulation of lattice Boltzmann method
课程类型:■讲授课程□实践(实验、实习)课程□研讨课程□专题讲座□其它
考核方式:笔试70%,平时成绩(讨论,作业)30%
教学方式:讲授,讨论
适用专业:计算数学,应用数学
课程介绍格子Boltzmann方法的基本原理、模型以及诸多重要的数学物理方程的数值模拟结果,这些方程主要包括:Navier-Stokes方程,非线性Schrödinger方程,复Ginzburg-Landau方程,非线性Dirac方程,广义Zakharov系统,Burgers-Fisher方程,非线性热传导方程,sine-Gordon方程,Buckley-Leverett方程,FHN系统等。
§4.1单松弛格子Boltzmann(LBGK)模型
§4.2多松弛(MRT)格子Boltzmann模型
§4.3定常流动的格子Boltzmann模型
§4.4外力处理
第五章非线性对流扩散方程的格子Boltzmann模型
§5.1对流扩散方程的格子Boltzmann模型
§5.2对流扩散方程的长方形格子Boltzmann模型