通信系统建模与仿真课程设计

合集下载

通信系统建模与仿真教学设计

通信系统建模与仿真教学设计

通信系统建模与仿真教学设计随着通信技术的发展,通信系统的建模与仿真成为了提高学生通信技术水平的重要课程环节。

本文将从课程目标、课程内容、教学方法等方面进行探讨通信系统建模与仿真教学设计。

课程目标通信系统建模与仿真是通信专业的核心课程之一,其主要目标是使学生了解通信系统建模与仿真的相关理论和基本方法,掌握常用的通信系统建模与仿真软件,并能够利用软件建立和仿真通信系统的各个环节,从而增强其学习和实践能力。

课程内容通信系统建模与仿真的教学内容涵盖了通信系统的整个建模与仿真过程,包括:一、系统建模系统建模是通信系统建模与仿真的重要环节,其目的是将通信系统的各个组成部分抽象为数学模型,包括信源、信道、调制解调器、信道编码等。

•信源建模:信源建模是将通信系统中的信息源抽象成数学模型,常见的信源有随机信号、数字信号和模拟信号等,其数学模型包括概率分布、功率谱密度等。

•信道建模:信道建模是通信系统建模的难点,其目的是将信道的噪声、失真等因素抽象成数学模型,建立信道传输特性的数学描述。

•调制解调器建模:调制解调器建模是通信系统建模的关键,其主要作用是实现信息的传输和接收,并将低频信号转换为高频信号,以便于信号在信道中传输。

二、系统仿真系统仿真是通信系统建模与仿真的重要环节,其目的是验证通信系统的设计是否可行,评估系统的性能指标,并优化通信系统的各个环节。

•仿真平台:通信系统仿真的软件工具在实践中非常重要,常见的仿真软件有Matlab、Mentor Graphics、VHDL等。

•仿真结果:仿真结果是评估通信系统性能的关键,包括误码率、信号电平、信道容量等多个性能指标。

教学方法通信系统建模与仿真的教学方法应该以理论与实践相结合为主要原则,从以下三个方面进行探讨:一、理论课教学理论课教学是通信系统建模与仿真教学的基础,应当重点讲解信源、信道、调制解调器等基本原理,详细介绍通信系统建模与仿真的方法和技术,提高学生的理解和掌握程度。

Simulink通信系统建模与仿真教学设计

Simulink通信系统建模与仿真教学设计

详解MATLAB/Simulink通信系统建模与仿真教学设计MATLAB/Simulink是一款广泛应用于各个领域的数学工具,其中Simulink可用于建立系统级仿真模型,以便进行电子、机械、流体和控制系统等领域内的实验分析和设计。

在通信领域中,Simulink非常适合建立通信系统的仿真模型,并用于进行传输计算、信道建模、信号处理和多模调制等。

本文将介绍MATLAB/Simulink通信系统模型的建立,及如何将其应用于通信系统教学设计。

通信系统模型建立数字调制数字调制是通信系统中的关键技术之一。

首先,我们需要在Simulink中建立基带信号源,并使用Math Function模块产生载波信号。

Modulation 模块可用于将基带信号和载波信号结合起来。

为了使得调制系统工作稳定和正常,通常在模型中加入Equalization和Resampling模块,以消除接收端接收到的噪声和信号失真。

当系统处理完成后,我们可以使用Scope模块来对模型工作情况进行进一步的分析。

数字解调数字解调需要在接收端建立解调器模型。

接收端模型包括匹配滤波器、采样器、时钟恢复器、色散补偿器和多值/二次干扰恢复器。

在这个模型中,也需要添加Equalization和Resampling模块以消除接收端所受的噪声和信号失真。

在接收端处理完成之后,我们也可以使用Scope模块对模型结果进行进一步分析。

信道建模信道建模是通信系统中另一个关键环节。

在Simulink中建造通信信道仿真模型,需要引入建立通信信道的数学模型,并建立符合通道模型的信道传输系统。

在建立仿真模型中,包括噪声源、多路复用技术、OFDM技术、信号调制和解调技术。

对于每个信道结构,我们都可以建立相应的仿真模型,进行仿真分析。

OFDM信息传输系统OFDM技术利用多个正交子载波来传输信息,以提高通信质量和可靠性,同时提高频带利用率。

OFDM系统建模主要包括加脉冲造型、IFFT、添加循环前缀、调制调制、运动模糊和色散模拟、反向调制、解压缩、去定时和轻度等模块。

通信系统仿真课程设计

通信系统仿真课程设计

通信系统仿真课程设计1. 引言通信系统是现代社会不可或缺的一部分,它在无线通信、互联网、电视、手机、卫星通信等方面都有广泛应用。

为了能够更好地理解和分析通信系统的性能,在通信工程领域中,仿真技术被广泛应用。

本课程设计将介绍通信系统仿真的相关概念、方法和工具,以及如何根据具体问题进行通信系统的仿真。

2. 通信系统仿真的目的和意义通信系统仿真是通过计算机模拟通信系统的运行和性能,以达到理解系统特性、优化设计和解决问题的目的。

它在通信工程领域有着重要的意义和广泛的应用。

通信系统仿真的目的主要有以下几点:•理解系统特性:通过仿真可以深入了解通信系统的各个组成部分,包括信源、信道、调制解调器、信道编码和解码等,从而更好地理解系统的工作原理和性能特点。

•优化设计:通过仿真可以评估不同的系统设计方案,找到最佳的参数配置和算法,从而提高系统的性能,降低成本。

•解决问题:通过仿真可以模拟通信系统在不同情况下的性能表现,从而分析和解决实际问题,比如干扰问题、误码率改善等。

3. 通信系统仿真的基本原理通信系统仿真的基本原理是模拟和计算。

通信系统仿真通常涉及到以下几个方面的模拟和计算:•信源:通过模拟产生各种类型的信号,比如正弦波、随机信号等。

•信道:通过模拟产生不同的信道特性,比如传输损耗、多路径效应、噪声等。

可以通过添加白噪声、多径信道模型等方式来模拟实际信道的特性。

•调制解调器:通过模拟调制解调过程,将数字信号转换为模拟信号或者将模拟信号转换为数字信号。

•信道编码和解码:通过模拟编码和解码过程,对信号进行编码和解码,提高抗干扰性能。

•误码分析:通过模拟接收端信号的误码情况,分析误码率和误差传播等指标。

通信系统仿真的计算过程需要使用编程语言和相关工具,比如MATLAB、Python等,以及通信系统仿真平台,比如NS-3、OPNET等。

4. 通信系统仿真的步骤通信系统仿真通常包括以下几个步骤:1.确定仿真目标:明确仿真的目标,包括仿真对象、仿真精度和仿真场景等。

Simulink通信系统建模与仿真实例分析教学设计 (2)

Simulink通信系统建模与仿真实例分析教学设计 (2)

Matlab/Simulink通信系统建模与仿真实例分析教学设计一、教学目标本课程旨在通过【Matlab/Simulink通信系统建模与仿真实例分析】的教学,使学生掌握如下知识和能力:1.了解数字通信系统基本概念及其发展过程;2.掌握数字通信系统的建模方法和仿真技术;3.能够通过实例分析,掌握数字通信系统的性能分析方法;4.能够设计数字通信系统并进行仿真。

二、教学内容1. 数字通信系统概述•数字通信系统基本概念•数字通信系统的应用领域及其发展历程2. 数字通信系统建模方法•数字信号的基本特性•采样、量化和编码的基本原理•数字调制技术•误差控制编码技术3. 数字通信系统的仿真技术•Simulink仿真环境的基本概念和使用方法•通信系统仿真模型设计方法4. 数字通信系统的性能分析方法•常见数字通信系统的性能参数及其定义•数字通信系统的误码率分析方法5. 数字通信系统设计与仿真实例分析•基于Matlab/Simulink的通信系统建模和仿真实例分析三、教学方法本课程采用主题讲授和案例分析相结合的教学模式。

主要教学方法包括:1.讲授:教师通过课堂讲解授予基本概念、原理和技术,并采取案例分析的方法,使学生逐步领悟和掌握学习内容。

2.实验:采用Matlab/Simulink仿真软件进行数字通信系统建模和仿真实验。

3.课堂讨论:设计选题和应用实践案例的课堂讨论。

四、教学评估本课程的教学评估主要通过期末考试、实验报告和作业完成情况来进行。

1. 期末考试期末考试采用闭卷考试形式,主要测试学生对数码通信系统理论的掌握情况,考核内容覆盖课程中所讲述的主要内容。

2. 实验报告实验报告要求学生通过Matlab/Simulink仿真软件对数字通信系统进行建模和仿真,并撰写学习笔记和所完成实验的结果分析。

3. 作业完成情况教师将根据课堂讨论和布置的作业对学生的学习情况进行评估。

五、教学资源教师将为本课程提供以下教学资源:1.选取优秀的课程设计案例,供学生进行仿真和分析;2.为学生提供Matlab/Simulink仿真软件的操作指导和优秀的资源链接。

matlab通信系统仿真课程设计

matlab通信系统仿真课程设计

一、课程设计背景通信系统是现代信息社会中至关重要的基础设施,其设计和性能分析对于信息传输和交换具有重要意义。

Matlab作为一种强大的科学计算软件,被广泛应用于通信系统的仿真设计中。

本课程设计旨在通过Matlab软件进行通信系统的仿真设计,帮助学生掌握通信系统的基本原理和仿真方法,提高其工程实际应用能力。

二、课程设计目标1.了解通信系统的基本原理和结构;2.掌握Matlab编程基础及其在通信系统仿真中的应用;3.掌握通信系统常用信号处理技术;4.能够利用Matlab软件对通信系统进行仿真设计和性能分析。

三、课程设计内容1.通信系统基础知识介绍1.1 通信系统的基本原理1.2 通信系统的结构和功能2.Matlab编程基础2.1 Matlab语言基础2.2 Matlab基本操作和常用函数3.通信系统仿真设计3.1 通信系统信号生成和处理3.2 信道模型和噪声分析4.通信系统性能分析4.1 误码率性能分析4.2 信噪比分析4.3 频谱分析5.通信系统仿真设计案例分析5.1 数字调制与解调仿真设计5.2 OFDM系统性能分析5.3 MIMO系统仿真设计及性能分析四、课程实践环节1.使用Matlab进行通信系统仿真设计的基本操作演练;2.利用Matlab开发和验证通信系统中的基本算法;3.对通信系统的性能进行仿真分析,并进行结果验证;4.辅助课程设计项目的实践环节,帮助学生加深对通信系统仿真设计的理解和掌握。

五、课程设计评价1.学生综合能力的评价1.1 学生对通信系统基础知识的掌握情况1.2 学生Matlab编程能力的提升情况1.3 学生通信系统仿真设计能力的提高情况2.课程设计效果的评价2.1 课程内容是否能满足学生学习需求2.2 课程设计项目实践环节的实际效果2.3 课程设计是否对学生的就业和科研有帮助六、课程设计具体步骤1.明确课程设计目标和内容,制定详细的教学计划;2.准备教学资源和实践环节所需的软硬件设备;3.进行教师培训,提高教师对课程设计内容和实践操作的掌握程度;4.组织学生参与通信系统的相关理论学习和Matlab编程基础课程;5.根据课程设计内容和步骤进行实践操作演练;6.指导学生进行通信系统的仿真设计和性能分析实践;7.进行课程设计项目实践环节,辅助学生加深对通信系统仿真设计的理解和掌握;8.评价课程设计效果,总结经验和改进措施。

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计1. 课程设计概述本课程设计旨在通过实际操作,让学生掌握通信系统建模与仿真方法,并能够利用计算机软件进行仿真。

本课程设计主要分为三个部分,分别为理论学习、仿真实验和实验报告撰写。

在理论学习部分,学生将学习通信系统建模的理论知识;在仿真实验部分,学生将通过计算机仿真软件进行实际操作,并仿真分析通信系统性能;在实验报告撰写部分,学生将撰写本次实验的报告,总结实验结果并给出改进方案。

2. 理论学习2.1 通信系统建模基础通信系统建模是通信系统设计的重要部分,其主要目的是建立一个数学模型,描述通信系统的各个组成部分间的关系。

通信系统建模可以大致分为系统的传输模型和噪声模型两部分。

系统的传输模型主要描述信道传输特性,如频率响应、时域响应等;噪声模型则描述了环境、电路和信号本身所引起的噪声影响。

2.2 通信系统仿真方法通信系统仿真是通过计算机对通信系统进行模拟,分析系统性能和验证系统的可行性。

通信系统仿真可以大致分为系统仿真和信号仿真两部分。

系统仿真主要是对通信系统整体进行仿真,分析系统的性能指标,如误码率、信噪比等。

信号仿真则是针对某个信号的特定特性进行仿真,如频谱、时域波形等。

3. 仿真实验3.1 实验内容本次仿真实验的主要内容是使用MATLAB软件对QPSK调制通信系统进行建模和仿真。

实验步骤如下:1.建立信道模型:使用MATLAB建立通信系统中各个模块的数学模型,包括信源、信道、调制器、解调器等模块。

2.信号发送:生成QPSK调制下的随机数据信号,通过调制器进行调制并发送。

3.信号接收:接收信号并通过解调器进行解调。

4.误码率分析:分析误码率、信噪比等性能指标,调整系统参数使其达到最优性能。

3.2 实验要求1.使用MATLAB软件完成实验。

2.通过改变系统参数,分析系统各项性能指标。

3.完成实验报告,并附上实验结果分析和总结。

4. 实验报告实验报告应该包括以下内容:1.实验目的:交代本次实验的目的。

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计

通信系统建模与仿真课程设计2011 级通信工程专业1113071 班级题目基于SIMULINK的基带传输系统的仿真姓名学号指导教师2014年6月27日1任务书试建立一个基带传输模型,采用曼彻斯特码作为基带信号,发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高斯信道,接收滤波器与发送滤波器相匹配。

发送数据率为1000bps,要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。

另外,对发送信号和接收信号的功率谱进行估计。

假设接收定时恢复是理想的。

2基带系统的理论分析1.基带系统传输模型和工作原理数字基带传输系统的基本组成框图如图1 所示,它通常由脉冲形成器、发送滤波器、信道、接收滤波器、抽样判决器与码元再生器组成。

系统工作过程及各部分作用如下。

定时信号图 1 :数字基带传输系统方框图发送滤波器进一步将输入的矩形脉冲序列变换成适合信道传输的波形。

这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。

基带传输系统的信道通常采用电缆、架空明线等。

信道既传送信号,同时又因存在噪声和频率特性不理想而对数字信号造成损害,使得接收端得到的波形与发送的波形具有较大差异。

接收滤波器是收端为了减小信道特性不理想和噪声对信号传输的影响而设置的。

其主要作用是滤除带外噪声并对已接收的波形均衡,以便抽样判决器正确判决。

抽样判决器首先对接收滤波器输出的信号在规定的时刻(由定时脉冲控制)进行抽样,获得抽样信号,然后对抽样值进行判决,以确定各码元是“1”码还是“0”码。

2.基带系统设计中的码间干扰和噪声干扰以及解决方案由图1所示,其中发送滤波器的传递函数为,冲击响应为;接收滤波器的传递函数为,冲击响应为。

从到的传输过程中,各个脉冲信号经过信道与接收滤波器后可能发生不期望的变形,从而影响接收,这中间既有码间串扰又有噪声的影响。

经过接收滤波器后的输出信号为令,并令数字基带传输系统总的冲击响应为总的频响函数为于是记抽样定时为,得到抽样值,。

matlab通信系统仿真课程设计

matlab通信系统仿真课程设计

matlab通信系统仿真课程设计
MATLAB通信系统仿真课程设计是一个涉及到通信系统原理和MATLAB编程的设计项目。

在这个课程设计中,学生需要通过理论学习和实践操作,掌握通信系统的基本原理和MATLAB的使用技巧,最终完成一个通信系统的仿真模型。

以下是一个可能的课程设计流程和内容:
1. 引言和背景知识:介绍通信系统的基本原理和相关的数学知识,包括信号传输、调制解调、信道编码等概念。

2. MATLAB基础知识:介绍MATLAB的基本语法和常用函数,包括矩阵操作、图形绘制、信号处理等。

3. 信号传输模型:学生需要根据通信系统的基本原理,设计一个简单的信号传输模型。

这个模型可以包括信号的生成、调制、传输和解调等过程。

4. 信道模型:学生需要根据通信系统的信道特性,设计一个适当的信道模型。

这个模型可以包括信道的噪声、衰落等特性。

5. 信号检测和解码:学生需要设计一个信号检测和解码的算法,以实现对传输信号的恢复和解码。

6. 性能评估和优化:学生可以通过改变信道模型、调制方式、编码方式等参数,来评估系统的性能,并根据评估结果进行优化。

7. 结果分析和报告撰写:学生需要分析仿真结果并撰写一个综合性的报告,包括系统设计和实验结果等内容。

在这个课程设计中,学生需要结合理论学习和实践操作,掌握通信系统的基本原理和MATLAB的使用技巧。

通过完成这个设计项目,学生可以加深对通信系统的理解,并提升MATLAB编程和仿真分析的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 任务书
试建立一个基带传输模型,采用曼彻斯特码作为基带信号,
发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高
斯信道,接收滤波器与发送滤波器相匹配。

发送数据率为1000bps ,
要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据
与恢复数据波形,并统计误码率。

另外,对发送信号和接收信号的功
率谱进行估计。

假设接收定时恢复是理想的。

2 基带系统的理论分析
2.1基带系统传输模型及工作原理
基带系统传输模型如图1所示。

发送滤波器 传送信道 接收滤波器
{an}
n(t)
图1 基带系统传输模型
1)系统总的传输特性为(w)()()()H GT w C w GR w ,n (t )是信道中
的噪声。

2)基带系统的工作原理:信源是不经过调制解调的数字基带信号,
信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加
性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样
判决器进一步去噪恢复基带信号,从而完成基带信号的传输。

2.2 基带系统设计中的码间干扰及噪声干扰
码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基
带系统工作性能。

1)码间干扰及解决方案
a ) 码间干扰:由于基带信号受信道传输时延的影响,信号波形
将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。

b) 解决方案:
① 要求基带系统的传输函数H(ω)满足奈奎斯特第一准则:
2(),||i i H w Ts w Ts Ts ππ+
=≤∑ 不出现码间干扰的条件:当码元间隔T 的数字信号在某一理想低通
信道中传输时,若信号的传输速率位Rb=2fc (fc 为理想低通截止频
率),各码元的间隔T=1/2fc ,则此时在码元响应的最大值处将不
产生码间干扰。

传输数字信号所要求的信道带宽应是该信号传输速
率的一半:BW=fc=Rb/2=1/2T
② 基带系统的系统函数H(ω)应具有升余弦滚降特性。

如图2所示:滚降系数:a=[(fc+fa)-fc]/fc
2)噪声干扰及解决方案
噪声干扰:基带信号没有经过调制就直接在含有加性噪声的信道中传输,加性噪声会叠加在信号上导致信号波形发生畸变。

解决方案:
①在接收端进行抽样判决;
②匹配滤波,使得系统输出性噪比最大。

3基带系统设计方案
①信源的选择:双极性波形可用正负电平的脉冲分别表示二进制码
“1”和“0”,故当“1”和“O”等概率出现时无直流分量,有利于在信道中传输,且在接收端恢复信号的判决电平为零,抗干扰能力较强。

而这次课程设计所采用的曼彻斯特码就是一种典型的双极性不归零码。

在simulink的环境下产生该信号需将“Bernoulli Binary Generator”模块和“Pulse Generator”
模块各自产生的信号经过一个“Relay”模块判决后再经过一个相
乘器“Product”模块。

②发送滤波器和接收滤波器的选择:基带系统设计的核心问题是滤
波器的选取,根据对信源的分析,要求发送滤波器应具有升余弦滚降特性,同时为了得到最大输出信噪比,在此选择平方根升余弦滤波器作为发送(接收)滤波器,滚降系数为0.5,接收滤波器与发送滤波器相匹配,以得到最佳的通信性能(即误码率最小)③信道的选择:信道是允许基带信号通过的媒质,通常为有线信道,
信道的传输特性通常不满足无失真传输条件,且含有加性噪声。

因此本次系统仿真采用高斯白噪声信道。

④抽样判决器的选择:抽样判决器是在传输特性不理想及噪声背景
下,在规定时刻对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。

根据曼彻斯特码的码性特点,故在接收中的判决门限为0。

4 SIMULINK下基带系统的设计
4.1 信源的生成——曼彻斯特码
曼彻斯特的编码规则是这样的,即将二级制码“1”编成“10",将“0”码编成“01”,在这里由于采用了二进制双极性码,则将“1”编成“+1-1”码,而将“0”码编成“-1+1”码。

采用SIMULINK 中的bernoulli binary generator、pulse generator、Rete Transition、Relay、Product构成曼彻斯特码的生成电路。

模型连接方法如图3所示。

图3 曼特斯特码生成框图
模块参数设置:bernoulli binary generator的Prpbability of a zero设为0.5,sample time设为1e-3。

pulse generator的period 设为10,pulse width设为5,,Attitude设为1,phase delay位设为0,sample time设为1/10000。

Relay的switch on point和switch off point都设为0.5,output when on设为1,output when off设为-1,pulse generator所产生的序列(10)经过Rely后成为双极性归零脉冲(+1-1),两路双极性信号成为乘法器product的输入,这就得到了曼彻斯特码。

4.2 传输模块的实现
为了减小码间干扰,在最大输出信噪比时刻输出信号,减小噪声干扰,传输模块由Discrete Filter根升余弦、AWGN Channe、Discrete Filter根升余弦模块组成,其设计框图如图4所示。

图4 仿真模块设计框图
模块参数设置:Discrete Filter根升余弦的Numerator coefficient设为:rcosine(2000,10000,’fir/sqrt’,0.5,10),其中2000为码元速率;10000为滤波器的采样率;'fir/sqrt'用于平方根滚升余弦滤波器的设计;0.5为滚降系数;10代表从输入到峰值之间的时延。

AWGN Channel的mode设为Eb/No,Eb/No设为50,Input signal power设为1。

4.3 抽样判决
利用pulse generator、Relay和Product构成抽样判决电路,并对曼彻斯特码解码,其抽样判决电路及极性转换电路如图5所示。

图5 抽样判决电路及极性转换电路
模块参数设置:pulse generator的sample time设为1/20000,根据曼彻斯特码的特点,要将Relay的switch on point和switch off point设为0,用sample time为1/10000的pulse generator、Relay 和曼彻斯特码经过product完成对曼彻斯特码的解码。

4.4 基带传输系统设计总图
基带传输系统设计总图如图6所示
图6 基带传输系统设计总图5仿真结果分析
1)传输过程中的各点波形如图7所示
图7 传输过程中的各点波形
从图7的波形来看,传输是有效的。

上图是随机序列和定时脉冲序列,下图第1行波形是基带信号经过双极性变换后的序列波形,第2行波形是经过曼彻斯特编码模块后产生的曼彻斯特码,第3行波形是经极性转换后得到的二进制码,第4行波形是经过延时的曼彻斯特码。

经过波形的对比可以得出所设计的基带系统没有产生误码,达到了抗码间干扰和抗噪声干扰的目的。

2) 接收滤波器观察到的眼图如下图8所示
图8 接收滤波器观察到的眼图
(1)从上图中可以看出,眼图的线迹比较细,比较清晰,并且“眼睛”很大,说明误码率比较低,码间串扰与噪声对系统传输可靠性影响不大。

(2)从上图中可以看出最佳时刻是0.2,0.7左右等时刻“眼睛”
最大即抽样最佳时刻。

(3)抽样时刻,上下两个阴影区的间隔距离之半为噪声容限,3)发送及接受信号的功率谱如下图9、图10所示
图9 发送信号的功率谱
图10 接收信号的功率谱
6遇到的问题及解决的方法
①在Pulse Generator模块中,刚开始将sample time设为1/1000,运行时一直出现错误提示,经分析发现抽样点设为10,此时的周期为1000,与二进制随机序列的周期不匹配,应该将其设为1/10000.
②因为将随机序列转换为曼彻斯特码编码时码元速率要变为原来的二倍,即Discrete Filter根升余弦的码元速率为2000Baud。

③根据曼彻斯特码的特性,要将判决器Relay的门限设为0。

7结束语
本次设计最先建立曼彻斯特码编码器,其次是设计发送端的平方根升
余弦滤波器,接收端滤波器与之匹配,可以实现匹配滤波、减小系统码间干扰,使用高斯白噪声信道,然后建立抽样判决电路恢复重建信号,抵抗噪声干扰,抽样判决器以0作为判决门限,最后搭建曼彻斯特码的解码器,完成对数字基带传输系统的建模。

8指导教师评语。

相关文档
最新文档